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Abstract

We presentSECONDO, a new generic environment supporting the implementation of database system

a wide range of data models and query languages. On the one hand, this framework is more flexib

common extensible and object-relational systems, offering the full extensibility ofsecond-order signature,

the formal basis for data and query language definitions inSECONDO. On the other hand, it is much more

complete and structured than database system toolkits. Extensibility is provided by the concept ofalgebra

modulesdefining and implementing new types (type constructors, in fact) and operators. Support fun

are used to register them with the system frame.

After a review of second-order signature essentials, this paper presents the system functionality, giv

uniform set of user commands valid for all data models, and the extensible system architecture. Al

mon DBMS features are implemented in the system frame; only purely data model dependent functi

is coded in algebra modules, supported by a variety of tools. Furthermore, we describe the key str

for extensible query processing in theSECONDOenvironment and explain the structure of algebra mo

ules.

1 Introduction

Conventional relational database systems cannot meet the requirements from modern database ap

domains like CAD, GIS, spatio-temporal information systems, or the large and still growing field of m

media processing. As a consequence, new application-specific data models arise. Common facili

the development of systems implementing new data models are toolkits like EXODUS [CaDF+8

extensible systems as developed in the Postgres [StR86] project.

While toolkits are very generic and can be used for the implementation of many different data model

leave too much expenditure at the implementor to be accepted as a suitable means for fast system

mentation. Extensible systems, on the other hand, pre-implement as much functionality as possibl

expense of flexibility, since they usually prescribe a specific data model, e.g. an object-relational m

The goal ofSECONDOis to offer a generic “database system frame” that can be filled with impleme

tions of a wide range of data models, including, for example, relational, object-oriented, graph-orien

* This work was partially supported by the CHOROCHRONOS project, funded by the EU under the Training and Mo

of Researchers Programme, Contract No. ERB FMRX-CT96-0056.
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sequence-oriented DB models. The strategy to achieve this goal is to separate the data-model inde

components and mechanisms in a DBMS (thesystem frame) from the data-model dependent parts. Neve

theless, the frame and the “contents” have to work together closely. With respect to the different lev

query languages in a DBMS, we have to describe to the system frame:

• thedescriptive algebra, defining a data model and query language,

• the executable algebra, specifying a collection of data structures and operations capable of re

senting the data model and implementing the query language,

• rules to enable a query optimizer to map descriptive algebra terms to executable algebra term

calledquery plans or evaluation plans.

A general formalism serving all of these purposes has been developed earlier, calledsecond-order signa-

ture (SOS)[Güt93]. It is reviewed in Section 3.

On top of the descriptive algebra level may be some syntactically sugared language, e.g. in an SQ

style. We assume that the top-level language and the descriptive algebra are entirely equivalent in “

sive power”; only the former may be more user-friendly whereas the latter is structured according

SOS formalism. A compiler transforming the top-level language to descriptive algebra can be written

tively easily using compiler generation tools, since it just has to perform a one-to-one mapping to th

responding data definitions and operations.

At the system level, definitions and implementations of type constructors and operators of the exec

algebra are arranged intoalgebra modules, interacting with the system frame through a small number

well-defined support functions for manipulation of types and objects as well as operator invocation.

algebra support functions dealing with type expressions will be created automatically from the corres

ing SOS specification.

The remainder of this document is structured as follows. Section 2 discusses related work. In Sectio

focus on how second-order signature allows one to define a descriptive or executable algebra. Se

presents the system functionality, the extensible architecture, and the key techniques implemen

query processing. Section 5 explains the structure of algebra modules and shows how inter-module

tion can be organized. In Section 6 we briefly discuss the implementation of user interfaces on top oSEC-

ONDO, and Section 7 concludes the paper.

2 Related Work

The first approach to open up the type system of a relational DBMS with abstract data types (ADTs

pioneered by the Ingres project [OnFS84]. It was followed by Postgres [StR86], primarily focusin

query optimization with ADTs and support for complex objects. Another important project implemen

an extensible relational system was Starburst [ScCF+86], with query processing and a clean arch

for storage and indexing of complex objects as key goals. More recently, also commercial extensib

tems are available, now known asobject-relationalsystems [CaD96]. Informix Universal Server [Inf98] i

just one example.
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Other object-relational systems provided extensibility of the data model, but emphasized a particular

cation field. Quite early, for instance, the need for extensibility was observed in the area of geogra

information systems. Projects range from the Gral system [Güt89], emphasizing structured data

extension by algebraic specifications, to the Paradise project [PaYK+97], whose main research int

increasing the efficiency of query evaluation by parallelization, motivated by the huge amount of

graphical data available through modern satellite systems.

So far we exclusively considered systems which, though extensible, are still tightly bound to the rela

model. A much more radical approach to support the development of application-specific non-sta

database systems can be identified as the database system toolkits/components approach [CaD96]

do not prescribe any data model, but rather identify a common subset of functionality which all dat

systems for whatever data model must provide, e.g. transaction management, concurrency control

ery, and query optimization. Key projects of that category were GENESIS [BaBG+88] and EXO

[CaDF+86]. The storage manager component of SHORE [CaDF+94], the successor of EXODUS, in

used as the storage manager forSECONDO.

