
SECONDO/QP: Implementation of a Generic Query Processor 

Ralf Hartmut Güting 1

Stefan Dieker 1

Claudia Freundorfer 1

Ludger Becker 2

Holger Schenk 1

Abstract:  In an extensible database system, evaluation of a query plan is done in cooperation
between a collection of operator implementation functions and a component of the DBMS that we
call the query processor. Basically, the query processor constructs an operator tree for the query plan
and then calls an evaluator function which traverses the tree, calling the operator functions in each
node. This seemingly simple strategy is complicated by the fact that operator functions must be able
to call for the evaluation of parameter expressions (e.g. predicates), and must be able to process
streams of objects in a pipelined manner.

Although query processing along these lines is implemented in most database systems, and cer-
tainly in all extensible database systems, the details of programming the parameter passing, orga-
nizing the interaction between stream operators, etc. are tricky, and seem to be buried in the code of
the respective systems. We are not aware of any simple, crisp, clear published exposition of how one
could implement such a query processor. This is what the paper offers.

Moreover, we feel the solution presented here is particularly simple, elegant, and general. For
example, it is entirely independent from the data model being implemented, admits arbitrary para-
meter functions, and allows one to mix freely stream operators and other operators. The construction
of the operator tree, shown in the paper, includes complete type checking and resolution of over-
loading. The query processor has been implemented within the SECONDO system; the source code is
available. 

1 Introduction

Extensible database systems have been studied since about the mid-eighties. The main motivation has
been the support of new application areas, especially by making it possible to introduce application-
specific data types (e.g. polygons or images), and the achievement of a cleaner system architecture
which allows for easier changes such as the introduction of new access methods or query processing
algorithms. Two main directions can be distinguished. The first one is to select a specific data model
and to implement for it a system with well-defined interfaces for user-defined extensions. This

1)   Praktische Informatik IV
FernUniversität Hagen

D-58084 Hagen, Germany

2)   Westfälische Wilhelms-Universität
FB 15 - Informatik, Einsteinstr. 62

D-48149 Münster, Germany



–     2     –

approach was taken, for example, in the POSTGRES [StRH90], Starburst [Haas90], Gral [Gü89],
PREDATOR [SeLR97], and Paradise [Pate97] projects as well as in commercial systems like Infor-
mix Universal Server [Inf98]; in these cases, the model is an extended relational, or as it is called to-
day, object-relational model [St96].

The second approach strives for more generality and attempts to even leave the data model open. In
that case, no system is offered; instead, a toolkit, a collection of powerful tools for building database
systems is provided, for instance a general storage manager or an optimizer generator. Major propo-
nents of this approach are EXODUS [Care86] and its successor SHORE [Care94], GENESIS
[Bato88], DASDBS [Sche90] and Volcano [Gr94]. Toolkits “have essentially proven to be dead-
ends”; this is at least the view of Carey and DeWitt [CaD96]. The main reason was that it was too
difficult to construct a DBMS using the toolkit; also the tools offered were in some cases not flexible
enough to entirely match what was needed in the application DBMS.

The goal of SECONDO is to offer a generic “database system frame” that can be filled with implemen-
tations of a wide range of data models, including, for example, relational, object-oriented, graph-ori-
ented or sequence-oriented DB models. The strategy to achieve this goal is to separate the data-model
independent components and mechanisms in a DBMS (the system frame) from the data-model depen-
dent parts. Nevertheless, the frame and the “contents” have to work together closely. With respect to
the different levels of query languages in a DBMS, we have to describe to the system frame:

• the 

 

descriptive algebra

 

, defining a data model and query language,
• the 

 

executable algebra

 

, specifying a collection of data structures and operations capable of rep-
resenting the data model and implementing the query language,

•

 

rules

 

 to enable a query optimizer to map descriptive algebra terms to executable algebra terms,
also called 

 

query plans

 

 or 

 

evaluation plans.

 

A general formalism serving all of these purposes has been developed earlier, called 

 

second-order sig-
nature (SOS) 

 

[Gü93]. It is reviewed in Section 2.

At the system level, definitions and implementations of type constructors and operators of the execut-
able algebra are arranged into 

 

algebra modules

 

, interacting with the system frame through a small
number of well-defined support functions for manipulation of types and objects as well as operator
invocation.

This paper reports on the core part of the S

 

ECONDO

 

 system frame, the 

 

query processor

 

. The task of a
query processor is the evaluation of a query plan, that is, an expression of the physical algebra. The
basic strategy is to first construct an operator tree for the expression, and then to call an 

 

evaluator

 

function which traverses the tree, calling 

 

operator functions

 

 in each node. This is complicated by the
fact that operator functions must be able to call for the evaluation of parameter expressions (e.g. pre-
dicates) and must be able to process streams of objects, working interleaved.

The paper is organized as follows. In Section 2, we review the concept of second-order signature.
Section 3 describes the interaction between the query processor and algebra modules from the algebra
implementor’s point of view. Section 4 describes the evaluation of queries, explaining the construc-
tion of the operator tree, type checking, resolution of overloading, and evaluation control. Section 5
discusses  related work, and Section 6 concludes the paper.



 

–     3     –

 

2 Second-Order Signature

 

We can give here only a very brief introduction to second-order signature. For a more complete expo-
sition, see [Gü93]. A sophisticated OO and graph data model has been specified in SOS in [BeG95].
The idea is to use two coupled signatures. The first signature has so-called 

 

kinds

 

 as sorts and 

 

type con-
structors

 

 as operators. The terms of this signature are called 

 

types

 

. This set of types will be the type
system, or equivalently, the data model, of a S

 

ECONDO

 

 DBMS. The second signature uses the 

 

types
generated by the first signature

 

 as sorts, and introduces 

 

operations

 

 on these types which make up a
query algebra.

As an example data model specification we choose a small relational model at the execution level
(physical model and algebra) which will be used further in the paper. Although the purpose of S

 

EC-

ONDO

 

 is not to reimplement relational systems, it makes no sense to explain an unknown formalism
using examples from an unknown data model.

