Spatiotemporal Pattern Queries

Mahmoud A.Sakr' 2, Ralf H.Giting #!

#1Database Systems for New Applications, FernUniverit Hagen
58084 Hagen, Germany
*2Faculty of Computer and Information Sciences, Universitfio Shams
Cairo, Egypt
'mahroud. sakr @ er nuni - hagen. de
2r hg@ er nuni - hagen. de

June 30, 2010

Abstract

This paper presents a novel approach to express and evidleai@mplex class of queries in mov-
ing object databases callspatiotemporal pattern querigSTP queries). That is, one can specify
temporal order constraints on the fulfillment of severaddprates. This is in contrast to a standard
spatiotemporal query that is composed of a single predi¥séepropose a language design for spa-
tiotemporal pattern queries in the context of spatiotempPBMSs. The design builds on the well
established concept dfted predicates Hence, unlike previous approaches, patterns are neither r
stricted to specific sets of predicates, nor to specific ngulyject types. The proposed language can
express arbitrarily complex patterns that involve varityyses of spatiotemporal operations such as
range, metric, topological, set operations, aggregatidistance, direction, and boolean operations.
This work covers the language integration in SQL, the evalnaf the queries, and the integration
with the query optimizer. We also propose a simple languagééfining the temporal constraints.
The approach allows for queries that were never available.pWvide a complete implementation
in C++ and Prolog in the context of theeSoNDO platform. The implementation is made pub-
licly available online as a SconDOPIlugin, which also includes automatic scripts for repegtire
experiments in this paper.

1 Introduction

The area of moving objects databases has been active since the edty 800 is recently receiving
a lot of interest because of the advances in the positioning and senisoolagies that generates large
amounts of moving objects data. These databases deal with the geometridsatige over time, also
called spatiotemporal data. There are two classes of models for suci Hatirst deals with the current
movement and the predicted near future (e.g. [25]). These models @@zl for cheaper updates.
The second class deals with the trajectories or the history of the movementi@)gand these models
are optimized for cheaper queries. In this paper, we focus on thedetass of models, the trajectory
databases.

Having the spatiotemporal trajectories of the moving objects stored in a dataystem allows for
issuing spatiotemporal queries. One can query, for example, for aninhidh wrossed a certain lake
during a certain time interval or for the total length of a car trajectory insidertio zone. There
has been a lot of work on providing spatiotemporal data management angl @perations (e.g. [8]).
Recently more focus is given to the nearest neighbor queries (e.g[148] and the trajectory similarity
queries (e.g. [23]).

However, due to the recent application domains, trajectories are gettingrloAdditionally, due
to the privacy restrictions, trajectories are getting anonymized. The prpoisition and/or extent of

the moving objects are more and more replaced by the events or the chasigesppened during the
movement, the so callesemantic trajectoriefs]. It is difficult to query, for example, sequences of such
changes of data using traditional spatiotemporal queries. This difficuliyesdrom the fact, that they
are composed of one predicate. In many cases, one would need tsstgmeoral orders (relative or
absolute) of several changes, each of which need to be expresseagredicate. For examplind all
trains that encountered a delay of more than half an hour after passiogigiira snow storris a query
that expresses two changes/predicates, one happening after thétasheary difficult if not impossible
to express such a query using the traditional spatiotemporal query methods

Spatiotemporal pattern (STP) queries provide a more complex query frakéw moving objects.
In particular, they specify temporal order constraints among a set of t@perdient predicates. For
example, suppose the predicates @, and R that may hold over one or more time intervals and/or
instants. We would like to be able to express conditions like the following:

e P then (later)Q thenR.
e P ending before 8:30 the®) for no more than 1 hour.
e (Q thenR) during P.
The predicate$’, 2, andR, etc. might be of the form:
e Vehicle X on roadV.
e Train X isinside a snow storr’.
e The extent of the storm aréais larger than 4 square kms.
e The speed of air plan# is between 400 and 500 km/h.

For such conditions to hold, there must exist a time interval for each of gthgates, during which it is
fulfilled, and this set of time intervals must fulfill the temporal order in the conlitiche spatiotemporal
patterns described by such conditions cannot be expressed by tradgpatiotemporal queries. One
would rather need thgpatiotemporal pattern queries

More about the importance of STP queries in many fields of application is itedtia [10]. So far
we are talking about the spatiotemporal patterns that occur within indivichjattories. That is every
trajectory in the database can individually answer the pattern without kdge/lef other trajectories.
The term Spatiotemporal Patterns is also used in the literature to refesup patterns This is more
related to the spatiotemporal data mining literature. The methods analyze simufianeeements and
the interaction between objects (e.g. patterns like leadership, play, fightiggation, trend-setting,

. etc). The research in this direction aims at developing a toolbox of data nafgegthms and
visual analytic techniques for movement analysis. For example, algorithnmbeddlock, leadership,
convergence and encounter patterns are presented in [15]. In pieis pee are focusing on the individual
spatiotemporal pattern queries, simply denoted spatiotemporal patternsgi&Fie queries) during the
rest of the paper.

Few proposals exist for handling STP queries as will be detailed in thedelatek section. All of
them lack generality in the patterns that can be expressed. They are limitettdim anoving objects
types Moving pointsn most of the proposals), and to certain types of spatiotemporal pred{sptasal
predicates andearest neighbopredicates). The approach described in this paper, expressesand e
uates STP patterns that are neither restricted to certain types of movingspbj@cto certain types of
predicates. Our contributions are the following:

e The proposed approach is based on a very general and powedslaf predicates, the so-called
lifted predicates [19]. They are very powerful as they are simply the tinpertent version of
arbitrary static predicates. Instead of returningpal value (like standard predicates) they return

2

a moving(bool) (time dependent booleans as defined later). Our approach allows torento
late temporal constraints on the results of arbitrary expressions retisnaligmoving booleans.
Formulating STP queries over lifted predicates allows for a wide range eieguthat are not
addressed before.

e The proposed approach can be easily extended to support more cqrafikerns. Section 6 de-
scribes one such extension.

¢ In contrast to previous work we are able to actually integrate STP quettethaquery optimizer.
Obviously for an efficient execution of pattern queries on large daggbidre use of indexes is
mandatory. In Section 7 we consider how STP queries can be mapped dpyethyeoptimizer to
efficient index accesses.

e We propose a simple language for describing the relationship between two tieneals (e.g.
Allen’s operators). The language makes it easier, from the user poiew, to express interval
relations without the need to memorize their names.

e The complete implementation of the work in this paper is done in the context ofgberdo
platform [4]. It is publicly available as aEoNDO Plugin and can be downloaded from the
Plugins web site [1]. Parallel to this paper, we have written a user mans@iloiag how to install
and run the Plugin within al&2oNDOSsystem.

e There are automatic scripts for repeating the experiments in this paperafdeystalled during
the installation of the Plugin. Section 11 describes the procedure to repeatgbriments. The
scripts, together with the well documented source code provided in the Pallgiw the readers
to explore our approach, further elaborate on it, and compare with qtbevaches.

The rest of this paper is organized as follows. Section 2 reviews thedelatk. Section 3 gives
a brief background about the moving objects databases and recalls soessary definitions from
previous work. In Section 4, we define the proposed language. Séctmmalizes the spatiotemporal
pattern predicate as a constraint satisfaction problem, and explains that®raalgorithms. In Section
6, the basic spatiotemporal pattern predicate is extended into a more @gression. In Section 7
we show how to integrate our approach seamlessely with the query optintsation 8 is dedicated to
the technical aspects of the implementation in tiEe NDO framework. The experimental evaluation
is shown in Section 9. In Section 10, we demonstrate two application examptesntphasize the
expressive power of our approach. Section 11 and the Appendities end of the paper describe the
experimental repeatability. Finally we conclude in Section 12.

2 Related Work

Atheory and a design for spatiotemporal pattern queries, although imp@tamot yet well established.
Only few proposals exist. In [22], a model that relies on a discrete septation of the spatiotemporal
space is presented. The 2D space is partitioned in a finite set of usexdigéirtitions, called zones, each
of which is assigned a label. The time domain is partitioned into constant-sizeghisteFhe trajectories
are represented as strings of labels. For example, the trajectorg e presents a moving object that
stayed in zone for one time unit, moved to zoreand stayed there for three time units, then moved to
zoneh for one time unit. The user query is composed as a formal expressior) ighticen evaluated
using efficient string matching techniques.

This approach is not general in the sense that the space and time havpaditiened. The par-
titioning depends on the intended application and has to be done in advaceovdr, only patterns
that describe the changes of the location of moving points can be exgrd$seapproach leaves behind

all other kinds of predicates (e.g. topological, metric comparisons, ...) agsvether types of moving
objects (e.g. moving regions).

In [20], an index structure and efficient algorithms to evaluate STP auidré consist of spatial and
neighborhood predicates is presented. The work addresses thenpiaflizonjoint neighborhood queries
(e.g. find all objects that were as close as possible to A atTirthen were as close as possible to B at
time T5). The two NN conditions in this query have to be evaluated conjointly. In atleds, an object
which minimizes the sum of the two distances at the two time points is the answer ofiéinis g

Again the approach addresses only limited types of predicates, and siamolng points only. It
tightly couples the evaluation of the predicates with the evaluation of the STy igsedf. On the one
hand, this allows for efficient evaluation of the STP query. It also allmws$tHe conjoint neighborhood
queries, which are not possible in our appraoch for example. On the ludihe, it is very specific to
this set of predicates. In order to support other predicates and/ardsteetypes, one has to find a way
to extend their evaluation algorithms. In the context of systems, a modulamdésigdecouples the

predicate evaluation from the STP query evaluation would be preferred.

The series of publications [11], [12], [10], and [24] provide a gebe formalism for spatiotemporal
developments. A spatiotemporal development is a composite structure builalisraating sequence of
spatiotemporal and spatial predicates, and they are themselves spatiatgongdicates. They describe
the change, wrt. time, in the spatial relationship between two moving objectsidegfor example, a
moving point}M P and a moving regiod/R. The development/P Crosses MR is defined as:

Crosses= Disjoint nmeet Inside nmeet Disjoint

wheremeetis a spatial predicate that yields true when its two arguments touch eachasttiBisjoint
is a spatiotemporal predicate that yields true when its two arguments aresapatyally disjoint. The
spatiotemporal predicates, denoted by being capitalized, differ fromptitgakpredicates in that, the
former hold at time intervals while the later hold at instants. Spatiotemporal ¢iewmeltts consider two
spatiotemporal objects and precisely describe the change in their topbledgtamnship.