Both the object-relational and the toolkits thread of research meet atSECONDO. SinceSECONDO is not

bound to any data model, it is more extensible than the presented extensible systems. On the other

offers a precise framework to describe varying data models and execution systems which is refle

well-defined interfaces for registering corresponding support functions. Thus,SECONDOis as comfortable

to extend as any object-relational system and almost as flexible as a database toolkit: an extensib

braic term execution engine on top of a state-of-the-art storage manager with support for persistent o

Volcano [Gra94] and PREDATOR [SeLR97] are two other systems which cannot be classified accord

the above categories, but are closer in spirit toSECONDO. Volcano is currently a more complete syste

thanSECONDO, including mechanisms for parallelization and the Volcano optimizer generator [GrM

SECONDO, on the other hand, is superior to Volcano in terms of generic query processing, query al

specification, and simplicity and clarity of algebra module implementation.

PREDATOR advocates the concept of enhanced ADTs (E-ADTs) for data model extension. An E-A

an ADT with additional information on the semantics of the ADT, supporting query optimization. In c

trast to common object-relational systems, the relational functionality is not hard-coded, but rathe

vided by an exchangeable relational E-ADT. A sequence database system has been imple

[SeLR96]. Compared toSECONDO, PREDATOR is even more generic since it is not restricted to the (v

small) limitations of the expressive power of second-order signature. As a consequence, however,

implementation for non-standard data models is a much more complex issue than inSECONDO, since

query processing details have to be implemented by the E-ADT implementor.

3 Second-Order Signature

Since theSECONDOsystem tries to implement the framework of second-order signature (SOS) deve

in [Güt93], it is necessary to recall the essential concepts here. The basic idea of SOS is to use two c
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signatures to describe first, a data model and second, an algebra over that data model. A signature

eral hassorts andoperators and defines a set ofterms.

3.1 Specifying a Descriptive Algebra

In SOS, the first signature has so-calledkindsas sorts andtype constructorsas operators. The terms of th

first signature are calledtypes. In the sequel we show example specifications for the relational model a

relational execution system. Although the purpose ofSECONDOis not to reimplement relational systems

it makes no sense to explain an unknown formalism using examples from an unknown data mode

structural part of the relational model can be described by the following signature:

kinds IDENT, DATA, TUPLE, REL

type constructors

Hereint, real, string, andboolare type constructors without arguments, orconstanttype constructors, of a

result kind called DATA. A kind stands for the set of types (terms) for which it is the result kind. For DA

this set is finite, namely DATA = {int, real, string, bool}. In contrast, there are infinitely many types o

kind TUPLE or REL. For example,

tuple([(name,string), (age,int)])

rel(tuple([(name,string), (age,int)]))

are types of kind TUPLE and REL, respectively. The definition of thetuple type constructor uses a few

simple extensions of the basic concept of signature that are present in the SOS framework, for exam

s1, …, sn are sorts, then (s1 × … × sn) is also a sort (productsort), and ifs is a sort, thens+ is a sort (list

sort). The term (t1, …, tn) belongs to a product sort (s1 × … × sn) iff each ti is a term of sortsi; the term

[t1, …, tm], for m ≥ 1, is a term of sorts+ iff each ti is a term of sorts. The kind IDENT is predefined (and

treated in a special way in the implementation inSECONDO); its type constructors are drawn from som

infinite domain of “identifiers”; hence they can be used as attribute names here.

The notion of a relationschemahas been replaced by a relation type, and “relation” is not considered t

a single type, but a type constructor. Hence operations like selection or join are viewed as polym

operations. Note that the choice of kinds and type constructors is completely left to the designer of

model. We are not offering a toolbox with a fixed set of constructors such astuple, list, set, etc., but instead

a framework where new constructors can be defined. Hence theSECONDOsystem frame as such know

nothing aboutrel or tuple constructors.1 To demonstrate that this is a general framework, let us brie

show a complex object type system (similar to [BaK86]):

→ DATA int, real, string, bool
(IDENT × DATA)+ → TUPLE tuple

TUPLE → REL rel

1. The only predefined kinds and type constructors in SECONDO are IDENT with its “type constructors” and the type con

structorstream which plays a special role in query evaluation (see Section 4.2.3).
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kinds IDENT, OBJ

type constructors

Here thetupleandsettype constructors can be applied independently. For example, a type describingper-

son objects is:

tuple([ (name,string),

(children,set(string)),

(address,tuple([(city, string), (street,string), (number,int)]))])

In summary, the terms of the first signature of an SOS specification define atype system, which within the

descriptive algebra is equivalent to a DBMS data model.

Now the second signature is used to define operations on the types generated by the first sig

Whereas a signature normally has only a small, finite number of sorts, the second level of signature

generally has to deal with infinitely many sorts. Because of this, we writesignature specifications. The

basic tool isquantification over kinds. We define a few example operations for the relational model ab

operators

∀ data in DATA.

Heredata is a type variable ranging over the types in kind DATA. Hence it can be bound to any of t

types which is then substituted in the second line of the specification. So we obtain comparison op

on two integers, two reals, etc. Relational selection is specified as follows

∀ rel: rel(tuple) in REL.