 

kinds

 

 IDENT, DATA, NUM, TUPLE, REL

 

type constructors

 

→

 

 DATA

 

int

 

, 

 

real

 

, 

 

bool

 

, 

 

string

 

→

 

 NUM

 

int

 

, 

 

real

 

 

(IDENT 

 

×

 

 DATA)

 

+

 

 

 

→

 

 TUPLE

 

tuple

 

 
TUPLE

 

→

 

 REL

 

rel

 

Any term of this signature is a 

 

type

 

 of the type system. Hence 

 

int

 

 is a type, and 

 

rel

 

(

 

tuple

 

(<(name, 

 

string

 

), (country, 

 

string

 

), (pop, 

 

int

 

)>))

is a type as well, describing the type of a relation for 

 

cities

 

. Since this is a physical model, for each
type constructor there must be a representation data structure in the system. – The second signature
uses the types generated by the first signature as sorts, and defines a collection of 

 

operators

 

, in this
case for a query processing algebra. Since there are in general infinitely many sorts generated by the
first signature, we use 

 

quantification over kinds

 

 to specify polymorphic operators. Hence kinds play
a dual role: They control the applicability of type constructors, and they are used for the specification
of operators.

 

operators

 

∀

 

 

 

num

 

1

 

 

 

in

 

 NUM. 

 

∀

 

 

 

num

 

2

 

 

 

in

 

 NUM.

 

num

 

1

 

 

 

×

 

 

 

num

 

2

 

→

 

 

 

bool

 

 <, >, 

 

≤

 

, 

 

≥

 

, =, 

 

≠

 

This defines comparison operators for any combination of 

 

int

 

 and 

 

real

 

 types. Here 

 

num

 

1

 

 and 

 

num

 

2

 

 are

type variables that can be bound to any type in the respective kind. A type is 

 

in

 

 the result kind of its
outermost type constructor.

 

∀

 

 

 

tuple

 

 

 

in

 

 TUPLE.

 

rel

 

(

 

tuple

 

) 

 

×

 

 (

 

tuple

 

 

 

→

 

 

 

bool

 

)

 

→

 

 

 

rel

 

(

 

tuple

 

)

 

scanselect

 

rel

 

(

 

tuple

 

)

 

→

 

 

 

stream

 

(

 

tuple

 

)

 

feed

 

stream

 

(

 

tuple

 

) 

 

×

 

 (

 

tuple

 

 

 

→

 

 

 

bool

 

)

 

→

 

 

 

stream

 

(

 

tuple

 

)

 

filter



 

–     4     –

These operators implement selection on a relation by scanning it

 

1

 

, feed a relation into a stream, and
filter a stream by a predicate, respectively. Note that the kind IDENT and the type constructor 

 

stream

 

are not defined in the data model above. They can be viewed as predefined since their meaning is in
fact hard-coded into the query processor, as we will show in Section 4. – Finally, we will use an ex-
ample 

 

attr

 

 operator to access components of a tuple:

 

∀

 

 

 

tuple

 

: 

 

tuple

 

(

 

list

 

) 

 

in

 

 TUPLE, attrname in IDENT, member(attrname, attrtype, list).
tuple × attrname → attrtype attr

Here member is a type predicate that checks whether a pair (x, y) with x = attrname occurs in the list
making up the tuple type definition. If so, it binds attrtype to y. Hence attr is an operation that for a
given tuple and attribute name returns a value of the data type associated with that attribute name. –
Type predicates are implemented “outside” the formalism in a programming language. An example
expression, or query plan using these operators, would be:

cities   scanselect[fun (c: city)   attr(c, pop) > 500000]

This assumes a cities relation of the type shown earlier, with tuple type city. Note that there is a general
notation for function abstractions, of the form

fun (x1: t1, …, xn: tn)   expr

where the xi are free variables in expr and the ti their types. – A SECONDO system executes a fixed set

of commands. Its most important basic commands are:

Here the first two commands manipulate named types, the next three named objects in the database.
Type expression refers to a type of the current type system and value expression to an expression of
the associated algebra. Note that this is the way how the fixed set of SECONDO commands cooperates
with the variable data model. Hence we can create the cities relation by commands:

type city_rel = rel(tuple(<(name, string), (country, string), (pop, int)>))
create cities: city_rel 

The implemented query processor manipulates all commands, type expressions, and value expres-
sions, in the form of list expressions, as in the language Lisp. In this notation, type constructors and
operators are written as the first element of a list, followed by their arguments. Hence the type of the
cities relation is represented as:

(rel (tuple ((name string) (country string) (pop int))))

and the query shown above is represented as

(scanselect cities (fun (c city) (> (attr c pop) 500000)))

1. Notice that we do not advocate the creation of intermediate relations as selection results, but rather introduce
operator scanselect in this paper to give a simple example of an operator using a parameter function, with an
evaluation function implementation as brief as presented in Section 3.2.

type <identifier> = <type expression>
delete type <identifier>
create <identifier> : <type expression>

update <identifer> := <value expression>
delete <identifier>
query <value expression>



–     5     –

3 Interaction of Query Processor and Algebra Modules

3.1 Overview

Type constructors and operators are implemented within algebra modules. The algebra implementor
must provide a fixed set of support functions which are registered with the system frame, thus becom-
ing callable by the query processor. In the scope of this paper, we are only interested in the support
functions presented in Table 1. An overview of the entire SECONDO system, including a complete list
of support functions, can be found in [DiG99].

The query processor, on the other hand, offers primitives which can be used within implementations
of evaluation functions as listed in Table 2.

In the rest of this section we show how evaluation functions are implemented using the query proces-
sor primitives (Section 3.2) and explain the basic techniques for the implementation of type mapping
functions (Section 3.3). We omit a detailed description of the implementation of Select functions,
because they are an easier variant of the TransformType functions.

3.2 Implementation of Evaluation functions

The interface for  Evaluate operator support functions written in Modula-2 is defined as follows.2

Evaluate Computes the result value from input values. In case of overload-
ing, several evaluation functions exist.

Select Selects the correct evaluation function in case of overloading by
means of the actual argument types.

TransformType Computes the operator’s result type from given argument types
(type mapping).

Table 1: Operator support functions (subset)

Handling of para-
meter functions

argument
Gives access to the argument vector of a parameter 
function.

request Calls a parameter function.