The spatiotemporal developments in their definition are not equivalent tiotgraporal patterns, as
they can only describe the change in the topological relationship betweabeais. This is not general
enough to describe STPs. A natural way of describing STPs would ingalveral interactions between
one trajectory and many other objects in the spatiotemporal space, as theltesectory’s own motion
attributes (e.g. speed, direction, ...etc.).

Additionally, all the related works discussed above share two limitations. fiest,do not address
issues of system integration and query optimization (e.g. SQL style syntaxbn8, only sequential
patterns are allowed. A pattern is not allowed to include, for example, camtipredicates. As shown
in the rest of this paper, our approach overcomes these limitations. Mairgydéssigned with expres-
siveness, system integration, and extensibility in mind.

3 Moving Objects Databases

In previous work [19], [13], and [8], a model for representing guérying moving objects is proposed.
The work is based on abstract data types (ADT). Wwvingtype constructor is used to construct the
moving counterpart of every static data type. Moving geometries aresesieel using three abstractions;
moving(point), moving(region) andmouving(line). Simple data types (e.@uteger, bool, real) are also
mapped tanovingtypes. In theabstract mode]19], moving objects are modeled as temporal functions
that map time to geometry or value. For example, moving points are modeled as authie 3D space
(i.e. time to the 2D space).

In [13] a discrete data model implementing the abstract model is defined.ll Eatatypes in the
abstract model, correspondidigcretetypes whose domains are defined in terms of finite representations
are introduced. In the discrete model, moving types are represented dlictterepresentation as units.

Definition 1 A data typemoving(c) is a set of units. Every unitis a paif,(Instant — «). The seman-

tic of a unit is that at any time instant during the interyathe value of the instance can be calculated
from the temporal functiodnstant — «. Unit intervals are not allowed to overlap, yet gaps are possible
(i.e. periods during which the value of the object is undefined). O

The moving data types are denoted by appendmgp the standard type (e.gmpoint denotes
mowing(point)). Similarly, the unit types are denoted by appendingThe mpoint, for example, is
modeled in the discrete model as a seugbints, each of which consists of a time interval and a line
function. This is illustrated in Figure 1. The coordinates of thgoint at any time instant within the
interval are obtained by evaluating the line function. Ti@vingtype constructor is similarly applied to

the scalar data types (e.eal, string, bool) [19]. A precise definition of thenbool data type is given in
Section 4.

Figure 1: The sliced representation of @point

["2003-11-20-06:06" "2003-11-20-06:06:08.692"[, (162294.252.0), (16673.0 1387.0; [{

['2003-11-20-06:06:08.692" "2003-11-20-06:06:24.77&§16673.0 1387.0), (16266.0 1672.0)

['2003-11-20-06:06:24.776" "2003-11-20-06:06:32.26416266.0 1672.0), (16444.0 1818.0)

['2003-11-20-06:06:32.264" "2003-11-20-06:06:39.13916444.0 1818.0), (16144.0 2227.0)

The model offers a large number of operations that fall into three classes

1. Static operations over the non-moving types. Examples are the topolpgiciitates, set opera-
tions and aggregations.

2. Spatiotemporal operations offered for the temporal types (e.g. trajaxftan mpoint, area of an
mreqion).

3. Lifted operations offered for combinations of moving and non-movingsy®Basically they are
time dependent versions of the static operations.

Lifted operations are obtained by a mechanism cakedporal lifting[19]. All the static operations
defined for non-moving types are uniformly and consistently made applitatile corresponding mov-
ing types. For example, a static predicate and its corresponding lifted atedie defined as follows.

Definition 2 A static predicatas a function with the signature
Ty X x T, — bool

whereT; is a type variable that can be instantiated by any static/non-temporal dateetgpénfeger,
point, region). -
Example: BrandenburgGaiesideBerlin.
Definition 3 A lifted predicateis a function with the signature

Ty X ooe X T X T Tgqq X ... T T, — mbool

whereT is themovingtype constructor. A lifted predicate is, hence, obtained by allowing one oz nfo
the parameters of a static predicate to be nfavingdata type. Consequently, the return type is a time
dependent booleamnbool. O

Example: TrainRE1206insideBerlin.
Note thatinsidein this example is a lifted predicate because Than_RE1206is a moving object. It is
therefore different from the standairtsidepredicate in the previous example.

5

4 Spatiotemporal Pattern Predicates

The Spatiotemporal Pattern Predica{&TP predicate) is the tool that we propose for expressing STP
queries. It describes the pattern as a setime-dependent predicatelat are fulfilled in a certain
temporal arrangement (e.g. a sequence). To motivate the idea of agn,desnsider the following
example:

Example: A query for possible bank robbers may look for the cars whiitdred a gas station, kept close
to the bank for a while, then drove away fast.

The query describes an STP consisting of three time-dependent pesdica inside gas statiorcar
close to the bankandspeed of cai> 80 km/h The predicates are required to be fulfilled in a sequential
temporal order.

We propose a modular language design of the STP predicate. It corfsigte parts. The first
defines a special kind of predicates that accept moving object arguarahteport the time intervals,
during which they are fulfilled. The second part is to define a languagergporal constraints on the
predicate fulfillments.

Fortunately, thdifted predicate419] in Definition 3 do exactly what is needed in the first part. Lifted
predicates yield objects of typabool, which tell about the time intervals of the predicate fulfillment.
Moreover, they are not restricted to certain data types of arguments gerttin types of operations.
Formulating the STP predicate on the top of the lifted predicates easily legegagensiderable part
of the available infrastructure. The temporal constraints, in the secahdepdorce certain temporal
arrangements between theool results of the lifted predicates.

We start here by a rough illustration. The details follow later in this sectionb@h& robbers query
is written as follows:

SELECT c.|icencenunber
FROM cars c, |andmark |
WHERE | .type = "gas station" and
pattern([c.trip inside |.region as gas,
di stance(c.trip, bank) < 50.0 as bnk
speed(c.trip) > 80000 as |eaving],
[stconstraint(gas, bnk, vec(aabb)),
stconstraint (bnk, |eaving, vec(abab, aa.bb, aabb)])

wherec.trip is an mpoint that stores the car’s trajectory. The STP predicate, denméeérnin the
SQL-like syntax, includes a set of three lifted predicates:

c.trip inside |.region,
di stance(c.trip, bank) < 50.0,
speed(c.trip) > 80000

having the aliasegas bnk andleaving The syntax of the STP predicate assigtiasesfor the lifted
predicates, so that they can be referred to in the temporal constrairissisEmalogous to the aliases
given to attributes and tables in the standard SQL. An alias of a lifted prediaatee any valid unique
identifier. The STP predicate in this example includes two temporal constrderistedstconstraint
in the SQL-like syntax. Each constraint is stating a temporal relationship eetiveo of the lifted
predicates (i.e. binary temporal constraints). The symtak) states the temporal order between the
fulfillments of the two lifted predicates. Roughly speaking, the first tempamasiraint states that the
car came close to the bank after it has left the gas station. The secorthguris a bit more tricky.
We wish to say that the car left the bank area quickly. This means that tistactad fast, or may have
started normally and then sped up after a while. The three argumentsyedteoperator state these
three possibilities, as formalized later in this section.

Now we start the formal definition of the STP predicate. We first recall &imition of thembool
data type from [13]. Letnstantdenote the domain of time instants, isomorphi®toLet I be the set

of possible time intervals, i.e:

I = {(t1,ta,lc,rc)|t1, ta € Instant,
le,rc € {false, trug, t; < to,
(t; = t2) = lc = rc = true}

That is, a time interval can be left-closed and/or right-closed as indicatedebyalues ofic andrc
respectively. It is also possible that the interval collapses into a single tirtentnsee [13]. Let the
domain ofBoolean Unitubool be:

UBool = {(i,u)|i € It,u € {false, true}}
and the domain ofnbool is:

MBool = {U C UBool | ¥(i1,u1), (iz,us) € U :
(1) i1 =12 = u; = ug
(i6) i1 £ o = i1 Nig =0 A
i1 adjacentis = u; # us}

wherei; adjacents < ij.te = io.t; A (i1.rc V ig.lc). This last condition ensures thebool objects
have a unique representation, the one with the minimum number of units.

Following we define a language for temporal relationships between paimm®fintervals. It will
be the base for the temporal constraints between the lifted predicates insi8d& Bhpredicate. In the
temporal logic literature some studies define the relationships between piing @fitervals, and assign
them names (e.g. the 13 Allen’s operators [5]). Here we propose adgrginstead of names. This is
because, in our case 26 such relationships are possible, which maKésdiltdor a user to memorize
the names. Table 1 shows the 26 terms of this language, and a graphicaltitbustf each. In the terms,
the lettersua denote the begin and end time instants of the first interval. Simibargre the begin and
end of the second interval. The order of letters describes the templatédmship, that is, a sequengé
means: < b. The dot symbol denotes the equality constraint, hence, the sequémeans: = b, and
a.a means that the start and the ends of the first interval are the same (i.e. thal idégenerates into a
time instant).