:Hererel(tuple) is apatternin the quantification which is used to bind the two type variablesrel andtuple

simultaneously. Hence the first argument toselectis a relation of some typerel, and the second argument i

a function from its tuple type tobool, that is, a predicate on this tuple type. The result has the same typ

the first argument.

The second argument ofselectis based on the following extension of the concept of signature define

SOS: If, forn ≥ 0, s1, …, sn and s are sorts, then (s1 × … × sn → s) is a sort (function sort). Furthermore,

fun (x1: s1, …, xn: sn) t

is a term of sort (s1 × … × sn → s) iff t is a term of sorts with free variablesx1, …, xn of sortss1, …, sn,

respectively.

An operatorattr  allows us to access attribute values in tuples:

∀ tuple: tuple(list) in TUPLE,attrname in IDENT, member(attrname, attrtype, list).

→ OBJ bottom, top, int, real, string, bool
(IDENT × OBJ)+ → OBJ tuple

OBJ → OBJ set

data× data → bool =, ≠, <, ≤, ≥, >

rel × (tuple→ bool) → rel select

tuple× attrname → attrtype attr



– 6 –

dicates

rs, to

as

put as

tation.

type

ecution

rs repre-

execu-

sional,

l

Herememberis a type predicatethat checks whether a pair (x, y) with x = attrnameoccurs in thelist mak-

ing up the tuple type definition. If so, it bindsattrtypeto y. Henceattr is an operation that for a given tuple

and attribute name returns a value of the data type associated with that attribute name. – Type pre

are implemented “outside” the formalism in a programming language.

Syntax. The standard syntax for terms over signatures is prefix notationop(arg1, …, argn). Whereas type

terms are always written in prefix notation, SOS allows one to specify syntax patterns for operato

obtain more readable query expressions. For the operators defined above, these might be defined 

Here “_” denotes an argument, “#” the operator; parentheses, brackets, and commas have to be

shown. So with this syntax specification, comparison operators can be written in infix notation,selectin

postfix with the parameter predicate following in square brackets, and attribute access in prefix no

The resulting syntax we callSOS syntax.

With the few operations defined above we can now write a query. Assuming a relation “people” of

rel(person) is given and “person” is the name of a tuple typetuple([(name,string), (age,int)]), the query

“Find people older than 20” can be written as

peopleselect[fun (p: person)attr (p, age) > 20]

The parser tool implemented inSECONDOcan actually infer the tuple typepersonfrom the type of relation

peoplesupplied as a first argument toselect(using an additional specification given with theselectopera-

tor before parser generation), so that this query can be written as

peopleselect[attr (., age) > 20]

To distinguish the two levels of signature, we call the firsttype signature and the secondvalue signature.

3.2 Specifying an Executable Algebra

Precisely the same formalism (although we have not yet seen all of it) can be used to specify an ex

system for some data model. In this case, type constructors represent data structures and operato

sent query processing algorithms implemented in the system. We show a small part of a relational

tion system.

kinds IDENT, DATA, ORD, TUPLE, RELREP

type constructors

Here we have introduced an additional kind ORD to represent types corresponding to one-dimen

ordered domains suitable to be indexed in a B-tree. Type constructorsrel stands for a simple sequentia

data× data → bool =, ≠, <, ≤, ≥, > _ # _
rel × (tuple→ bool) → rel select _ # [ _ ]
tuple× attrname → attrtype attr # ( _, _)

→ DATA int, real, string, bool
→ ORD int, real, string

(IDENT × DATA)+ → TUPLE tuple

TUPLE → RELREP srel, relrep
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representation of a relation which might be constructed as a result of a query. Typerelrepwill be used to

generalize over different relation representations.

We would like to define a type constructor representing a B-tree relation representation ordered by

the attributes. The type description should also contain the attribute name and data type by wh

B-tree is organized. Basically, the signature might be defined as follows.

However, this would not ensure that the attribute name and data type given as the second and thir

ment do actually occur within the tuple type given as the first argument

The purpose of a signature is to describe what are valid arguments for an operator. Signatures are

but a bit limited, since they define any combination of arguments that conform to the given argumen

to be valid. Sometimes, as for thebtree constructor, it is necessary to introduce further restrictions

ensure certain relationships between the arguments. We have already seen in the operator spec

above how this can be done. SOS also allows one to writetype constructor specifications, using the same

mechanisms as for operator specifications. In fact, all the signatures for type constructors shown ab

be viewed as a shorthand for such specifications. For example, thesrel specification can also be written as

∀ tuple in TUPLE.

Thebtree constructor can be defined, using themember predicate introduced earlier, as:

∀ tuple: tuple(list) in TUPLE,attr in IDENT, dtype in ORD,member(attr, dtype, list).

Now we would like to introduce operators applicable to any existing relation representation. SOS

subtype specifications for this. We can makesrel andbtree subtypes ofrelrep by saying:

subtypes

Type variables appearing on the left must also appear on the right hand side; hence we have genera

from left to right. We now define a few example operators (comparison operators andattr are specified as

in the descriptive algebra):

operators

∀ tuple in TUPLE,attr in IDENT, dtype in ORD.