Handling of 
stream operators

open Initializes a stream operator.

request Triggers delivery of the next stream element.

received
Returns true if the preceding request was successful, 
otherwise false.

close Closes a stream operator.

Table 2: Query processor primitives

2. SECONDO supports algebra module implementations in C and C++, too. We prefer Modula-2 for code examples
because it is best suited to show technical details while not requiring specific programming language expertise.



–     6     –

PROCEDURE alpha (arg    : ArgVector;
             VAR result : WORD;         (* out *)
                 message: INTEGER;
             VAR local  : ADDRESS       (* in/out *)) : INTEGER;

Here arg is a vector of operands; each function knows how many operands it has. Each operand is

represented in one word of storage.3 The result value is returned in the same form in the parameter
result. The message and local parameters are needed only for stream operators; they are explained be-
low. The return value of the function is 0 if no error occurred; for stream operators it has an additional
meaning explained below. This interface is sufficient to implement  “simple” operators that just take
some arguments and return a value,  operators with parameter functions, and  stream operators. We
give an example implementation for each kind of operator.

Example (Simple Operator). Consider a simple addition operation on integers. The signature is:

int x int -> int +

The evaluation function is trivial, but shows how the generic interface is used:

PROCEDURE add (arg    : ArgVector;
           VAR result : WORD;         (* out *)
               message: INTEGER;
           VAR local  : ADDRESS       (* in/out *)) : INTEGER;
BEGIN
  result := INTEGER(arg[1]) + INTEGER(arg[2]); RETURN 0
END add;

Type casting is necessary to consider the arguments as integers when accessing the argument vector.

Example  (Operator with Parameter Function). The parameter function will be given by an address
within the argument vector arg in the proper position (e.g. arg[2], if the second argument is a func-
tion). Hence the argument vector contains values as well as what we call suppliers; a supplier is either
a function argument or a stream operator. (In the implementation, the parameter function is represent-
ed by a subtree of the operator tree, and the supplier is a pointer  to the root of that subtree).

A procedure implementing an operator with a parameter function will at some point have to call this
function explicitly (perhaps several times); for each call it has to set the arguments and to receive the
result using the argument and request primitives, respectively.

Let us illustrate this by a procedure implementing the scanselect operator of Section 2 with signature:

forall tuple in TUPLE. 
   rel(tuple) x (tuple -> bool) -> rel(tuple)   scanselect

We assume the existence of the following operations for reading and updating the relation represen-
tation:

CreateRelation Append CreateScan Next
DestroyRelation DestroyScan EndOfScan

Get

3. To achieve uniformity and simplicity in the query processor, we assume that any type of any algebra can be repre-
sented in a single word of storage. For simple values such as an integer, boolean, etc., this is the case; for larger
structures, it can be a pointer; for persistent values currently not in memory, it can be an index into a catalog table
describing how the persistent value can be accessed.



–     7     –

Then the evaluation function could be coded as follows.

PROCEDURE scanselect (arg    : ArgVector;
                  VAR result : WORD;         ( * out *)
                      message: INTEGER;
                  VAR local  : ADDRESS       (* in/out *)) : INTEGER;
VAR r: relation_scan; s: relation; t: tuple; value: INTEGER; 
  valid: BOOLEAN; vector: ArgVectorPointer;
BEGIN 
  r := CreateScan(relation(arg[1])); s := CreateRelation();
  ALLOCATE(t, TSIZE(TupleRec)); vector := argument(arg[2]);
  WHILE NOT EndOfScan(r) DO
    t := Get(r); vector^[1] := t; 
    request(arg[2], value); valid := VAL(BOOLEAN, value);4

    IF valid THEN Append(s, t) END; Next(r)
  END;
  DEALLOCATE(t, TSIZE(TupleRec)); DestroyScan(r); result := s; RETURN 0
END scanselect;

The essential point is the treatment of the parameter function of type (tuple → bool) which is the sec-
ond argument of scanselect and therefore represented by arg[2]. This function has a single argument
of type tuple; hence the first argument of its argument vector is set to t.

Example (Stream Operator). A stream operator somehow manipulates a stream of objects; it may
consume one or more input streams, produce an output stream, or both. For a given stream operator
α, let us call the operator receiving its output stream its successor and the operators from which it
receives its input streams its predecessors. The basic way how stream operators work is as follows.
Operator α is sent an open message to initialize its stream state. After that, each request message
makes α try to deliver a stream object. Operator α returns a yield message in case of success, or a
cancel message if it does not have an object any more. A close message indicates that α’s successor
has abandoned processing stream elements provided by α.

When we try to simulate stream operators by algebra functions, one can first observe that a function
should not relinquish control (terminate) when it sends a message to a predecessor. This can be treated
pretty much like calling a parameter function. However, the function needs to terminate when it sends
a yield or cancel message to the successor. This requires the function to be re-entrant, using some local
memory to store the state of the function.

In the general evaluation function interface given above, parameter message is used to send to this
operator one of the messages open, close, or request, coded as integers. Upon request, this procedure
will send in its return parameter a message yield or cancel to the successor. The parameter local can
be used to store local state variables that must be maintained between calls to alpha. If more than a
one-word variable is needed, one can define and allocate a record (type) within alpha and let local
point to it.

Let us now consider the implementation of the stream operator filter using the primitives for stream
processing introduced above.

forall tuple in TUPLE.
   stream(tuple) x (tuple -> bool) -> stream(tuple)   filter

4. VAL is a type transfer function in Modula-2; it converts from INTEGER (compatible with WORD) to BOOLEAN.



–     8     –

The filter operation has an input stream, an output stream, and a parameter function. It transmits from
its input stream to the output stream only tuples fulfilling the condition expressed by the parameter
function.