Formally, let/R be the set of interval relationships of Table 1, that is

IR = {aabb, abba, ..., a.a.B.b

Letiy, is € I, ir = s182...8; € IR (note thad <= k <=7, that is, the shortest term includes ta/e
and twob’s, and the longest term includes additionally three dots),

(

11.t1 if s; isthefirstainir
11.ty if s; isthe second ainr
Let rep(s;) = < io.t1 if s; isthefirstbinir
19.to if s; isthe second b inr

if S; — .

iy and ig fulfill sise..sp =Vje{l,....k—1}:
(i)sj # . # sj+1 = rep(s;) < rep(sji1)
(i4)sjt1 = = rep(s;j) = rep(sj+2)

Table 1: A language for expressing interval relationships

Term | lllustration [Term [lllustration [Term | lllustration
Both arguments are intervals (Allen’s operators)
aabb | aaaa abba | aaaaaaaa | bbaa aaaa
bbbb bbbb bbbb
a.bab | aaaa aa.bb | aaaa a.bba | aaaaaaaa
bbbbbbbb bbbb bbbb
bb.aa aaaa baa.b aaaa || abab | aaaa
bbbb bbbbbbbb bbbb
aba.b | aaaaaa baba aaaa a.ba.b | aaaa
bbbb bbbb bbbb
baab aaaa
bbbbbbbb
The first argument is an instant
a.abb | a bb.a.a a a.abb| a
bbbb bbbb bbbb
bba.a a ba.ab a
bbbb bbbb
The second argument is an instant
b.baa aaaa aa.b.b| aaaa b.b.aa | aaaa
b b b
aab.b | aaaa ab.ba | aaaa
b b
Both arguments are instants
a.ab.b| a b.ba.a a a.a.b.b| a
b b b

Two time intervalsiy, i € I fulfill a setof interval relationships if they fulfill any of them, that is:
iy and ip fulfill SI C IR :=3ire SI: iy and iy fulfill dir

Theved.) in the SQL-like syntax allows for composing sush subsets. For syntactic elegance,
one can assign names to them, and use the names in the queries. This isinigptieelst statement as
follows:

| et then = vec(abab, aa.bb, aabb);
| et later = vec(aabb);

SELECT c. | i cencenunber
FROM cars ¢, landmark |
WHERE | .type = "gas station" and
pattern([c.trip inside |.region as gas,
di stance(c.trip, bank) < 50.0 as bnk
speed(c.trip) > 80000 as |eaving],
[stconstraint(gas, bnk, later),
stconstraint (bnk, |eaving, then])

That is,later andthencan hence be used inside steonstraintoperator.

For ease of presentation, in the following we define the STP predicate withiretational data
model. The definitions can however be adapted easily to fit within other databadels (e.g. object
oriented), thanks to the ADT modeling of the moving objects which does nandlepn a particular
database model.

Lettupledenote a tuple type in the sense of the relational data rhodet D, denote the domain

'Heretupleis viewed as a type variable that can be instantiated by any valid tuple type.

8

of the tuples conforming to this type. Let the domain of the tygeol be:
Diboot = MBool
A time-dependent predicate a function with signature:
tuple — mbool
hence it is a function

f : Dtuple — Dinbool

We denote a predicate with this signatureag;., and a set of such predicatess,;. when the tuple
type is relevant.

Note that the definition of Eime-dependent predicate more general than that oflited predicate
A lifted predicate also yields ambool, but it must correspond to some standard static predicate, see
Definition 3. Formally, the STP predicate is composed of a set of time-depepdlicates, and a set
of temporal constraints, as shown later in this section. Throughout théntexéver, we are often using
the termlifted predicateinstead of the more general tetime-dependent predicatecause the former
seems more relevant from the user point of view. That is, users willibg lifked predicates to compose
their STP queries. This will become obvious from the many query examples meshof this paper.

Let Puypie = {p1,...,pn} be a set of time-dependent predicates. A temporal constraif},gpn is
an element of the set:

TC(Prupie) = {1.n} x {1.n} x P(IR)

Hence it is a binary temporal constraint, that assigns a pair of predicatBg,jn a set of interval
relationships. In the SQL-like syntax, the operatimonstrainexpresses a temporal constraint. It accepts
three arguments: twaliasesof time-dependent predicates, and a set of interval relationships cechpos
by theved.) operator.

Based on the above definitions, a spatiotemporal pattern predicate is dedifadkbws:

Definition 4 A spatiotemporal pattern predicat& TP predicatgis a pair (., C), where
C - TC(Ptuple)' 0

In SQL, the operatopatterndenotes the spatiotemporal pattern predicate. For an STP predicate to hold,
all the temporal constraints ifi must be fulfilled. Formally it is as follows:

Lett € Dyypie be atuple and,pe = {p1, ..., pn}, we denote by (¢) the evaluation opy, € Pyypie
ont. Hencepy(t) € MBool. We also define the set ondidate assignmentsA (P, t) as:

CA(Prypie, t) = i x ... x plrue

wherepl™¢ = {i|(i, true) € pi(t)}. Thatis, theCA (P, t) is simply the Cartesian product of the
sets of time intervals during which the time-dependent predicatéy, jj. are fulfilled with respect to
the tuplet.

Letca = (i1, ...,in) € CA(Pyupie, t) and letc = (j, k, SI) € TC(Pyypie) be a temporal constraint

ca fulfills c:<d; and 4, fulfill SI

Let C C TC(Puype) be a set of temporal constraints, andtlet Dy, be a tuple. The set of
supported assignmentd C is defined as:

SA(Pyypie, C,t) = {ca € CA(Pyuypie,t) |V ece C:ca fulfills ¢}

That is, for acandidate assignmeit be asupported assignmerit must fulfill all the constraints it
An STP predicate is fulfilled for a given tuple if and only if such a suppoagsignment is found.

9

Definition 5 A spatiotemporal pattern predicate a function with the signaturteiple — bool. Given a
tuplet of typetuple its evaluation is defined as:

eval ((Pupie, C),t) = (SA(Prupie, C, t) # 0)

5 Evaluating Spatiotemporal Pattern Predicates

The formalization of the STP predicate in the previous section maps pretty welihe well known
Constraint Satisfaction Problem (CSP). This section illustrates this mappihthamlgorithms used to
evaluate the STP predicate.

Definition 6 Formally, aconstraint satisfaction probleis defined as a tripléX, D, C'), whereX is a

set of variables)D is a set of initial domains, and is a set of constraints. Each variablee X has a
non-empty domaid; € D. CSP algorithms remove values from the domains during evaluation once it is
discovered that the values cannot be part of a solution. Each comngtrailves a subset of variables and
specifies the allowable combinations of values for this subset. An assigfionensubset of variables

is supportedf it satisfies all constraints. A solution to the CSP is in tursupported assignmenf all
variables. O

Recalling, from Definition 4, that the STP predicate contains thé’sgl. = {p1, ..., p } oOf time-
dependent predicates, a straight forward way to construct th&(séisof the CSP is as follows:

1. For everyp; € Py, define a variable; with the same name as thaéias of p; in the user query.
SetX = X U z;.

2. Given a tuple of typetuple compute for every; € Py, its evaluatiorp;(t).

3. For every[7"c € pi"™°, setD; := D; U pi;*e.

That is, a CSP variable is created for every time-dependent predicate$Tthpredicate. The aliases of
the lifted predicates, as specified in the user query, are used as tH#eragmes. Thaitial domainof
every CSP variable is the set of time intervals during which the correspptidie-dependent predicate
is fulfilled. Finally the set of constraints in the CSP is the same as the set dfaais in the STP
predicate. As is shown next, this is not exactly how we map the STP preditata DSP. The main
difference is that the domains of the variables (i.e. thd¥edre evaluated in a lazy fashion. Following,
we briefly discuss the known algorithms for solving CSPs. Later in this seatierwill be proposing
another algorithm for evaluating the CSP that fits more with our approach.

A CSP having only binary constraints is calleshary CSPand can be represented graphically in a
constraints graphThe nodes of the graph are the variables and the links are the binastyaiots. Two
nodes are linked if they share a constraint. The neighborhood of @lemathe constraints graph are
all variables that are directly linked to it. The spatiotemporal pattern prediéatfilled if and only if
its corresponding CSP has at least one supported assignment.

CSPs are usually solved using variants of the backtracking algorithm.|gbetlam is a depth-first
tree search that starts with an empty list of assigned variables and vetytses to find a solution (i.e.
a supported assignments of all variables). In every call, backtrackitg @ new variable to its list and
tries all the possible assignments. If an assignment is supported, a negivecall is made. Otherwise
the algorithm backtracks to the last assigned variable. The algorithm rempdmential time and space.

Constraint propagation methods [7] (also called local consistency méttaniseduce the domains
before backtracking to improve the performance. Examples are the AR€ISTency and Neighborhood
Inverse Consistency (NIC) algorithms. They detect and remove somesvism the variable domains

10

that cannot be part of a solution. Local consistency algorithms do raoagtee backtrack-free search.
To have the nice property of backtrack-free search one would nes@fdocen-consistency (equivalent
to global consistency), which is again exponential in time and space.

The solvers for CSPs assume that the domains of the variables are kn@adwance. This is,
however, a precondition that we wish to avoid. In the STP predicate,latitaythe domain of a variable
is equivalent to evaluating the corresponding lifted predicate. Since thibe@xpensive, we wish to
delay the evaluation of the domains.

The proposed algorithi8olve Patterrbelow tries to solve the sub-CSP/of- 1 variables CSP;_ ;)
first and then to extend it t&’'SP;,. Therefore, an early stop is possible if a solution to &P,
cannot be found. Which means that, in case no solution is found, the soaluall be stopped as soon
as this is realized, without the uncessary evaluation of the remaining liftelccptes.

The Solve Patterralgorithm uses three data structures: $aelist (for Supported Assignments), the
Agendaand theConstraint Graph The Agenda keeps a list of variables that are not yet consumed by the
algorithm. One variable from the Agenda is consumed in every iteration.yBugported assignment
in the SA list is a solution for the sub-CSP consisting of the variables that have a&rated so far.
In iterationk there are: — 1 previously evaluated variables and one newly evaluated variahlevith
domainDy). Every entry inSA at this iteration is a solution for th€SP;_;. To extend theSA, the
Cartesian product ofA and Dy, is calculated. Then only the entries that constitute a solutioW ¥,
are kept inSA. CSPy is constructed using the consumed variables and their correspondisigaints
in the constraint graph.

Algorithm Solve Pattern
i nput: variables, constraints
out put: whether the CSP consistent or not

1. Cear SA, Agenda and Constraint Graph

2. Add all variables to Agenda

3. Add all constraints to the Constraint G aph
4. W LE Agenda not enpty

(a) Pick a variable X; fromthe Agenda

(b) Calculate the variable donmain D; (i.e. evaluate the
corresponding lifted predicate)

(c) Extend SA with D;
(d) IF SA is enpty return Not Consi st ent

5. return Consi stent

Algorithm Extend

input: i, D;; the index and the domain of the newy eval uated variable
1. IF SA is enpty

(a) FOREACH interval I in D,

i. INSERT a new row sa in SA having sa[i]= I and
undefined for all other variables

ELSE

(a) set SA = the Cartesian product SA x D;

(b) Construct the subgraph CSP; that involves the
variables in SA fromthe Constraint G aph.