The feed operator scans a relation representation and feeds its tuples into a stream. Thefilter operator

applies a predicate to each tuple in a stream;consumecollects tuples from a stream into a temporary rel

TUPLE × IDENT × ORD → RELREP btree

tuple → RELREP srel

tuple× attr × dtype → RELREP btree

srel(tuple) < relrep(tuple)

btree(tuple, attr, dtype) < relrep(tuple)

relrep(tuple) → stream(tuple) feed _ #
stream(tuple) × (tuple→ bool) → stream(tuple) filter _ # [ _ ]
stream(tuple) → srel(tuple) consume _ #
btree(tuple, attr, dtype) × dtype× dtype → stream(tuple) range _ # (_, _)
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Syntax patterns are specified as explained in Section 3.1.

Suppose now that thepeople relation from Section 3.1 is represented as a B-tree of type

btree(tuple([(name,string), (age,int)]), age,int)

We can then express the query “Find people older than 20” in executable algebra in two different

The first query plan scans the relation representation, the second performs a range query.

peoplefeed filter [fun (p: person)attr (p, age) > 20]consume

peoplerange(21, 120)consume

3.3 Commands

In the SOS framework, adatabaseis a pair (T, O), whereT is a finite set ofnamed typesandO is a finite set

of named objects. A named type is a pair, consisting of an identifier and a type of the current (descri

or executable) algebra. A named object is a pair, consisting of an identifier and a value of some type

current algebra. SOS defines six basic commands to manipulate a database, regardless of – or pa

ized by – the data model:

type <identifier> = <type expression>

delete type <identifier>

create <identifier> : <type expression>

update <identifier> := <value expression>

delete <identifier>

query <value expression>

A command can be given at the level of descriptive or executable algebra. In the first case, it is sub

optimization before execution; in the second, it is executed directly. In these commands, atype expression

is a type of the current type signature, possibly containing names of (previously defined) types in the

base. Avalue expressionis a term of the current value signature, which may also contain constants

names of objects in the database. Thetype command adds a new named type,delete typeremoves an

existing type. Thecreatecommand creates a new object of the given type; its value is yet undefined.

update command assigns a value resulting from the value expression which must be of the type

object. Thedeletecommand removes an object from the database. Thequery command returns a value

resulting from the value expression to the user interface or application. Here are some example com

at the executable algebra level:

type city = tuple([(name,string), (pop,int), (country,string)])

type city_rel =srel(city)

create cities: city_rel

update cities := {enter values into the cities relation, omitted here}

query citiesfeed filter [fun (c: city)attr (c, pop) > 1000000]consume
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More details about the SOS framework can be found in [Güt93]. In [BeG95] a descriptive algebra ha

defined for GraphDB [Güt94], an object-oriented data model that integrates a treatment of graphs,

shows that the framework is powerful enough to describe complex, advanced data models.

4 The SECONDO System

Second-order signature is the formal basis for specifying data-models and query languages. In this

we present theSECONDOsystem frame, providing a clean extensible architecture, implementing all d

model independent functionality for managing SOS type constructors and operators, and supporti

sistent object representations. Extending the frame with algebra modules results in a full-fledged da

system. In addition to the basic commands presented in Section 3.3,SECONDO provides several other

commands, e.g. for transaction management, system configuration, administration of multiple data

and file input and output.

4.1 Architecture

Figure 1 shows a coarse architecture overview of theSECONDOsystem. We discuss it level-wise from bot

tom to top. White boxes are part of the fixedsystem frame, which is independent of the currently imple

mented data model. Grey-shaded boxes represent the extensible part of theSECONDO system. Their

contents differ with specific database implementations.

Figure 1:SECONDO architecture
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The system is built on top of the Solaris operating system. Since we want to offer a full-fledged dat

system with features like transaction management, concurrency control, and recovery, using a

manager for dealing with persistent data is essential. Actually, we use the storage manager compo

the SHORE [CaDF+94] system.

In level 1 of theSECONDO architecture we find a variety of tools, for instance

Nested Lists, a library of functions for easy handling of nested lists, the generic format to pass valu

well as type descriptions. Section 4.2.1 describes nested lists in more detail.

SecondoSMI, a simplified storage manager interface to the SHORE functions used most often. It c

used together with original SHORE function calls whenever the simplified functionality is not s

cient.

Catalog Tools for easy creation of system catalogs and algebra-specific catalogs.

Tuple Manager, an efficient implementation for handling tuples with embedded large objects [DiG

Often the size of values represented using the large object abstraction provided by modern s

managers actually varies between tuple instances from very small to large. Our approach sw

embedded objects that are really large, but stores them within the tuple byte string if they are s

than a suitable threshold size.

SOS parser. As we have seen in the “Syntax” paragraph within Section 3.1, the SOS syntax for q

expressions is defined through operator syntax patterns. The SOS parser, extensible by those

specifications, transforms an SOS term to the generic nested list format used in the system.

SOS specification compiler. This tool creates the source code for theTypeCheck and TransformType

algebra support functions (see Section 5.1) from a valid SOS specification.