PROCEDURE filter (arg    : ArgVector;
              VAR result : WORD;         ( * out *)
                  message: INTEGER;
              VAR local  : ADDRESS       (* in/out *)) : INTEGER;
VAR t: tuple; found: BOOLEAN; value: INTEGER; vector: ArgVectorPointer;
BEGIN
  CASE message OF
    OPEN: open(arg[1]); RETURN 0 |
    REQUEST: request(arg[1], t); found := false;

vector := argument(arg[2]);
WHILE received(arg[1]) AND NOT found DO
  vector^[1] := t; request(arg[2], value); 
  found := VAL(BOOLEAN, value);
  IF NOT found THEN request(arg[1], t) END
END;
IF found THEN result := t; RETURN YIELD
ELSE RETURN CANCEL
END |

    CLOSE: close(arg[1]); RETURN 0
  END
END filter;

3.3 Implementation of Type Mapping Functions

In SECONDO, we exploit the concept of nested lists, well known from functional programming lan-
guages, as a generic means to represent type expressions, queries, and constant values. Nested lists
are very useful for the representation of query expressions or type expressions, since they are flexible
and easy to manipulate. We have written a little tool called NestedList which represents lists as binary
trees and offers the basic operations like Cons, First, Rest, etc., as in the language Lisp. This tool has
a Modula-2 as well as a C, C++, and Java interface. The tool considers the atoms occurring in the lists
as typed, and there is a fixed set of atom types:

Actually, there is a sixth atom type called Text to represent long texts which is not relevant here. The
NestedList tool allows one to read a list from a character string or a file.

An operator's TransformType function is called during query annotation with a parameter of type
ListExpr which is a list of the types of the arguments. The tasks of TransformType are

(i) to check that all argument types are correct, and
 (ii) to return a result type, again as a list expression.

In addition to that, a  TransformType function may

(iii) extract argument type information which might be useful for the operator’s evaluation function.

• Int 70, -5
• Real 3.14
• Bool FALSE

• String "Hagen"
• Symbol filter, >



–     9     –

Since query expressions may be entered by users directly, TransformType should be prepared to
handle all kinds of wrong argument type lists, and return a symbol atom typeerror in such a case. –
As an example, here is the TransformType function for the filter operator. The transformation of type
lists to be performed is

((stream x) (map x bool)) -> (stream x)

This is implemented in procedure filtertype as follows.

PROCEDURE filtertype (args: ListExpr) : ListExpr;
VAR first, second : ListExpr;
BEGIN
  IF ListLength(args) = 2 THEN
    first := First(args); second := Second(args);
    IF (ListLength(first) = 2) AND (ListLength(second) = 3) THEN
      IF (TypeOfSymbol(First(first)) = stream) AND
         (TypeOfSymbol(First(second)) = map) AND
         (TypeOfSymbol(Third(second)) = bool) AND
         Equal(Second(first), Second(second))
      THEN RETURN first
      END
    END
  END; RETURN SymbolAtom("typeerror")
END filtertype;

Here Equal is a procedure which checks for deep equality of its argument lists.

In filtertype we did not need to make use of the possibility to pass argument type information to
the TransformType function (task (iii) above). But consider, for instance, relational operators which
allow the user to identify attribute values by name like the attr operator or a projection operator. For
example, using attr the user would like to write an attribute name, as in (attr c pop). However, the
Evaluate function does not have access to the tuple type any more, and needs a number, the position
of the attribute called pop within the tuple, to access that component efficiently. For that purpose, the
TransformType function of attr computes the information needed and returns it in addition to the pure
result type t using the keyword APPEND: If a TransformType function returns a list (APPEND inf t)
rather than just t, where inf is a sublist containing the additional information, inf will be appended to
the original list of arguments during annotation of the query, explained below, and will be treated as
if it had been written by the user. In Appendix B the implementation of this mechanism is shown.

4 Evaluation of Query Plans

4.1 Structure of the Operator Tree

The operator tree has three kinds of nodes called Object, Operator and IndirectObject. An Object
node represents some kind of value (a database object or a constant), an Operator node an algebra
operator. An IndirectObject node represents a value accessible through the argument vector of a para-
meter function, hence, a parameter to that function. The actual definition of the data structure is given
in Appendix A.

Each kind of node has a field evaluable which is true iff this node is an object, an indirect object, or
an operator which is neither (the root of a subtree representing) a function argument nor a stream ar-



–     10     –

gument. This means the value of this subtree can be computed directly. A node can then have one of
the three forms mentioned above. It can represent an object (a simple value or a pointer); in that case
a field value contains that object. It can be an “indirect object” accessible through an argument vector
attached to a subtree representing a function argument; then a field vector points to that argument vec-
tor and a field argIndex is the position of the object within the argument vector.

Finally, the node can represent an operator with information as follows. Fields algebraId and opFunId
identify the operator's evaluation function, noSons is the number of arguments for this operator, sons
is an array of pointers to the sons, isFun is true iff the node is the root of a function argument, and
funArgs is a pointer to the argument vector for a function node, only used, if isFun is true. Field is-
Stream is true if this operator produces an output stream, local is used to keep the local parameter of
a stream operator between calls, and received is true iff the last call of this stream operator returned
YIELD.

The three kinds of nodes are represented graphically as shown in Figure 1. For an operator node, the
top left field shows the operator rather than its algebraId and opFunId. The other fields in the top row
are noSons, isFun, funArgs, and isStream; the last two fields are omitted in this representation. The
bottom row, of course, shows the sons array. 

The structure of the operator tree is illustrated by the representation of the following query plan:

(filter (feed cities)
(fun (c city)

(> (attr c pop .)
500000)))

Here attr is an operator with three arguments, namely, a tuple, an attribute name within that tuple, and
a number giving the position of the attribute within the tuple. However, the user does not have to sup-
ply this number; it will be inferred and added in type checking (see Section 3.3). This is indicated by
the dot, which is not written, only shown here to indicate the missing argument. The operator tree for
this query is shown in Figure 2. Here oval nodes represent data objects represented externally from
the operator tree. At the bottom an argument vector is shown.

4.2 Constructing the Operator Tree

The operator tree is constructed following two major steps:

1. The query is analyzed and annotated, i.e. an expanded list expression is returned with additional

Figure 1: Types of operator nodes 

Object IndirectObject Operator

1 + 2 T F



–     11     –

information about all symbols and substructures occurring in the query. Annotating the query
requires interaction with the algebra modules in two ways. First, whenever an application of an
operator α to a list of arguments is recognized, the types (type expressions) of the arguments are
collected and the TransformType function for operator α is called with this list of types.
TransformType checks that the argument types are correct and returns a result type (or the
symbol “typeerror”). Type expressions are also represented and manipulated as nested lists.