(c) FOREACH sa in SA
i. |F sa does not satisfy the CSP;, renove sa from SA

11

The methodology for picking the variables from the Agenda has a bigteiffethe run time. The
best method will choose the variables, so that inconsistencies are deteotedFor example, suppose
an STP predicate having four predicates with aliases w, andx. The constraints are:

stconstrainfu, x, vec(abab))stconstrainfv, x, later) , andstconstrainfw, =, vec(bb.a.a)).
If the variables are picked in sequential ordep, w, thenz, the space and time costs are the maximum.
Sinceu, v, andw are not connected by any constraints, fheis populated by the Cartesian product of
their domains in the first three iterations. The actual filteftbstarts in the fourth iteration after is
picked.

The function that picks the variables from the Agenda chooses the lexiabcording to their
connectivity rankin the Constraint Graph. The connectivity rank of a variable is the summation o
its individual connectivities in the Constraint Graph. If a given variablisnected to an Agenda vari-
able with a constraint, it gets 0.5 connectivity score for this constraint. Thésenhat evaluating this
variable contributes 50% in evaluating the constraint because the otlerlgas still not evaluated. If
the other variable in the constraint is a non-Agenda variable (i.e. a vatiddiles already evaluated), the
connectivity score is 1. Back again to the example, in the first iteration, tiebl@sw, v, andw have
connectivity ranks of 0.5, whereashas 1.5. Therefore; is picked in the first iteration. In the second
iterationu, v, andw have equal connectivity ranks of 1, so the algorithm picks any of them.

This variable picking methodology tries to maximize the number of evaluated aonistin every
iteration with the hope that they filter thf#4 list and detect inconsistencies as soon as possible.

The time cost of th&olve Patterralgorithm is

ZHdeGk

i=1 k=1

wheren is the number of variabled,, is the number of values in the domain of tié variable and:;,
is the number of constraints ifiSP,. The storage cost is
n i
> Il
i=1 k=1
The algorithm runs i (ed™) and take)(d") space.

The exponential time and space costs are not prohibitive in this case. Deisagse the calculations
done within the iterations are simple comparisons of time instants. Moreoverithieen of variables
in an STP query is expected to be less than 8 in the normal caseSde Patterralgorithm is more
focused on minimizing the number of evaluated lifted predicates (statement thé algorithm). The
cost of evaluating the lifted predicates varies, but it is expected to basixpebecause the evaluation

usually requires retrieving and processing the complete trajectory of thingnolsject. The run time
analysis of many lifted predicates is illustrated in [8].

6 Extending the Definition of the STP Predicates

Back to the example of bank robbers, a sharp eyed reader will noticénthatovided SQL statement
can retrieve undesired tuples. Suppose that long enough traject@riksrin the database. A car that
entered a gas station in one day, passed close to the bank in the nexidlayaghird day sped up will
be part of the result. To avoid this, we would like to constrain the period legtheaving the gas station
till speeding up to be at most 1 hour.

Indeed the proposed design is flexible so that such an extension is emgggi@te. The idea is
that after the STP predicate is evaluated, $idedata structure contains all the supported assignments.
As illustrated before, a supported assignment assigns an interval tdiftedipredicate during which
it is satisfied. At the same time the interval values of all variables satisfy allahstr@ints in the STP

12

predicate. Now that we know the time intervals, we can impose more constraititsrm. For example,
we state that the period between leaving the gas station (first predicategétliog up (third predicate)
must be at most 1 hour.

The following describes formally an extended version of the STP preditatallows for such addi-
tional constraints. LeP,,. = {p1, ..., pn} be a set of time-dependent predicates, and'let T'C'(Py)
be a set of temporal constraints. Lgetbe a function:

g: I% X Dtuple - Dbool

That is,g is a predicate that accepts a sehdfme intervals and &uple and yields @ool.
An extended STP predicate is defined as follows:

Definition 7 An extended spatiotemporal pattern predicée triple (P, C, g). Given a tuplet of
typetupleits evaluation is defined as:

6val((f)tuplev C,9),t) = ({sa € SA(Ptuplea C,t)| g(sa,t) = true} # Q))
L]

That is, the boolean predicates applied to the supported assignment$ih and to the input tuple.
For theextended STP predicate be fulfilled, g must be fulfilled at least once. The evaluation of the
extended STP predicate is, hence, done in two parts, that both museduddee first solves the STP
predicatg Py, C) for the given tuple, and the second part, which is processed only after the success
of the first part, evaluates the boolean predigafter every supported assignment. Hence, conditions on
the list of supported assignmertid are possible.

Syntactically, the user is provided with two functiostart(.) andend.) that yield the start and end
time instants of the intervals in & element. The two functions are in the form:

[I xA{1,..,n} — Instant

Given a supported assignmetat € SA and anindex the two functions yield the start and the end time
instants of the time interval at this indexdn.
Formally letsa = {i1, ..., } € SA(Prupie, C, t).

start(sa, k) = ix.t1, and
end(sa, k) = iy.ta

wherel < k < n.

To implement the extension, step 5 in tBelve Patterralgorithm is changed toet urn SA. The
predicateg is then iteratively evaluated for the elements of $& The algorithm of evaluating the
extended STP predicate is not shown in the paper, because it is a theaiade for theSolve Pattern
algorithm.

The extended STP predicate is denadggdatternin the SQL-like syntax. The bank robbers query is
rewritten using it as follows:

SELECT c. | i cencenunber
FROM cars c, |andmark |
WHERE | .type = "gas station" and
patternex([c.trip inside |.region as gas,
di stance(c.trip, bank) < 50.0 as bnk
speed(c.trip) > 100000 as | eaving],
[stconstraint(gas, bnk, later),
stconstraint (bnk, |eaving, then],
start (leaving) - end(gas) < 1)

13

where the additional conditiosit art (1 eavi ng) - end(gas) < 1 ensures that the time period
between the car getting out from the gas station (iemdga9) till it starts leaving the bank area
(i.e. start(leaving) is less than one hour. Note that in the SQL-like syntax,staet, andend opera-
tors get the predicat@iases rather their indexes as in the definition.

More complex conditions can be expressed. The time intervals can befaisedample, to retrieve
parts from the moving object trajectory to express additional spatial conslitieor example, the query
for possible bank robbers may more specifically look for the cars whitdresh a gas station, made a
round or more surrounding the bank, then drove away fast. To chetkié car made a round sur-
rounding the bank, a possible solution is to check the part of the car trgjettse to the bank for self
intersection. The query may be written as follows

SELECT c. | i cencenunber
FROM cars c, |andmark
WHERE | .type = "gas station" and
patternex([c.trip inside |.region as gas,
di stance(c.trip, bank) < 50.0 as bnk
speed(c.trip) > 100000 as | eaving],
[stconstraint(gas, bnk, later),
stconstraint (bnk, |eaving, then],
i sSel flntersecting(
trajectoryPart(c.trip, start(bnk), end(bnk))) and
(start(leaving) - end(bnk)) < 1)

wheretrajectoryPartcomputes the spatial trajectory of the moving object between two time instants and
isSelflntersectinghecks a line for self intersection.

7 Optimizing Spatiotemporal Pattern Predicates

In Section 5 we explained the evaluation of the spatiotemporal pattern peeditee proposed algorithm
is efficient because it avoids the unnecessary evaluation of lifted jptedidn the context of large-scale
DBMS, this is not enough. Obviously for an efficient execution of pattgreries on large databases
the use of indexes is mandatory. It should be triggered by the query optidugag the creation of the
executable plans.

In this section, we demonstrate a generic procedure for integrating thep®tiRate with query
optimizers. We do not assume a specific optimizer or optimization technique.pfingzer is however
required to have some basic features that will probably be available in @y @ptimizer. In the
following subsection, we describe these basic assumptions.

7.1 Query Optimization

A typical query optimizer contains two basic modules; tbariter and theplanner[21]. The rewriter
uses some heuristics to transform a query into another equivalenttipaeig, hopefully, more efficient
or easier to handle in further optimization phases. The planner createg faser query (or the rewritten
version) the set of possiblexecution plangpossibly restricted to some classes of plans). Finally it
applies a selection methodology (e.g. cost based) to select the best plan.

We assume that the query optimizer contains the rewriter and the planner siodi@also assume
that it supports the data types and operations on moving objects, in SQtaiesdas described in [19]
and [13].

7.2 Query Optimization for Spatiotemporal Pattern Predicaes

One observation that we like to make clear is that the STP predicate itself dbpsocess database
objects directly. Instead, the first operation applied is the evaluation of ted fifedicates that compose

14

the STP predicate. The idea, hence, is to design a general framewoyitifmizing the lifted predicates
within the STP predicate. This framework should trigger the optimizer to useviikalle indexes
for the currently supported lifted predicates as well as for those that rhiglidded in the future. It
should utilize the common index structures. Although specialized indexes|[28],ican achieve higher
performance, the overhead of maintaining them within a system is high andtigserve specific
purposes, which makes them unfavorable in the context of systems.

The idea is to add each of the lifted predicates, in a modified form, as anstatrdard predicate
to the query, that is, a predicate returning a boolean value. The stamedalidate is chosen according
to the lifted predicate, so that the fulfillment of the standard predicate implieshihdifted predicate
is fulfilled at least once. This is done during query rewriting. The additistzandard predicates in the
rewritten query trigger the planner to use the available indexes. To illusteatddd, the following query
shows how the bank robbers query in Section 4 is rewritten.

SELECT c. | i cencenunber
FROM cars c¢, |andmark
WHERE | .type = "gas station" and
pattern([c.trip inside |.region as gas,
di stance(c.trip, bank) < 50.0 as bnk
speed(c.trip) > 100000 as | eaving],
[stconstraint(gas, bnk, later),
stconstraint (bnk, |eaving, then])
and
c.trip passes |.region and
soneti mes(di stance(c.trip, bank) < 50.0) and
soneti mes(speed(c.trip) > 100000)

The three lifted predicates in the STP predicatd nsi de y, di stance(x, y) < z, and
speed(x) < y are mapped tothe standard predicatepasses y,soneti nes(di st ance(x,

y) < z), andsoneti nmes(speed(x) < y), respectively. Hersometimes) is a predicate that
accepts amnbool and yields true if the argument ever assumes true during its lifetime, othelalsse f
Each of the standard predicates ensures that the corresponding ldtidgbe is fulfilled at least once, a
necessary but not sufficient condition for thegternpredicate to be fulfilled. Clearly, the rewritten query
is equivalent to the original query.