Level 2 is the algebra module level. To some extent, an algebra module ofSECONDOis similar to ADTs of

PREDATOR [SeLR97] or data blades of Informix Universal Server [Inf98]. Using the tools of level

SECONDOalgebra module defines and implements type constructors and operators of an executabl

algebra. While there are some good reasons to use C++ for algebra module implementation,SECONDO

allows for implementations in Modula-2 and C, too. To be able to use a module’s types and opera

queries, the module must be registered with the system frame, thereby enabling modules in upper l

call specific support functions provided by the module. In Figure 1, modules 1, 2, andn are connected to

the frame, thusactive, while module 3 isinactive. C++ modules are activated by linking them to the sy

tem frame. In addition to that, activation of C and Modula-2 modules requires insertion of some stan

ized lines into the body of a predefined startup function.

Level 3 contains the query processor, the system catalog of types and objects (remember that a da

just a set of named types and named objects), and the mechanism for module registration. During

execution, the query processor controls which support functions of active algebra modules are exec

which point of time. Input to the query processor is a query plan, i.e. a term of the executable a

defined by active algebra modules.
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The query optimizer depicted in level 4 transforms a descriptive query into an efficient evaluation pla

the query processor by means of transformation rules. For each algebra module, the database impl

provides a corresponding set of rules as well as algebra support functions supplying information o

mated query execution costs.

The command manager in level 5 provides a procedural interface to the functionality of the lower l

described in more detail in Section 6. Depending on the command level, the query (or other comm

passed either to the query compiler provided by the database implementor, to the optimizer, or to the

processor.

In level 6 we find the front end of aSECONDOinstallation, providing the user interface. In general, the

are two mutually exclusive alternatives: Either the user interface is linked with the frame and active a

modules to a self-contained program, or theSECONDOprocess is made a server process serving requ

of an arbitrary number of client processes which implement the user interfaces. In the first case,SECONDO

is a single-user, single-process system, in the latter caseSECONDO is a multi-user capable client-serve

system, exploiting the multithreaded environment offered by SHORE. To support the implementat

user clients,SECONDO provides comfortable client libraries for C++ and Java.

4.2 Query Processing

4.2.1 Representation of Type Expressions, Values, and Value Expressions

During query processing, type expressions, values, and value expressions are passed between

modules and functions. We exploit the concept of nested lists, well known from functional program

languages, as a generic means to represent type expressions, queries, and constant values in quer

results, or external files. A nested list is either a value of anatom type(integer, real, boolean, string, text, or

symbol), or a list of arbitrary length. Each list element in turn is either an atomic value or a nested lis

The textual representation of a nested list consists of a left parenthesis, followed by an arbitrary num

elements separated by blanks, followed by a right parenthesis. For instance, the list expression(1 2.01

((int) (“XX” TRUE))) represents a nested list of 3 elements: The integer atom 1 is the first elemen

real atom 2.01 is the second one, and the list((int) (“XX” TRUE))  is the third one.

The tools layer ofSECONDOprovides efficient Modula-2, C, C++, and Java libraries for managing nes

lists. Using this library, a nested list is a pointer structure in main memory which is referenced by a

word of storage. Thus, passing nested lists as function parameters is very inexpensive. Furtherm

library provides a persistent version of nested lists and functions to convert a main memory nested l

resentation to a persistent one and vice versa.

Nested lists are a suitable means to representtype expressionsof the second-order signature formalism. Le

us consider two examples:

• The SOS type expressionrel(tuple([(name,string), (pop,int)])) corresponds to the list expressio

(rel (tuple ((name string) (pop int)))) .
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• The argument type specification of a relational selection operator, taking as arguments a va

typerel and a function mapping a tuple to boolean, is defined by[ rel( x), ( x → bool)] . The corre-

sponding list expression is((rel x) (map x bool)) .

During query processing, different kinds of types must be considered.User defined typesand types of

objectsare persistently stored in the system catalog.Types of constant valuesare in textual or in-memory

format, depending on the format of query input.Types of intermediate resultsare produced and accepte

by the query processing support functions implemented within algebra modules. Thus, whenever a

tent or textual type expression is encountered, it is transformed to in-memory representation before

processing.

Concerningvalues, we distinguishinternal valuesandexternal values. Internal values are values of object

and intermediate results. They are always represented as a single word of storage. Both system cat

query processor use just this word value, regardless of the actual value implementation. If the main

ory representation of a value does not fit into a single word, a pointer referencing the value is used in

For persistent value representations, typically an integer offset into an algebra-specific catalog is u

External values are found in queries, query results, and the files used by theSECONDOcommands for file

input and output. External values are represented in nested list format. The algebra implementor s

the list structure, which is quite straightforward in most cases. Consider a relation value of

rel(tuple([(name,string), (pop,int)])). Its nested list representation is a list of tuple values, each a list c

sisting of a string and an integer element, for instance((“New York” 7322000) (“Paris” 2175000)) .