Second, overloading of operators is resolved. An operator always has at least one, but may have
several evaluation functions for different combinations of argument types; in the latter case we
call it overloaded. Hence, whenever an application of operator α to a list of arguments is recog-
nized, α’s Select support function is called. It is given the list of types of the arguments and
the index of the operator (the number of the operator within its algebra); it returns the index of
the appropriate evaluation function. 

2. The operator tree is constructed from the annotated query.

In the rest of this section, we discuss annotating the query, type mapping, and finally the actual build-
ing of the operator tree from the annotated query.

4.2.1 Annotating the Query Expression

A query or query plan is given as a nested list. Here is once more the example introduced above:

(filter (feed cities)
(fun (c city)

(> (attr c pop)
500000)))

It may have been entered by a user directly in this form, or be the result of processing of a parser front-
end, or of the optimizer. Given a query in the form shown above, we can distinguish between the five
types of atoms. The first four will be interpreted as constants of four basic types offered in a Stan-
dardAlgebra within SECONDO. The fifth, Symbol, is used to represent operators, object names, special
symbols like fun, etc.  In the query above, only 500000 is an Int atom; all other are Symbol atoms.

Figure 2: Sample operator tree

filter 2 F T

feed 1 F T > 2 T F

attribute 3 F F

1

500000

3

pop

cities



–     12     –

In annotating the query, the meaning of every atom and of every sublist is analyzed and returned ex-
plicitly together with that atom or list. What are the possible structures of a query? An atom can be:

(i) a constant of one of the four data types int, real, bool, or string
(ii) an operator

(iii) the name of an object in the database (which is not a function object)
(iv) the name of a function object in the database (see [Gü93]).
(v) the name of a variable defined as a parameter in some enclosing abstraction (function defini-

tion) in the query
(vi) an identifier (used, for example, as an attribute name)

A list can be:

(vii) an application of an operator α to some arguments of the form (alpha a1 ... an)
(viii) an application of a database function object f to some arguments: (f a1 ... an)
(ix) an application of an abstraction to some arguments: 

((fun (x1 t1) ... (xn tn) expr) a1 ... an)

(x) an abstraction (function definition) of the form (fun (x1 t1) ... (xn tn) expr)
(xi) a list of arguments for some operator: (a1 ... an). Operators in SECONDO may have argu-

ments that are themselves varying length lists of arguments (for example, a list of attribute
names for a projection operator).

(xii) an empty list: this is interpreted as an empty list of arguments.

A procedure annotate does the annotation; for a given subexpression (atom or list) s, it returns in gen-
eral a structure of the form

((s <descriptor> …) <type>)

The descriptor is a keyword identifying the cases (i) through (xii) above, keywords are

constant, operator, object, function, variable, identifier,
applyop, applyfun, applyabs, abstraction, arglist

After the descriptor there can be further list elements giving specific information for this descriptor.
For example, a constant is annotated as

<value> -> ((<value> constant <index>) <type>),

7 -> ((7 constant 1) int)

Whenever a constant or a database object is annotated, its value, given as a WORD, is entered into a
global ARRAY OF WORD Values at an index valueno, and valueno is incremented. The 1 after the
descriptor constant is the index under which this constant was stored. 

The second element of the annotation is always the type of the element annotated, except for opera-
tors, where no type is needed. Operators are annotated as

<op> -> ((<op> operator <algebraId> <operatorId>) none)

For an operator + as in Section 4.2 this would result in

+ -> ((+ operator 1 1) none)

The application of an operator to some arguments is annotated as



–     13     –

(<op> <arg1> … <argn>)

-> ( (none applyop (ann(<op>) ann(<arg1>) … ann(<argn>))))
<resulttype> 
<opFunId>)

If a list s is annotated, then the original list s is not repeated in the annotation, instead we have a sym-
bol none in the first position of the first sublist. The third element of the first sublist is the annotated
version of the operator application. The resulttype was determined by calling the TransformType
function of the operator. The opFunId is the index of the evaluation function for this type combination
and has been determined by a call of the Select function for this operator.

Hence, for example, the complete annotation of a query expression (- 7 1.100) would be

(   (none applyop
        (   ((- operator 1 2) none)
            ((7 constant 1) int)
            ((1.100 constant 2) real)))
    real
    6)

Here the result type is real and the evaluation function for int and real arguments has index 6. A short-
ened version of procedure annotate is shown in Appendix B. Most cases are omitted, but the overall
structure is given, and annotation of an operator application, including the calls of the operator's type
mapping function and selection function, is shown completely. – To annotate abstractions of the form
(fun (x1 t1) … (xn tn) expr), annotate calls a procedure annotate_function. This procedure first
increments a global counter for function definitions fno. Then it processes each parameter definition
(xi ti) by entering name xi, position i, function number fno, and type expression ti into a table for vari-

ables. Finally, it calls annotate again to annotate expr. Within expr, occurrences of the names xi will

be recognized and annotated as variables with all the information mentioned above, so that variables
can be translated into IndirectObject nodes of the operator tree later. Annotate_function also collects
the types t1, …, tn and the result type t of expr (returned by annotate) and builds the type expression

of the whole abstraction which is (map t1 … tn t).

4.2.2 Building the Operator Tree

The operator tree is constructed from the annotated query expression by a procedure subtree. This is
a relatively simple matter, since all necessary information has been collected in the annotation. A part
of procedure subtree is shown in Appendix C; that part gives the flavor and should be sufficient to
process the little annotated query:

(   (none applyop
        (   ((- operator 1 2) none)
            ((7 constant 1) int)
            ((1.100 constant 2) real)))
    real 6)

After annotating the query, it is known how many abstractions (function definitions) it contains. Be-
fore subtree is called, a corresponding number of argument vectors is allocated and assigned to the
fields of a global array ArgVectors. Since the annotations of abstractions as well as those of variables
contain function numbers, procedure subtree can set pointers to the argument vectors indexed by that
number when nodes for IndirectObjects and root nodes of function expressions are processed.