The choice of the standard predicate depends on the type of the lifteidgieednd the types of the
arguments. For example, the lifted spatial range predicates (i.e. the spajition can be described
by a box) are mapped into thssestandard predicate. The passes predicate [19], in this example, is
fulfilled if the carc. t ri p ever passed the gas stationr egi on. If passedails, then we know that
insideis never true and thgiatternwill also fail. The planner should have for the added passes predicate
already some optimization rule available (e.g. use a spatial R-tree index wditabe). In Section 9.2.2
we show an optimized query written in the SoONDO executable language.

To generalize this solution, we define a table of mappings between the liftéidgtes (or groups of
them) and the standard predicates. Clearly, this mapping is extensible fortdlepiiedicates that can
be introduced in the future. The mapping for the set of lifted predicatgsopeal in [19] is shown in
Table 2.

For the lifted spatial range predicates, they map pdassesand the available translation rules for
passes do the rest. Thlestancéx, y) < zis conceptually equivalent to a lifted spatial range predicate,
where the spatial range is the minimum bounding box of the static argumentiegtbyz in every side.
Other types of lifted predicates are mapped istonetimes We need to provide translation rules that
translatesometimeg) into index lookups. For every type of lifted predicates, one suchlagos rule
is required. For example, tlmmetime@red), wherePredis a lifted left range predicate, searches for a
B-tree defined on the units of the moving object, and performs a left raagelsin the B-tree. We show
examples for these translation rules withiBG®NDOIn Section 8.2.

15

Table 2: Mapping lifted predicates into standard predicates.

Lifted Predicates Type Standard Predicates
o=« lifted spatial | o passesy
mpoint X point — mbool | range
mregion X region — mbool
o inside «
mpoint X region — mbool
mpoint X points — mbool
mpoint X line — mbool
mregion X region — mbool
mregion X points — mbool
mregion X line — mbool
o intersectsa
mregion X points — mbool
mregion X region — mbool
mregion X line — mbool
o=« lifted equality | sometimes§ = «)
mant X int — mbool
mbool X bool — mbool
mstring X string — mbool
mreal X real — mbool
c<=a,0< lifted left sometimesg <= a),
mint X ant — mbool | range sometimes{ <)
mbool X bool — mbool
mstring X string — mbool
mreal X real — mbool
o>=a, 0>« lifted right sometimesf >= «),
mint X int — mbool | range sometimes§ > «)
mbool x bool — mbool
mstring X string — mbool
mreal X real — mbool
distanceg , o) < threshold lifted spatial | o passeenlargeRect(bboxi), threshold, threshold)
mpoint X region — mreal range
mpoint X point — mreal
mreqgion X point — mreal
mregion X region — mreal
Other lifted predicates? sometimesP)

This two steps optimization helps develop a general framework for optimizirgptihhetimes) pred-
icate, which may also appear directly in the user queries. Note that we caratltely rewrite all lifted
predicates intsometimes), and provide translation rules accordingly. It remains an implementation
decision, which approach to use.

8 The Implementation in SECONDO

SECONDO [4], [16], [17] is an extensible DBMS platform that does not presum@exific database
model. Rather it is open for new database model implementations. For exanspla,litl be possible to
implement relational, object-oriented, spatial, temporal, or XML models.

SECONDO consists of three loosely coupled modules: the kernel, GUI and query oetimihe
kernel includes the command manager, query processor, algebraenamagstorage manager. The
kernel may be extended by algebra modules. In an algebra module odefaanew data types and/or
new operations. The integration of the new types and/or operations in¢nglgnguage is then achieved

16

by adding syntax rules to the command manager.

The SEcoNDoOkernel accepts queries in a special syntax called@boexecutable languagdhe
SQL-like syntax is provided by the optimizer. For more information abagt@& Do modules see [4]
and [3]. For more information about extending@NDO see the documentation on [2].

If it is the case that a new data type needs a special graphical useadet€@UI) for display, the
SECONDO GUI module is also extensible by adding viewer modules. Several viewéttbat can
display different data types. Moving objects, for example, are animate@ iHdhseviewer with a time
slider to navigate forwards and backwards.

A large part of the moving objects database model presented in [19],[8]3that we also assume
in the paper, is realized inEEONDO. That is, the current SconDoO version 2.9.1 includes the algebra
modules, the viewer modules, and the optimizer support for moving objectie lfollowing subsec-
tions, we describe the implementation of the STP predicateETo®iD0 2.9.1. This implementation is
available as a ScoNDOPIlugin as explained in Section 11.

8.1 Extending the Kernel

We have implemented the STP predicate in teeSNDOKkernel in a new algebra module call&d Pat-
ternAlgebra The algebra contains:

1. One data typstvector The class represents a set of interval relationships as defined inrSéctio
The SEcoNDO operatorvecis used to create astvectorinstance. The operator accepts a set of
strings from Table 1, and constructs gteectorinstance accordingly.

Example:vec("aabb", "a.abb", "a.a.bb").

2. Thestconstraintoperator. The operator represents a temporal constraint within thergdieate.
The signature of the operator is:

string X string X stvector — bool

The first and second parameters are the aliases for two lifted predicates.
Example:st constrai nt ("predi catel”, "predicate2", vec("a.a.bb")).

3. Thestpatternoperator. The operator implements the STP predicate. It has the signature:
tuple x Aliased PredicateList x ConstraintList — bool

where theAliased PredicateList is a list of time-dependent predicates, each of which has an
alias, and th&”onstraintList is a list of temporal constraints (i.e. a list @fconstraint opera-
tors).

4. Thestpatternexoperator. The operator implements the extended STP predicate, Sectidra$. |
the signature:

tuple x Aliased PredicateList x ConstraintListx bool — bool

5. Thestart(.) and theend.) operators, described in Section 6. They accegitag representing a
predicate alias and return the start/end of the corresponding time intenebpBEnators have the
signature:

string — instant

Using these operators, the query for bank robbers can be writteRGI$D 0 executable language
as follows:

17

query cars feed {c}
| andmark feed {l}
filter[.typel = "gas station"]
pr oduct
filter[.
stpatternex[gas: .tripc inside .regionl,
bnk: distance(.trip.c, bank) < 50.0,
| eavi ng: speed(.trip-c) > 100000;

stconstraint("gas", "bnk", vec("aabb")),
stconstraint ("bnk", "leaving", vec("abab", "aa.bb", "aabb"));
duration2real (start("leaving") - end("gas")) < (1/24)]]
consune

wherefeedis a postfix operator that scans a relation sequentially and converts it itreaansof tuples.
The query performs a cross product between the tuples afdferelation and the tuples ddndmark
relation that has the valdgas station” in their typeattribute. The resulting tuple stream after the cross
product is filtered using the extended STP predisgpatternex Finally, theconsumeperator converts
the resulting tuple stream into a relation, so that it can be displayed.

8.2 Extending the Optimizer

The SEcoNDoOoptimizer is written in Prolog. It implements an SQL-like query language whichnstra
lated into an optimized query inE®ONDO executable language. The&e&oNDO optimizer includes a
separate rewriting module that can be switched on and off by setting the optiopizens. The plan-
ner implements a novel cost based optimization algorithm which is basebastest path search in a
predicate order graph The predicate order graph (POG) is a weighted graph whose nopleseat
sets of evaluated predicates and whose edges represent predoataising all possible orders of pred-
icates. For each predicate edge from nade nodey, so-called plan edges are added that represent
possible evaluation methods for this predicate. Every complete path via gas sdthe POG from the
bottom-most node (i.e. zero evaluated predicates) till the top-most nodel(ipredicates evaluated)
represents a different execution plan. Different paths/executios ptgmesent different orderings of the
predicates and different evaluation methods. The plan edges of tHeay@mweighted by their estimated
costs, which in turn are based on given selectivities. Selectivities ofgated are either retrieved from
prerecorded values, or estimated by sending selection or join querigsadihsamples of the involved
relations to the BconDoOKkernel and reading the cardinality of the results. The algorithm is desldnbe
more detail in [17] as well as in theeEBONDO programmers guide [2].

Our extension to the optimizer has three major parts: query rewriting, opetasaription, and
translation rules. In the query rewriting, we choose to rewrite all the liftedipates intGsometime).
This is because an accurate rewriting based on the mapping in Table Zeethdt we know the data

types of the arguments. Th&SoNDooptimizer knows the data types only after query rewriting is done.
Following are the Prolog rules that do the rewriting:

i nferPatternPredicates([], []).

i nf erPatternPredicates([Pred| Preds],
[sometinmes(Pred)| Preds2]):-
assert(renovefilter(sonetines(Pred))),
i nf erPatt ernPredi cat es(Preds, Preds?2).

where theinferPatternPredicateaccepts the list of the lifted predicates within the STP predicate as a
first argument, and yields the a list of rewritten predicates in the secontharg. The additionadome-
timeg.) predicates are kept in the tallenovefil t er (.), sothatitis possible to exclude them from
the executable plan afterwards.

18

In the operator descriptions, we annotated the lifted predicates by the# fgpme lifted left range)
as in Table 2. Then we provided translation rulesdometimes) for every type of lifted predicates.
Following is an example for such a rule:

i ndexsel ectLifted(arg(N), Pred) =>
get t upl es(rdup(sort (w ndow ntersectsS(
dbobj ect (I ndexNane), BBox))), rel(Name, *))

Pred =..[Op, Argl, Arg2?],
((Argl = attr(_, _, _), Attr= Argl) ;
(Arg2 = attr(_, _,), Attr= Arg2)),
argunent (N, rel (Nane, =*)),

get TypeTree(Argl, _, [_, _, T1]),
get TypeTree(Arg2, _, [, _, T2]),

i sLi ft edSpati al RangePred(Op, [T1, T2]),
(

(nmenmberchk(T1l, [rect, rect2, region, point, line, points, sline]),
BBox= bbox(Argl)
).