For an atomic data type such aspolygon, the representation might be a list of pairs of vertex coordinate

Value expressionsdefine queries or occur as right hand sides of update commands and are essentially

of a value signature. They can be written either inSOS syntax(see Section 3.1) or inlist syntax, i.e., as

nested lists. Expressions in SOS syntax are transformed by theSOS parsertool into list syntax, hence for

processing, queries are always represented as nested lists. For example, the query plan

cities feed filter [fun (c: city)attr (c, pop) > 1000000]consume

can be typed into the system either in SOS syntax

cities feed filter[fun (c: city) attr(c, pop) > 1000000] consume

or in list syntax

(consume (filter (feed cities) (fun (c city) (> (attr c pop) 1000000))))

A value expression can in general be aconstant, anobjectname, anabstraction(i.e. a term of a function

type), alist of value expressions (matching an operator’s argument of a list type), or anapplicationof an

operator to some value expressions. Constants are either of the predefined nested list atom typesinteger,

real, string, or boolean, which can be written directly in the usual notation and are interpreted as valu

typesint , real , string , andbool , if there is an algebra module in the system providing these types

they can be generic constants written in the form (<type expression> <value list>), e.g.(polygon ((1.0

3.8) (4.0 3.8) (2.5 6.0))) , wherevalue list is the external representation of the value.
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4.2.2 Processing Type Expressions: Kind Checking

The task of kind checking is to validate type expressions given as argument of thetype command (see

Section 3.3) for the definition of a new named type. This in turn requires checking if all type constru

are applied correctly. In principle, how a type constructor can be applied is defined by its SOS spe

tion. Of course, if the argument types are given in some representation, one can also check this pr

ally. In fact, kind checking is implemented in this way: For each type constructor there is a su

function, calledTypeCheck , checking for the type expressions supplied as arguments whether they

the respective SOS type constructor specification or not. At the moment, theTypeCheck function is coded

manually by the algebra implementor. Later on, the SOS specification compiler will generate it auto

cally from the SOS specification.

SOS type constructor specifications contain quantifications over kinds. To reflect quantification over

within the implementation of theTypeCheck function, the system frame offers the catalog functionCheck-

Kind , returning the disjunction of allTypeCheck functions pertaining to a given kind. Setting up the asso

ation of type constructors and kinds takes place in the startup routines (see Section 5.1) of active

modules.

4.2.3 Processing Value Expressions: Type Checking and Evaluation

A query (or value expression) is evaluated in three steps. First, the expression, given as a nested

annotated, which includes type checking. Second, from the annotated expression (also a nested li

operator tree is built. Third, evaluation is called for the root of the operator tree. We discuss each s

turn.

Annotating the Query. Given a value expression such as

(consume (filter (feed cities) (fun (c city) (> (attr c pop) 1000000))))

a recursive procedureannotateessentially processes the tree represented by the nested list bottom

annotating each node with its type. More precisely, for each atom or sublists in the query, a list of the form

((s, class, …), type) is returned, whereclassis a keyword classifying the element, and afterclasssome spe-

cific information for this kind of element follows. Classes are, for example,constant, operator, abstrac-

tion; more specific information is for a constant where its value can be found, or for an operator itsalgebra

numberandoperator numberwhich in the system identify an operator uniquely. Thetypeof the element is,

of course, also given as a nested list. For example, for the abstraction above the returned type wou

(map (tuple ((name string) (pop int) (country string))) bool)

The essential step in annotation is the type checking of operator applications, that is, checking whet

argument types are correct, and determining the result type. Like for type constructors, how an op

can be applied is determined by its SOS specification. Again, if the argument types are given in som

resentation, one can also check procedurally whether they are correct and what the result type

indeed, in our implementation for each operator there is a support functionTransformType which, given

the argument types as a list of nested lists, returns the result type of the operator application, or a
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error. Once the SOS specification compiler is available, these support functions will be generated au

ically; currently, they are still hand-coded.

Annotation also resolves theoverloadingof operators by means of another support functionSelect . In

general, for each operator there may be an array ofevaluationsupport functions, dealing with specific

combinations of argument types. TheSelect function takes a list of argument types and returns a num

which is an index into the array of evaluation functions. Annotation callsSelect with the actual types in

the operator application and puts the returnedevaluation function number into the annotated expression.

There are some other facilities in annotation that cannot be explained here in detail for lack of spac

as the possibility to computederived argumentsby type mapping functions, orderived function argument

types.

Building the Operator Tree. Given the annotated value expression, it is relatively easy to build an op

tor tree. Such a tree has three kinds of nodes, namely

1. Object nodes, representing a database object or a constant value,

2. Indirect object nodes, representing a variable in the expression of an abstraction,

3. Operator nodes, representing the application of an operator to some arguments.

Object and indirect object nodes are leaves, operator nodes internal nodes of the tree. Object nodes

the value of the object or constant, represented in a single word of storage. Indirect object nodes co

reference to an argument vector for the abstraction (parameter function), and an index into that vect

argument vector is an array of WORD and contains single word value representations. Hence an i

object also refers to a value. Operator nodes contain an array of pointers to subtrees, algebra num

evaluation function number for the operator, a flag indicating whether the operator is the root of a s

representing an abstraction (and if it is, a pointer to the abstraction’s argument vector), and a flag w

the operator returns a result of typestream. Figure 2 shows an operator tree for the example query abo

Figure 2: Operator tree

pop 2

filter S

feed S

cities
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attr 1000000

1

consume
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In an operator node, we have represented the operator by its name rather than its pair of numbers.

represents a true “stream” flag, “F” the “root of abstraction” (function) flag. The right subtree of thefilter

operator represents as a whole the abstraction subexpression

(fun (c city) (> (attr c pop) 1000000))

The argument vector for the abstraction is shown to the right. Note that the third argument for thattr

operator, the attribute number of “pop” within a city tuple, is aderived argumentadded in annotation by

the operator’s type mapping function. Hence the evaluation function can use this number for tuple

instead of the attribute name.