–     14     –

4.3 The Evaluation Procedure

Evaluation is done in close cooperation between a recursive function eval of the query processor,
applied to the root of the operator tree, and the operators’ evaluation functions. Function eval has the
basic structure as follows.

function eval (t : node): WORD;
input: a node t of the operator tree;
output: the value of the subtree rooted in t;
method:

if t is an object or indirect object node then lookup the value and return it
else {t is an operator node}

for each subtree ti of t do {evaluate all subtrees that are not functions or streams}
if the root of ti is marked as function (F) or stream (S) then argi := ti
else argi := eval(ti)
end

end;
Call the operator’s evaluation function with argument vector arg and return its result

end
end eval

The actual source code for eval can be found in Appendix D. The basic strategy is, of course, to eval-
uate the tree bottom-up, calling an operator’s evaluation function with the values of the argument sub-
trees that have been determined recursively by eval. In case of parameter functions (F) or stream
operators (S), however, evaluation control is passed to the evaluation function of the superior opera-
tor, which in turn uses the request primitive to call for specific subtree evaluation, as demonstrated in
Section 3.2.

5 Related Work

We briefly compare with four projects that have studied generic query processors more deeply, name-
ly GENESIS, EXODUS, Starburst, and Volcano. All these projects have lots of interesting concepts
and results, but we can only consider the issue of this paper here. GENESIS [BaLW88] early on em-
phasized stream processing; they even adapted the data model level, a functional model similar to DA-
PLEX and FQL to use stream rewriting rules (“productions”) as a querying primitive. A production
is implemented by a stream translator, a box with input and output streams; such boxes are arranged
into a translator network to describe a query plan. Translators communicate via mailboxes (shared
variables). A translator is implemented by a function which branches on the various kinds of input
tokens. An important feature not found in the other approaches is that streams have a nested structure;
delimiters (braces) are part of the stream. In contrast to SECONDO, all operators have to be expressed
as stream operators, even simple arithmetic or comparison operators. Parameter expressions are treat-
ed as  streams as well. Mechanisms for setting up the translator network and for controlling execution
are not shown.

EXODUS [RiC87, RiCS93] offers a language E, an extension of C++ designed for implementing da-
tabase systems. E provides an iterator construct which allows one to initialize a stream, then request



–     15     –

elements in a loop, and terminates when the stream is exhausted. An iterator actually consists of the
iterator loop construct and some iterator functions called in the loop. An iterator function sends re-
sults to the caller by means of a yield command. This is all very similar to our stream protocol which
was certainly inspired by EXODUS. Operator functions written in E are slightly more elegant than
those of SECONDO. However, the environment for executing such functions is much more complex
since it relies on compiling the language E. Implementing operators that need access to type/schema
information requires a rather complex interplay between the operator function written by the database
implementor, and pieces of code generated by the E compiler which has access to schema infor-
mation. E is also firmly tied to the C++ environment and the compiling strategy, which would make
it difficult or impossible to design a query processing system as a collection of algebras which can be
written independently and in various languages (currently Modula-2, C, and C++ are supported in SE-

CONDO, we plan extensions for Java and possibly other languages).

Starburst [Haas90, Haas89] uses query plans composed of algebraic operators called LOLEPOPs (low
level plan operators). A LOLEPOP has several associated routines (e.g. a cost function, property map-
ping) and especially an interpretation routine (= evaluation function). These take one or more input
streams and produce an output stream. However, the implementation of this concept, and the interface
for writing interpretation routines is not shown in the papers. A specialty is that parameter expressions
(predicates) are translated into programs for a stack machine.

Finally, Volcano [Gr94] is the closest in spirit to SECONDO. Volcano also emphasizes data model
independence (as already EXODUS did). Operators are implemented as iterators observing an open -
next – close protocol equivalent to our stream protocol. A slight technical difference here is that an
operator is realized by three different functions, e.g. open-filter(), next-filter(), and close-filter() in-
stead of our branching on messages in a single procedure. Parameter expressions are made available
to operator functions as so-called support functions. However, it is not clear how support functions
for expressions are constructed, and the precise mechanism for calling them is not given. In Volcano,
all operators are stream operators (operators like +, > in expressions seem to be viewed as a different
category). A difference to SECONDO is also that the environment recursively calls all open (and later
close) functions, hence this is not controlled by the operator implementations as in SECONDO. Mixing
stream and non-stream operators is not possible. Constructing operator trees from textual query plans
is not shown. On the other hand, Volcano offers very interesting concepts such as dynamic query
plans and transparent switching to a parallel execution, and is already a much more complete system
than SECONDO, including an optimizer generator [GrM93].

6 Conclusions

SECONDO is a generic development environment for non-standard multi-user database systems. At the
bottom architecture level, SECONDO offers tools for efficient and comfortable handling of nested lists
and catalogs, a simplified interface to the underlying SHORE storage manager, a tool for efficient
management of tuples with embedded large objects [DiG98], and an SOS-to-NestedList-Compiler.
Algebra modules for standard and relational data types and operators as well as simple user interface
clients have been implemented. [DiG99] gives a more detailed overview of the entire system.



–     16     –

In this paper, we have described the core part of SECONDO: the extensible query processor. Its main
new aspects are the following:

• Other approaches lack a formal basis like SOS to describe a generic query plan algebra. This
makes it impossible for them to give a clear algorithm for translating a query plan into an oper-
ator tree, as we do here.

• Functional abstraction is a well-defined concept in SOS. This leads to a very clean, simple and
general treatment of parameter expressions of operators.

• stream is a built-in type constructor in SECONDO. Simply writing the keyword stream in the
type mapping of an operator lets the query processor automatically set up calls of the evalua-
tion function for this operator in stream mode. For this reason, SECONDO can handle uniformly
streams of anything, not just tuples. Also, a query plan can mix freely stream and non-stream
operators.

• SECONDO includes complete type checking, type mapping, and resolution of operator overloa-
ding.

For the time being, algebra support functions dealing with type expressions, like TransformType,
have to be coded manually. In the future, an SOS specification compiler will create those functions
automatically. Other future work will focus on the completion of an extensible rule-based query op-
timizer.