(nmemberchk(T2, [rect, rect2, region, point, line, points, sline]),
BBox= bbox(Ar g2)
)
)
hasl ndex(rel (Name,), Attr, DC ndex, spatial(rtree, unit)),
dcNane2ext er nal Nanme(DCi ndex, | ndexNane) .

where this rule translates thited spatial rangepredicates into an R-tree window query, as indicated in
the rule header. The> operator can be read &anslates into It means that the expression to the right
is the translation of the expression to the left, if the conditions in the rule boldly Ate body of the
rule starts by inferring the types of the arguments of the lifted predicate withisaimetimes). Then

it uses them to make sure that the predicate is of theltftpd spatial range Finally, it checks whether

a spatial R-tree index on the involved relation and attribute is available in thegatatries to find a
spatial R-tree built on the units of the moving object. Similar translation rulesrakéded for other
types of indexes. The optimized query in Section 9.2.2 shows the effecs# thanslation rules.

9 Experimental Evaluation

We proceed with an experimental evaluation of the proposed technigaéntEntion is to give an insight
into the performance. It is clear that the runtime of an STP predicate depenthe number and types
of the lifted predicates. Therefore, we show three experiments. The#asures only the overhead of
evaluating the spatiotemporal pattern predicate. That is, we set the timdudtavag the lifted predicates
to negligible values.

In the second experiment, we generate random STP predicates withgvawyimbers of lifted pred-
icates and constraints and measure the run time of the queries. The expeaisoegvaluates the opti-
mization of STP predicates. Every query is run twice; once without involkiagptimizer, and another
time with the optimizer being invoked.

The third experiment is dedicated to evaluate the scalability of the propogedaap. It mainly
evaluates the proposed optimization approach in large databases. Arantlof queries is generated
and evaluated againest relations of cardinalities 50,000, 100,000, 200,86d 300,000, where the
trajectories are indexed using the traditional RTree index.

The first two experiments use therlintestdatabase that is available with the free distribution of
SECONDO. The last experiment uses tBerlinMOD benchmark [9] to generate the four relations. The
benchmark is available for download on [4]. The three experiments aremwa $CONDO platform

19

installed on a Linux machine. The machine is a Pentium-4 dual-core 3.0 GHesgsaowith 2 GBytes
main memory.

9.1 The Overhead of Evaluating STP predicates

To perform the first experiment, we add two operatorseaSNDG, randommboolandpassmboolThe
operatorandommboobccepts annstant and creates ambool object whose definition time starts at the
given time instant, and consists of a random number of units. The op@agemboomimics a lifted
predicate. It accepts the name of @hool database object, loads the object and returns it. More details
are given below.

9.1.1 Preparing the Data

This section describes how the test data for the first experiment is créldtedandommboobperator
is used to create a set of 30 randamool instances and store them as database objects. The operator
createsmbool objects with a random number of units varying between 0 and 20. The fitsstarts
at the time instant provided in the argument. Every unit has a random dulsgiaeen 2 and 50000
milliseconds. The value of the first unit is randomly setrige or false The value of every other unit
is the negation of its preceding unit. Hence, the minimal representation nemuitg¢13] of the moving
types in £CONDOIs met. That is, adjacent units can not be further merged because thediffavent
values.

The 30mbool objects are created by callimgandommbool (now()) 30 consecutive times. This
increases the probability that the definition times of the objects temporally overlap

9.1.2 Generating the Queries

The queries of the first experiment are selection queries consistingedfiltar condition in the form
of an STP predicate. The queries are generated with different expaahsettings, that is, different
numbers of lifted predicates and constraints in the STP predicate. The nahlifted predicates varies
between 2 and 8. The number of constraints varies between 1 and 1&ug&hies are not generated
for every combination. For example, it does not make sense to generBter8dicates with 2 lifted
predicates and 10 constraints. Férlifted predicates, the number of constraints varies betwéen 1
and2N. The rationale of this is that, if the number of constraints is less #an1, then the constraint
network can not be complete (i.e. some predicates are not referencéd catistraints). On the other
hand, having more tha®V constraints increases the probability of contradicting constraints. Foy eve
experimental setting, 100 random queries are evaluated and the auanagee is recorded.

A query with 3 lifted predicates and 2 constraints, for example, looks like:

query thousand feed
filter[.
stpattern[a: passnbool (nb5),
b: passnbool (nh13),
c: passnbool (nb3);
stconstraint("b", "a", later),
stconstraint("b", "c", vec("abab")]]
count

wherequery t housand f eed streams théhousandelation, which contains 1000 tuples. For every
tuple, the STP predicatpatternis evaluated. Note that the predicate does not depend on the tuples.
That is, the same predicate is executed 1000 times in the query. This is to minimigfeitteof the

time taken by coNDoO to prepare for query execution. The lifted predicates are all in the fdrm o
passnbool (X) , whereXis one of the 30 stored randombool objects.

20

The constraints are generated so that the constraint graph is complegtari\lgy initializing a set
calledconnectedhaving one randomly selected alias. For every constraint, the two aligsesnaomly
chosen from the set of aliases in the query, so that at least one of #engb to the satonnectedThe
other alias is added to the sginnectedf it was not already a member. After the required number of
constraints is generated, we check the completeness of the graph. Ibitéemplete, the process is
repeated till we get a connected graph. The temporal connector figr @westraint is randomly chosen
from a set containing 31 temporal connectors namely, the 26 simple temparaators in Table 1 and
5 vector temporal connectors (later, follows, immediately, meanwhile, anl {$tgown in Appendix A).

Before running the queries, we query for the @000l objects so that they are loaded into the
database buffer. The measured run times should, hence, show theadef evaluating the STP predi-
cates in $CoNDObecause other costs are made negligible.

9.1.3 Results

The results are shown in Figure 2. The number of lifted predicates is dkast®. Increasing the

number of lifted predicates and constraints in the STP predicate doesuaoa lygieat effect on the run
time. This is a direct result of the early pruning strategy inSléve Patterralgorithm. The results show
that the evaluation of STP predicate is efficient in terms of run time.

0

Q 07 T T T T T T T T

% N=2 —&—
N=3 —x—

l_ 0.6 N=3 —=— T

o N=4 —o—

© 05 N=5 —e—

8 N=6 —a—
N=7 —a—

o 04 B

Q A/A/\"\/\A—A—A

Q o3} .

2] WA\A

g 0.2 B

3

beT) 0.1 B

0p]

O 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 . 14 16
Number of Constraints

Figure 2: The overhead of evaluating STP predicates

9.2 STP Queries with Optimization

The second experiment is intended to evaluate the run time of STP queridso dvaluates the effect
of the proposed optimization. Unlike the first experiment, the STP predicathis iexperiment contain
lifted predicates. We generate 10 random queries for every experinsetting and record the average
run time. Every query is run twice; without being optimized, and after optimization

9.2.1 Preparing the Data

The queries use th&ains20relation. It is generated by replicating the tuples of Tnains relation in
the berlintestdatabase 20 times. THeainsrelation was created by simulating the underground trains
of the city Berlin. The simulation is based on the real train schedules andahenaerground network
of Berlin. The simulated period is about 4 hours in one day. The schefaios20is similar toTrains
with the additional attribut&eriat

Trains20[Serialint, Id: int, Line: int, Up: bool, Trip: mpoint]

21

where Trip is annpoint representing the trajectory of the train. The relation contains 11240 tupdes a
has a disk size of 158 MB. To evaluate the optimizer, a spatial R-tree intler daains2Q Trip_sptuni

is built on the units of the Trip attribute. A set of 300 points is also created tede in the queries. The
points represent geometries of the top 300 tuples irRixgaurantselation in theberlintestdatabase.

9.2.2 Generating the Queries

The queries are generated in the same way as in the first experiment. Ingbigment, however, we
use actual lifted predicates insteadyaksmboolEvery lifted predicate in the STP predicate is randomly
chosen from

1. distance(triprandomPoint < randomDistance
2. speed(trip)> randomSpeed

whererandomPointis apoint object selected randomly from the 300 restaurant poiatgjomDistance
ranges between 0 and 50, armshdomSpeedanges between 0 and 30. Ttlistancé., .) < . is a sample
for the lifted predicates that can be mapped into index access, so thatnvevalaate the optimizer.
While the queries in the first experiment are created directly in #td8iDo executable language, they
are created here inERONDO SQL. It is an SQL-like syntax that looks similar to the standard SQL, but
obeys Prolog rules. The main differences are that everything is writtewar lcase, and lists are placed
within square brackets.

Here is one query example from the generated queries:

SELECT count (*)
FROM trai ns20
WHERE pattern([distance(trip, pointl70) < 18.0 as a,
speed(trip) > 11.0 as b],
[stconstraint("a", "b", vec("b.ba.a"))])

wherepatternis the SQL operator equivalent &ipatternin the executable language. The rewritten
version of the query as generated by the rewriting module of #@oSiDO optimizer is:

SELECT count (*)
FROM trai ns20
WHERE [pattern([distance(trip, pointl70) < 18.0 as a,
speed(trip) > 11.0 as b],
[stconstraint("a", "b", vec("b.ba.a"))]),
somet i mes(di stance(trip, pointl70) < 18.0),
soneti nes(speed(trip) > 11.0)]

Finally, the optimal execution plan is:

Trai ns20_Tri p_spt uni
wi ndowi nt ersectsS[enl argeRect (bbox(poi nt 170), 18.0, 18.0)]
sort rdup Trains20 gettuples
filter[sometinmes((distance(.Trip,pointl70) < 18.0))]
{0. 00480288, 1.69712}
project[Trip]
filter[. stpattern[a: (distance(.Trip, pointl70) < 18.0),
b: (speed(.Trip) > 11.0);
stconstraint("a", "b", vec("b.ba.a"))]]
{0. 00480288, 1.49038}
filter[sonetines((speed(.Trip) > 11.0))]
{0. 883731, 1.48077}
count

22

where the predicates are placed within fitter[] operator, which means that they belong to tieere
clause in SQL. The rewriter generates for the two lifted predicates in thaalriguery two standard
sometimegpredicates. The predicatmmetimesdistancé., .) < .) is handled by the optimizer as a
special kind of range predicate. Since the optimizer can find the spatiaeRntlex that we created, it
is used. The index access part in the query is:

Trai ns20_Tri p_sptuni w ndowi ntersectsS[enlargeRect(., ., .)]