Building the operator tree is easy because annotation has collected all the relevant information. For

ple, the “stream” flag is set if the outermost type constructor of the operator’s result type isstream ; or the

symbol “c”, the first argument toattr , has been analyzed to be the first parameter of the abstraction w

leads to setting up an indirect object node.

Evaluation. Evaluation is done in close cooperation between a recursive functionevalof the query proces-

sor, applied to the root of the operator tree, and the operators’ evaluation functions. The basic strateg

course, to evaluate the tree bottom-up, calling an operator’s evaluation function with the values of the

ment subtrees that have been determined recursively byeval. Interesting aspects are the treatment

abstractions (parameter functions of operators) and stream processing. To support this, functioneval has

the basic structure shown in Figure 3.

The generic interface of an operator evaluation function basically has the form

function alpha (arg: argVector; var result: WORD): integer;

function eval(t : node): WORD;

input : a nodet of the operator tree;

output: the value of the subtree rooted int;

method:

if t is an object or indirect object nodethen lookup the value and return it

else { t is an operator node}

for  each subtreeti of t do {evaluate all subtrees that are not functions or streams}

if the root ofti is marked as function (F) or stream (S)then argi := ti

else argi := eval(ti)

end

end;

Call the operator’s evaluation function with argument vectorarg and return its result

end

endeval

Figure 3: Functioneval
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whereargVectoris an array of WORD. The returnedintegervalue is used for error messages. As we ha

just seen, the arguments supplied to the evaluation function are either values, or in case of argume

are parameter functions (abstractions) or streams, pointers to the respective subtrees which we calsuppli-

ers. An operator with a function argument needs to pass parameter values to that function and then

for its evaluation. The query processor supports this by offering two primitivesargumentandrequest. For

a given supplier,argumentreturns a pointer to its argument vector. The caller can then put values into

vector.Requestcalls for evaluation of a supplier which is implemented by callingeval. For example, the

evaluation function for thefilter operator in Figure 2 gets the argument vector for its second argument

puts the current tuple value into its first field. It then callsrequestfor this second argument which return

the boolean value resulting from evaluating the parameter function.

An operator with a stream argument (e.g.consume) usesrequestin the same way to get an element of th

stream. In addition, two more primitivesopenandcloseare available for stream suppliers. The query pr

cessor implements these as calls of the supplier’s evaluation function with amessagefrom the set {OPEN,

REQUEST, CLOSE}. Hence the generic interface of an evaluation function is in fact a bit larger:

function alpha (arg: argVector; var result: WORD;m: message): integer;

An evaluation function returning a stream (e.g. forfeed, filter ) is structured into three parts according t

the three possible messages. Usually foropensome initialization actions have to be performed and f

closesome cleaning up. A stream evaluation function returns (in the integer return value) one of two

cial values CANCEL and YIELD to inform the consuming operator whether it did deliver a stream

ment or the stream was exhausted. Via a final primitivereceivedthe consumer can check for a supplie

whether it sent CANCEL or YIELD.

A description of query processing inSECONDOat a more technical level, including many code exampl

e.g. for evaluation functions, can be found in [GüFB+97].

5 Algebra Modules

5.1 Structure

In addition to the data structures and support functions already mentioned, an algebra module c

components to support optimization. For each type constructor, amodelmay be registered which is a dat

structure containing summary information about a value of the type. The model is a place to keep s

cal information such as (expected) number of tuples, histograms about attribute value distribution, e

maintaining models there are three support functionsInModel , OutModel andValueToModel , explained in

Table 1.

Furthermore, for each operator, there are two support functions related to optimization calledMapModel

and MapCost . For an operator application,MapModel takes the models of the operator’s arguments a

returns a model for the result.MapCost also takes the models of the operator’s arguments as well as

estimated costs for computing the arguments and, based on these, estimates and returns the co
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operator application. By calling these support functions, the optimizer can estimate properties of in

diate results and the cost of query plans or subplans.

Table 1 lists all support functions for type constructors implemented in algebra modules. In addit

these functions, also the type constructor name is passed to the system frame.

Table 2 presents all support functions for operators. For each operator, also its name and the num

evaluation functions are passed to the system frame.

Furthermore, there is a startup routine for each algebra module which is used to associate type cons

with the kinds containing them, to perform initializations of global arrays, etc.

The registration mechanism for support functions differs with the implementation language. Registra

most comfortable in C++: For each type constructor, an instance of the predefined classTypeConstructor

must be defined, passing operator support functions as constructor arguments. The same happ

operators and a predefined classOperator . For a complete algebra, an instance of a class derived from

predefined classAlgebra is defined. The constructor of the derived class is the startup routine of the m

ules.