References

[Bato88] Batory, D.S., J.R. Barnett, J.F. Garza, K.P. Smith, K. Tsukuda, B.C. Twichell, and T.E. Wise, GENESIS: An
Extensible Database Management System. IEEE Trans. on Software Engineering 14 (1988), 1711-1730.

[BaLW88] Batory, D.S., T.Y. Leung, and T.E.Wise, Implementation Concepts for an Extensible Data Model and Data
Language. ACM Trans. on Database Systems 13 (1988), 231-262.

[BeG95] Becker, L., and R.H. Güting, The GraphDB Algebra: Specification of Advanced Data Models with Second-
Order Signature. FernUniversität Hagen, Praktische Informatik IV, Informatik-Report 183, 1995.

[Care86] Carey, M.J., D.J. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, J.E. Richardson, and E.J. Shekita, The Ar-
chitecture of the EXODUS Extensible DBMS. In [Di86], 52-65.

[Care94] Carey, M.J., D.J. DeWitt, M.J. Franklin, N.E. Hall, M.L. McAuliffe, J.F. Naughton, D.T. Schuh, M.H. So-
lomon, C.K. Tan, O.G. Tsatalos, S.J. White, M.J. Zwilling, Shoring Up Persistent Applications. Proc. ACM
SIGMOD Conf. 1994, 383-394.

[CaD96] Carey, M.J., and D.J. DeWitt, Of Objects and Databases: A Decade of Turmoil. Proc. of the 22nd Intl. Conf.
on Very Large Data Bases, Mumbai, India, 1996, 3-14.

[Di86] Dittrich, K.R., Proc. of the IEEE/ACM International Workshop on Object-Oriented Database Systems, Pacif-
ic Grove, California, 1986.

[DiG98] S. Dieker and R. H. Güting, Efficient Handling of Tuples with Embedded Large Objects. FernUniversität
Hagen, Informatik-Report 236, 1998.

[DiG99] Dieker, S., and R.H. Güting, Plug and Play with Query Algebras: SECONDO. A Generic DBMS Develop-
ment Environment. FernUniversität Hagen, Praktische Informatik IV, Informatik-Report 249, 1999.

[Gr94] Graefe, G., Volcano – An Extensible and Parallel Query Evaluation System. IEEE Trans. on Knowledge and
Data Engineering 6 (1994), 120-135.

[GrM93] Graefe, G., and W.J. McKenna, The Volcano Optimizer Generator: Extensibility and Efficient Search. Proc.
of the 9th Intl. Conf. on Data Engineering, 1993, 209-218.

[Gü89] Güting, R.H., Gral: An Extensible Relational Database System for Geometric Applications. Proc. of the 15th
Intl. Conf. on Very Large Data Bases, 1989, 33-44.



–     17     –

[Gü93] Güting, R.H., Second-Order Signature: A Tool for Specifying Data Models, Query Processing, and Optimi-
zation. Proc. ACM SIGMOD Conf. (Washington, 1993), 277-286.

[Haas89] Haas, L.M., J.C. Freytag, G.M. Lohman, and H. Pirahesh, Extensible Query Processing in Starburst. Proc.
ACM SIGMOD Conf. 1989, 377-388.

[Haas90] Haas, L.M., W. Chang, G.M. Lohman, J. McPherson, P.F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M.
Carey, and E. Shekita, Starburst Mid-Flight: As the Dust Clears. IEEE Trans. on Knowledge and Data Engi-
neering 2 (1990), 143-160.

[Inf98] Informix Software, Inc. Extending INFORMIX-Universal Server: Data Types, version 9.1, 1998. Online ver-
sion (http://www.informix.com).

[Pate97] Patel, J.M., J. Yu, N. Kabra, K. Tufte, B. Nag, J. Burger, N.E. Hall, K. Ramasamy, R. Lueder, C. Ellman, J.
Kupsch, S. Guo, D.J. DeWitt, J.F. Naughton, Building a Scaleable Geo-Spatial DBMS: Technology, Imple-
mentation, and Evaluation. Proc. ACM SIGMOD Conf. 1997, 336-347.

[RiC87] Richardson, J.E., and M.J. Carey, Programming Constructs for Database System Implementation in EXO-
DUS. Proc. ACM SIGMOD Conf. 1987, 208-219.

[RiCS93] Richardson, J.E., M.J. Carey, and D.T. Schuh, The Design of the E Programming Language. ACM Trans. on
Programming Languages and Systems 15 (1993), 494-534.

[Sche90] Schek, H.J., H.B. Paul, M.H. Scholl, and G. Weikum, The DASDBS Project: Objectives, Experiences, and
Future Prospects. IEEE Trans. on Knowledge and Data Engineering 2:1 (1990), 25-43.

[SeLR97] Seshadri, P., M. Livny, and R. Ramakrishnan, The Case for Enhanced Abstract Datatypes. Proc. of the 23rd
Intl. Conf. on Very Large Data Bases, Athens 1996, 66-75.

[St96] Stonebraker, M., Object-Relational DBMSs: The Next Great Wave. Morgan Kaufmann Publishers, 1996.

[StRH90] Stonebraker, M., L.A. Rowe, and M. Hirohama, The Implementation of POSTGRES. IEEE Trans. on Knowl-
edge and Data Engineering 2 (1990), 125-142.



–     18     –

Appendix

A  Definition of the Operator Tree

TYPE
  OpTree      = POINTER TO OpNode;
  OpNodeType  = (Object, IndirectObject, Operator);

  OpNode      = RECORD
     evaluable: BOOLEAN;
    CASE nodetype : OpNodeType OF
        Object:
          value: WORD;
      | IndirectObject:
          vector : ArgVectorPointer;
          argIndex : INTEGER;
      | Operator:
          algebraId: INTEGER;
          opFunId: INTEGER;
          noSons: INTEGER;
          sons: ARRAY [1..MAXARG] OF OpTree;
          isFun: BOOLEAN;
          funArgs: ArgVectorPointer;
          isStream: BOOLEAN;
          local: ADDRESS;
          received: BOOLEAN
    END (* CASE *)
  END; (* OpNode *)