This part expands the minimum bounding boxpwint170by the distance threshold value 18.0. The
enlarged box is intersected with the R-tree to get the candidate tuple id’se3tef the query retrieves
the data of the candidate tuples and performs the query. The pairs of raibdbeeen the curly brackets
do not affect the semantics of the query. They are estimated predicattivsiids and run time statistics
used to help estimate the query execution progress.

9.2.3 Results

In Figure 3, the chart to the left shows the average run times of the niiminpd STP queries. The chart
to the right shows the average run times of their optimized counterpartsN Thagain the number of
lifted predicates. The run times of the optimized STP predicates are very jpmgmis

Non-Optimized Queries Optimized Queries

2

4

6

8

10 12

14 16

T T T T T T T T
30 - 30 Noa
8 2 . 25 N=3 —=—
c N=4 —o—
S 20 N=2, . 20 N=S
o N=3 —x— N=6 —&—
D 15 N=3 —=— 15 N=7 —a—
(f) N=4 —— |
10 Nez 10
N=6 —— | 5
N=7 —a— ‘)44:\/‘
1 1 1 1 1 1 1 1 O 1

4

8

10 12 14 16

Number of Constraints Number of Constraints

Figure 3: The run times for STP queries on Tirains20relation

The high peak in the optimized queries chartNat= 2 and Number of Constraints = 2s be-
cause it happened that five of the ten generated queries havepedy.) < . predicates. Since the
sometimespeed.) < .) predicate does not map into index access, the average run time for tkis-exp
mental setting is close to the non-optimized version.

9.3 Scalability Experiment

This experiment evaluates the performance of the proposed approkshjérdatabases. As shown in
Section 7.2, the optimization of the STP predicate is carried out without spedéd structures, which
is practically preferred in the context of systems. It remains howevestignable, how far are the
traditional indexes (e.g. RTrees) effective for such a type of queFigis experiment tries to answer this
guestion.

Obviously if all the lifted predicates within the STP predicate in a given queryat supported by
the indexes in the database system, then one is out of luck, and the STéagedll be evaluated for
every tuple. Therefore, in this experiment, we compose the STP predialtdéted predicates that are
supported by index structures available EC®NDO.

23

9.3.1 Generating the Data

The data for this experiment is generated usinggedinMOD benchmark [9]. It simulates an arbitrary
number of cars moving in the city Berlin. The scenarios of the trips are quatestie, simulating the
trips to and from the work place, and the leasure time trips. The benchmaokvis@hdable from the
SECONDOWeb site [4]. The trajectory data is generated by runnisg@Do scripts. It is possible to
control the number of cars, and the number of observation days by editagfiguration file.

For this experiment, we have generated the four relations describedla3abhe table shows for
every relation the number of cars/trajectories, the number of simulation tt@sumber of units of all
trajectories, and the storage space of the relation. The number of uniadgans to the total number
of observations of all cars, in the discrete sense. Note that in this movjagteimodel, the trajectories
are continuous. That is, the locations of the cars between any two cvseabservations are linearly
interpolated. The generation of the four relations usinggldinMOD benchmark took about 5 days on
the machine described in Section 9.

Table 3: The Database Relations Used In The Scalability Experiment

Relation Number of Cars | Duration Number of Units Size
Name

datascar50 50,000 1 day 64,331,426 9.1GB
datascar100 | 100,000 1 day 128,437,840 18.2GB
datascar200 | 200,000 1 day 256,373,737 36.3GB
datascar300 | 300,000 1 day 384,923,972 54.5 GB

For each of the four relations, a spatial RTree index is derived fotripeattribute. The RTree
contains the bounding boxes of theits of the Trip attribute, which are of typepoint.

9.3.2 Generating the Queries

The BerlinMOD benchmark generates for every car up to five trips in &ingday. Two of them go
to and from the work place, and the other three trip are leasure time trips ift¢hec@mn/evening. The
leasure time destinations are randomly chosen frorm#ighborhoodof the car's home location with
a probability of 80%, and from the whole map with a probability of 20%. We uiseitifiormation to
design the experiment queries.

For each of the four relations in this experiment, a set of 10 queries iemapdenerated. Each of the
gueries randomly picks a car, and retrieves its home location andltwaensfrom its neighborhood,
call thematmmachingsupermarketandbakeryfor example. The query looks for the cars that made a
leasure time trip starting from the locatibnme and passing by the locatioasnmachinesupermarket
andbakeryin order. Since the locations are chosen from the neighborhood ofistingxcar, there is

some probability that the cars will fulfill the pattern. A sample query for thdioralatascar30dooks
as follows:

SELECT count (*)
FROM dat ascar 300 ¢

WHERE [pattern([c.trip = home as predl,
c.trip = atmmuachi ne as pred2,
c.trip = supermarket as pred3,
c.trip = bakery as pred4],
[stconstraint("predl", "pred2", later),
stconstraint("pred2", "pred3", later),

stconstraint("pred3", "pred4", later)])
]

wherehomeis the home location of the car, and thdifted predicate is fulfilled in the time instants/inter-
vals when its two arguments have the same spatial coordinates. Ten suels querandomly generated
for every relation. The next subsection shows the average runtimes.

24

9.3.3 Results

In this experiment, we switch on the optimizer. Since théfted predicates in the queries belong to
thelifted spatial rangepredicates, as shown in Table 2, the optimizer generates execution plansgha
the RTree indexes, that are generated during the data generatiore Eighows the average runtimes.
These results conclude two points:

e Taking into consideration the large relation sizes as shown in Table 3, amdoifherate machine
specifications described in Section 9, the average runtimes are chaggimgguch complex query
type. To be able to compare, we measured the average runtime of an optipéiedesnporal
range query on the 300,000 relation, and it shows 20 seconds. Thisompecison to an average
of 28.6 seconds for the STP query. This confirms that the proposed ogtionzpproach works
fine without the need for specialized index structures.

e The runtime seems to scale linearly with the relation size. This is already expiotedhe STP
predicate is applied to every tuple in the input (i.e. the tuples retrieved afterdbeaccess). Note
that the BerlinMOD benchmark generates all the trips within the limited spatiabsgfabe city
Belrin. A larger number of cars in the simulation implies that the window querigh®iRTree
index yield more candidates.

35 T T T T T T

30

25

20

15 -

10

Average run time (sec)

! ! ! ! ! !
0 50 100 150 200 250 300 350

Number Of Trajectories (x 1000)
Figure 4: Scalability results

To sum things up, the scalability of the STP queries as proposed in this isagiéected by four
parameters:

1. The number of lifted predicates in the STP predicate.

2. The number of the temporal constraints in the STP predicate.
3. The number of input tuples/trajectories.

4. The length of the trajectories in terms of number of units.

The scalability in terms of the first three parameters is evaluated already irrdieestkperiments in this
paper. The last parameter, the length of trajectories, affects the evaltiati® of the STP predicate
indirectly as it affects the evaluation time of the lifted predicates. This is bedhadifted predicates are
evaluated for the complete trajectory. When the trajectories are long (earabeeeks of observation
time), the cost of evaluating the lifted predicates increases accordinglg. mEjority of them scale

25

linearly with the number of units in the trajectory. More about the lifted prediegdéuation algorithms
can be found in [8].

In the STP predicate, the temporal constraints impose a certain temporabetdeen the lifted
predicates. While evaluating the STP predicate, one gets temporal inforrfratiothe lifted predicates
evaluated so far. A proper analysis of this information can identify parteeotrajectory that can be
safely ignored while evaluating other lifted predicates. In future work e o study how to utilize
this information. Roughly, one would need to redefine the lifted predicatet)ad they process the
trajectory parts upon request (e.g. in a stream fashion) rather tharhtiie trajectory.

10 Application Examples

To illustrate the expressive power of the proposed approach, werntrieshe following two subsections
more examples for STP queries. Section 10.1 demonstrates a scenarid-gcadied Ali. It is about a
kid called Ali, who moves on the street network of Cairo (the capital of Eg\) makes several trips
riding in several cars. We want to query for these cars using their movgmefiles.

In Section 10.2, we demonstrate example queries that the reader can trif/hienself in SE=cCoNDO.
The queries are based on therlintestdatabase, that is available with thec®NDodistribution. Unlike
the first application, the queries are not linked to a single scenario. Hemaaan demonstrate STP
queries that involve moving points, moving regions, and many kinds of liftedations.

10.1 Finding Ali

We assume that the road network of Cairo is observed for one month arttig¢lmmplete trajectories
of the cars are stored in the database. The queries assume the follohéngesc

e Car[PlatesNumberstring, Trip: mpoint] where Trip is the complete trajectory of the car for the
whole observation period.

Landmark[Namestring, Type: string, Location: point]

Heliopolis: A region object marking the boundary of the distrideliopoliswhere Ali lives.

AliHome: A point object marking Ali's home.

e FamilyHome: Apoint object marking the house of the father’s family.

SportsClub: Aregion object marking the boundary of the sports club in which Ali is a member.

10.1.1 The Go-to-school Trips With the School Bus

The bus starts at the school at 6:00 am - 6:30 am, enters the district Heliop6l#5aam - 7:00 am,
stops near Ali's home, picks Ali, exits Heliopolis at 7:45 am - 8:00 am, then gadsto school.

This query can be written without a spatiotemporal pattern predicate. Eti@tgmporal window
of every predicate is known. It can be expressed as a conjunctiosdittotemporal range predicates
(Bus inside School at the time interval [6:00, 6:30] AND Bus inside Heliopdlitha time interval
[6:45, 7] ...). We include this as an example of spatiotemporal pattern queaesah be expressed
without STP predicates.

10.1.2 The Evening Trips With Grandfather

Starting from Ali's home, the grandfather drives Ali to the sports club.yT$tep at the sports club for at
least two hours. After the club they go by car to buy some bread, thenhueck.