5.2 Module Interaction

Algebra modules need not only to cooperate with the system frame, but also with other algebra mo

Modules implement certain signatures. At the type level,kindsare the junctions between different signa

In/Out Conversion from nested list to internal value representation and vice versa.

Create/Delete Allocate/deallocate memory for internal value representation.

TypeCheck Validation of type constructor applications in type expressions.

InModel/OutModel Conversion from nested list to internal model representation and vice versa

ValueToModel Computes a model for a given value.

Table 1: Support functions for type constructors

TransformType Computes the operator’s result type from given argument types.

Select Selects the correct evaluation function in case of overloading by means of th

actual argument types.

Evaluate Computes the result value from input values. In case of overloading, sever

evaluation functions exist.

TransformType Computes the operator’s result type from given argument types.

MapModel Computes the result model from argument models. Optional.

MapCost Computes the estimated cost of an operator application from argument mode

and costs.

Table 2: Support functions for operators.
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tures. For instance, each type in kind DATA will be a valid attribute type for thetuple type constructor.

Thus, a type constructorpolygonis made a type constructor for attribute types by simply addingpolygonto

the type constructors for DATA.

At the implementation level, the interface between system frame and algebra modules does not imp

specific inter-module interaction conventions on the algebra implementation, but rather the algebra

mentor is free to define the protocol for interaction with type constructors and operators of his algebr

C++ implementations there is a general strategy, based upon the inheritance and virtual method

nisms provided by C++, which allows one to define generic interfaces between modules in a uniform

ner as follows.

The basic observation is that the relationship between kinds and type constructors corresponds to t

tionship between base classes and derived classes. For each kind K, the algebra modulealg requiring an

interface to values of types in K defines an abstract base classk_base. For the implementation of operator

in alg, typically some support functions for dealing with values of kind K will be necessary. Just these

port functions are defined as abstract virtual methods ofk_base. Whenever a classtc in any algebra module

is defined to implement a type constructor in kind K,tc must be derived fromk_base: class tc : public

k_base . For instance, the base classData corresponding to kind DATA contains a virtual methodCompare

which has to be defined within all attribute data type implementations, thereby enabling the generic

mentation of thesort  operator of the relational algebra module.

6 User Interfaces

User interfaces communicate with the system frame through a single procedure calledSecondo . Its input

parameters are (i) the user command, given as an SOS command string, a textual list expression, o

memory nested list representation, (ii) a parameter specifying the command level: executable a

descriptive algebra, or specific data definition and query language, and (iii) a parameter which dete

whether the result is returned in textual or in-memory nested list representation. ProcedureSecondo

returns the query result type and value as well as error information. Additional algebra-specific error

mation is returned if the error has occured in one of the support functions provided by algebra mo

during query processing.

We distinguish two kinds of user interfaces: application specific interfaces and generic ones. Specific

faces provide user interaction for a DBMS with a fixed data model. The representation of input or

values can be hard-coded for the specific set of data types. This makes user interface implemen

quite straightforward issue; on the other hand, extending the data model requires an expensive r

mentation of the former interface, or even the complete implementation of a new one.

In contrast to specific user interfaces, generic interfaces pre-implement most of the user interface fu

ality. Only the algebra-specific details of value representation must be provided by the algebra impl

tor. Again, the concept of support functions provided by algebra implementors can be employed. Sin

only the resultvalue, but also the resulttypeis returned by procedureSecondo , the decision which support

function to call can be made on the basis of the outermost type constructor in the actual type expre
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In fact, we have implemented two simple generic interfaces in C++ and Java. Query results are pre

in list form as returned by the system. However, if a specific display function for an actual result typ

been registered with the user interface, the display function determines the formatting of the result

For instance, a result value of typerel(...) is printed in a tabular style.

7 Conclusions

We have presentedSECONDO, a new generic environment supporting the implementation of database

tems for a wide range of data models and query languages. The second-order signature formalism

basis for data type and operator specification on the descriptive as well as the executable algebra le

have shown the correspondence between abstract SOS specifications and data type and operat

mentation, arranged into small algebra modules which extend the system frame in a clear and easy

At the moment, architecture levels 1, 3, 5, and 6 in Figure 1 are operational as described in Section

regards level 2, an algebra module with type constructorsint, real, bool, andstring and a comprehensive

set of operations on these types is implemented. Furthermore, a relational algebra algebra modul

type constructorsrel and tuple with all standard relational operators plus some non-standard opera

Currently, several projects are running to extendSECONDO:

• The implementation of a new algebra module providing the functionality of GraphDB [Güt94

sophisticated graph-oriented data model.

• The implementation of an algebra module providing index data types and operations.

• Design and implementation of modules for spatio-temporal data types like “moving point”

“moving region” [ErGSV97].

• A generic evaluation plan generator.

For the time being, algebra support functions dealing with type expressions have to be coded manu

the future, the SOS specification compiler will create those functions automatically. Other future wor

focus on the completion of the extensible rule-based query optimizer.
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