B  Structure of Procedure annotate 

PROCEDURE annotate (expr    : ListExpr;
                VAR varnames: NameIndex.NameIndex;    (* in/out *)
                VAR vartable: varentryCTable;         (* in/out *)
                VAR defined : BOOLEAN                 (* in/out *)) 
                                                              : ListExpr;
VAR …
BEGIN
  IF IsEmpty(expr) THEN …     (* empty arg. list, case (xii), omitted *)
  ELSIF IsAtom(expr) THEN …   (* treatment of atoms, cases (i) - (vi), omitted *)
  ELSE (* expr is a nonempty list *)
    IF NOT (TypeOfSymbol(First(expr)) = fun) THEN (* not an abstraction *)

      (* first annotate recursively each element of this list: *)
      first := First(expr); rest := Rest(expr);
      list := OneElemList(annotate(first, varnames, vartable, defined)); lastElem := list;
      WHILE NOT IsEmpty(rest) DO
        lastElem := Append(lastElem, annotate(First(rest), varnames, vartable, defined));
        rest := Rest(rest)
      END;
      last := lastElem;       (* remember the last element to be able to
                                 append further arguments, see below *)

(* At this point, we may have for a given expr (+ 3 10) a list such as
       (((+ operator 1 6) none) ((3 ...) int) (( 10 ...) int))         *)

      first := First(list);                (* first = ((+ operator 1 6) none) *)
      IF ListLength(first) > 0 THEN
        first := First(first);             (* first = (+ operator 1 6) *)
        IF ListLength(first) >= 2 THEN
          CASE TypeOfSymbol(Second(first)) OF
            operator:                      (* operator application, case (vii) *)
              alId := IntValue(Third(first)); opId := IntValue(Fourth(first));

              (* extract the list of types into "typeList" *)
              rest := Rest(list);
              IF NOT IsEmpty(rest) THEN 
                typeList := OneElemList(Second(First(rest))); 
                rest := Rest(rest); lastElem := typeList
              END;
              WHILE NOT IsEmpty(rest) DO
                 lastElem := Append(lastElem, Second(First(rest))); rest := Rest(rest)
              END;



–     19     –

              (* apply the operator's type mapping: *)
              resultType := TransformType[alId]^[opId](typeList);

              (* use the operator's selection function to get the index 
              (opFunId) of the evaluation function for this operator: *)
              opFunId := SelectFunction[alId]^[opId](typeList, opId);

              (* check whether the type mapping has requested to append
              further arguments: *)
              IF (ListLength(resultType) = 3) AND 
                (TypeOfSymbol(First(resultType)) = APPEND)
              THEN
                lastElem := last; rest := Second(resultType);
                WHILE NOT IsEmpty(rest) DO
                  lastElem := Append(lastElem, 
                  annotate(First(rest), varnames, vartable, defined)); 
                  rest := Rest(rest)
                END; 
                resultType := Third(resultType)
              END;

              RETURN ThreeElemList(
                ThreeElemList(SymbolAtom("none"), SymbolAtom("applyop"), list), 
                resultType, IntAtom(opFunId))                                                        

          | function: …          (* case (viii), omitted *)

          | abstraction …        (* case (ix), omitted *)

          ELSE …                 (* argument list, case (xi), omitted *)
          END (* CASE *)
        ELSE RETURN SymbolAtom ("exprerror") END
      ELSE RETURN SymbolAtom ("exprerror") END

    ELSE (* is an abstraction, case (x) *)
      RETURN annotate_function(expr, varnames, vartable, defined, 0, 
        TheEmptyList(), TheEmptyList())
    END
  END (* nonempty list *)
END annotate;

C Structure of Procedure subtree

PROCEDURE subtree(expr : ListExpr) : OpTree;

VAR …
BEGIN
  CASE TypeOfSymbol(Second(First(expr))) OF
    constant, object:
      ALLOCATE(node, TSIZE(OpNode));
      WITH node^ DO evaluable := TRUE; nodetype := Object;
        valNo := IntValue(Third(First(expr))); value := Values[valNo]
      END; RETURN node;
  | operator:
      ALLOCATE(node, TSIZE(OpNode));
      WITH node^ DO evaluable := TRUE; nodetype := Operator;
        algebraId := IntValue(Third(First(expr)));
        opFunId := IntValue(Fourth(First(expr)));
        (* next three fields may be overwritten later *)
        noSons := 0; isFun := FALSE; funNo := 0; isStream := FALSE;
      END; RETURN node;
  | applyop:
      node := subtree(First(Third(First(expr))));
      WITH node^ DO evaluable := TRUE; opFunId := IntValue(Third(expr));
        noSons := 0; list := Rest(Third(First(expr)));
        WHILE NOT IsEmpty(list) DO INC(noSons);
          sons[noSons] := subtree(First(list)); list := Rest(list)
        END;
        IF NOT IsAtom(Second(expr)) AND
          (TypeOfSymbol(First(Second(expr))) = stream) 
        THEN isStream := TRUE; evaluable := FALSE
        END
      END;
  | …                        (* other cases, omitted *)
END subtree;



–     20     –

D Procedure eval

PROCEDURE eval(tree   : OpTree;        
           VAR result : WORD;        (* out *)
               message: INTEGER);
VAR i: INTEGER; status: INTEGER; arg: ArgVector;        
BEGIN
  IF tree = NIL THEN Error ("eval called with tree = NIL!"); HALT;
  ELSE
    WITH tree^ DO
      CASE nodetype OF
        Object:         result:= value; RETURN                                   |
        IndirectObject: result := vector^[argIndex]; RETURN                      |
        Operator:       (* First evaluate all subtrees that are not
                           functions or streams. Then call this 
                           operator's evaluation procedure. *)
          FOR i := 1 TO noSons DO
            IF sons[i]^.evaluable THEN eval(sons[i], arg[i], message)
            ELSE arg[i] := sons[i]
            END
          END;
          status := 
                Execute[algebraId]^[opFunId](arg, result, message, local);
                (* Execute is an array of pointers to all operator evaluation
                  functions, maintained by the system frame. *)
          IF isStream THEN received := (status = YIELD)
          ELSIF status # 0 THEN  Error ("eval: operator failed"); HALT; 
           END; RETURN
      END (* CASE *)
    END
  END
END eval;



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