26

SELECT c. Pl at esNunber
FROM Car c, Landmark |
WHERE | . Type |ike("%Bakery%) and
patternex([di stance(c. Trip, AiHone) < 20.0 as At Hone,
c.Trip inside Sportsd ub as Atd ub,
di stance(c. Trip, |.Location) < 20.0 as AtBakery,
di stance(c. Trip, AiHome) < 20.0 as BackHone],
[At Honme | ater Atd ub,
At Cl ub | ater AtBakery,
At Bakery | ater BackHone],
end("Atd ub") - start("Atdub") >= 2.0 and
daypart (At Hone) = daypart (BackHone))

In this query, the extended STP predicate is used to state that they stdgadtdtvo hours in the
sports club and that the whole pattern occurred in one day. Another ndtatithe query uses the
predicatedi st ance(c. Tri p, AliHonme) < 20.0 twice with two different aliases. The two
aliases are needed to write the constraints. It is the responsability of the @ptemizer to detect this
common predicate (i.e. using common sub-expression optimization techniquesyaluate it only
once.

10.1.3 The Weekend Trips With Mother

The mother starts from Ali’'s home, drives only in main roads, stops neaopsig mall for at most
4 hours then back home. The trip to the mall takes more than 1.5 times the estimateddausebthe
mother uses only main roads. In Cairo it is easier to drive in main roads lyh#ve high traffic.

SELECT c. Pl at esNunber
FROM Car c, Landmark I
WHERE | . Type like("%all %) and
patternex([di stance(c. Trip, AiHonme) < 20.0 as At Hore,
di stance(c. Trip, |.Location) < 40.0 as AtMall,
di stance(c. Trip, AiHome) < 20.0 as BackHone],
[At Hone | ater AtMll,
At Mal | | ater BackHone],
end("AtMal ") - start("AtMall") <= 4.0 and
(start("AtMall") - end("AtHome") >
1.5 » EstimatedDriveTine(l.location, AliHonme)))

where we assume for simplicity thestimatedDriveTimés a function that computes the normal period
that a drive between two places takes. It may do so by finding the shpgtstand multiply by the
average driving speed.

10.2 The Berlintest Example

In this example, we use the databdmzlintest more specifically, th@rains relation and three newly
added relations with the following schemas:

SnowStorms[Serialint, Storm: mregion]

TrainsMeet[Line:int, Uptrip: mpoint, Downtrip: mpoint, Stations:points]

TrainsDelay[ld:int, Line: int, Actual: mpoint, Schedulempoint]

The SnowStormselation contains 72 tuples, each of which contains a moving region, sspieg a
snow storm that moves over Berlin. TheainsMeetrelation is generated from thigainsrelation. The
tuples contain all possible combinations of two trains that belong to the same dmaare in opposite
directions. TheStationsattribute represents the train stations of the associated lineTraimesDelayre-
lation is also generated from tfigeainsrelation. Each tuple contains the origifalp attribute (renamed

27

into Scheduly and a delayed copy of it with delays of around 30 minutes. The scriptgdating the
three relation and for executing the example queries are available forlakmivas will be explained in
Appendix D.

Table 4 lists the lifted operations used within the queries. We have designgdehies so that they
illustrate the expressive power of our approach by using various lifpedations to compose complex
pattern queries. The table shows only the operator signatures thaearauke queries. The complete
list of valid signatures is in [19].

Table 4: Lifted Operations

Operation Signature Type Meaning
at mregion X point — mpoint topological opera{ computes a moving point that
tion exist whenever the point argu-

ment is inside the moving re
gion argument.

isempty mpoint— mbool set operation true whenever the argument js
defined.

not mbool— mbool boolean operation | logical negation.

rough.center mregion — mpoint aggregation aggregates the moving regign

into a moving point that repre
sents its center of gravity.

speed mpoint — mreal metric property the metric speed of the moving
point.
distancetraversed mpoint — mreal metric property the distance that the moving

—

point traversed since the star
of its definition time.
area mregion — mreal metric property the area of the moving region|.
intersection mpoint X mpoint — mpoint set operation computes the common parts of
the two arguments.

mpoint X mregion — mbool spatial range predi; true whenever thenpoint is

inside :) ;
cate contained in thenregion,
mpoint X points — mbool or passes some of th@ints.
delay mpoint X mpoint — mreal metric operation | considers the first argument
actual and the secondched-
ule movementand computeg
the delay of the actual move-
ment in seconds.
= mpoint X point — mbool spatial range predi; true whenever the moving
cate point passes the point.
xangle mpoint — mreal direction the angle (in degrees) between
x-axis and the tangent of the
moving point.
and mbool x mbool — mbool boolean operation | logical and.
< <= >, >= mreal X real — mbool left/right range| true in the time intervalg
predicate during which the comparison
holds.

10.2.1 Find the snow storms that passed over the train statiomehringdamm with speed greater
than 40 km/h.

SELECT =

FROM snowst or ns

WHERE pattern([not(isenpty(storm at nehringdanm) as predl,
speed(rough_center(storm) > 40.0 as pred2],

28

[stconstraint("predl", "pred2", together)])

wheretogetheris a vector temporal connector that yields true if the two predicates happetiane-
ously.

10.2.2 Find the snow storms that could increase their area over 1/4 ggre km during the first
traversed 5 km.

SELECT =«
FROM snowst or s
WHERE pattern(
[di stancetraversed(rough_center(storn)) <= 5000.0 as predl,
area(storm > 250000.0 as pred2],
[stconstraint("predl", "pred2", neanwhile)])

10.2.3 Find the trains whose up and down trips meet inside one of thedm stations.

SELECT =
FROM trai nsneet
VWHERE pattern(
[not (i senpty(intersection(uptrip, downtrip))) as predl,
uptrip inside stations as pred2],

[stconstraint("predl", "pred2", together)])
ORDERBY |ine

10.2.4 Find the trains that encountered a delay of more than 30 mingis after passing through
the snow stormmsnow.

SELECT =

FROM trainsdel ay

VWHERE pattern([not(del ay(actual, schedule) > 1800.0) as predl,
actual inside nmsnow as pred2,
del ay(actual, schedule) > 1800.0 as pred3],

[stconstraint("predl", "pred2", vec("abab", "aba.b", "abba")),
stconstraint("pred2", "pred3",

vec("abab", "aba.b", "abba", "aa.bb", "aabb"))])

10.2.5 Find the trains that are always heading north-west after pasng mehringdamm.

SELECT =
FROM trains
VWHERE patternex([trip = mehringdamm as pred1l,
ndef unit (((xangl e(trip) >= 90.0) and
(xangl e(trip) <=180.0)), int2bool (1)) as pred?],
[stconstraint ("predl”, "pred2",then)],

(((start("pred2")- end("predl")) < create_duration(0, 120000))
and

((inst(final (trip)) - end("pred2")) < create_duration(0, 15000))))

where we use thadefunitoperator in this query to replace the undefined periods withimthen! by
true units. This is because thengle? operator yields undefined during the train stops in the stations.
In other wordspred2is true whenever the train is not heading other than north-west. The rsricts
the results to the trains which started heading north at most 2 minutes aftergoashringdamnand

2The xangleoperator is a corrected copy of the@NDO mdirectionoperator. It is presented only for the sake of this
example. In the BconDOVversions newer than 2.9.1, thadirectionoperator works fine.

29

remained so till at least 15 seconds before the end of the trip. These timasnarg used to cut out
small noisy parts in the data, so that the query yields results.

11 System Use and Experimental Repeatability

The implementation of the described approach is made available as a Plugia frabNDO system.

It can be downloaded from the Plugin web site [1]. Thser Manual(also available on the Plugin we

site) describes how to install and run the Plugin. We have also made availalsieripts for running the

first and the second experiments in this paper, and#réntestapplication example, so that the results

are repeatable. There are no scripts here for the third experimenistéiested readers, please refer to

theBerlinMOD benchmark [9] to generate the test data, then use the queries as destBleetion 9.3.
Before running the scripts of the experiments, you need to install:

1. The SCoNDO system version 2.9.1 or latér A brief installation guide is given in thBlugin
User Manualon [1], and a detailed guide is given in the &NDoUser Manual[3].

2. The Spatiotemporal Pattern Queries Plugin (STPatterns) as descr[igd in

11.1 Repeating the First Experiment

During the installation of the STPattern Plugin, two files are copied to theo® Do bin directory
$SECONDQBUILD _DIR/ bin. These two file€xprlScript.se@and STPQExprlQuery.csidescribed
in Appendix A) automate the repeatability of the first experiment in this paper.ekperiment can then
be run as follows:

1. Run SecondoTTYNT (i.e. inashell, go to $SECONBOILD _DIR/bin and writeSecondo TTYNT).

2. Make sure that the berlintest database is restored (i.e. atebeN®O prompt, writel i st
dat abases and make sure that berlintest database is in the list). Otherwise, restonsriting

restore database berlintest from berlintest
at the ScoNDoOprompt (presscreturr> twice).

3. Execute the script by writin@Expr 1Scr i pt . sec at the ScoNpoprompt. The script creates
the required database objects and executes the experiment queriesnajhiake half an hour
depending on your machine.

Executing the script creates @SoNDorelationSTPQExpriResuih theberlintestdatabase, which
stores the experimental results. Its schema is shown in Table 5.

The experimental results are also saved to a comma separate@R@ExprlResult.céw the SEC-
ONDO bin directory. The file has a similar structure as the t&I® QExprlResult

11.2 Repeating the Second Experiment

Repeating the second experiments is also automated by script files thatpéed tmthe ECONDO
directories during the installation of the STPattern Plugin. For the secomdimgnt, two script files are
used; theBSSECONDOQOBUILD _DIR/ bin/ Expr2Script.sefile creates the necessary database objects, and
the $SECONDQBUILD _DIR/ Optimizer/ expr2Queries.m@xecutes the queries. TH&pr2Script.sec

file is described in Appendix B, and tlexpr2Queries.pin Appendix C. The experiment is repeated as
follows:

3Since our optimizer extension wraps around the standard optimizer impiatiom, you may get different optimization
results in later 8conDoVversions. The described results in this paper are obtained from vé.8idn

30

Table 5: The schema of the STPQEXxprlResult relation

Attribute Meaning Example
no A serial number for the query. 0
queryText The query text. t housand feed

filter [.stpattern|
a: passmbool (nb10),
b: passnbool (mb30) ;

stconstraint("a", "b",
vec("aa.b.b"))]] count
numPreds The number of the lifted predicates in the2
STP predicate.
numcConstraints The number of the constraints in the STR
predicate.

ElapsedTimeReal The measured response time, in second3,171932
for this query.
ElapsedTimeCPU The measured CPU time, in seconds, fod.16
this query

1. Run SecondoTTYNT.
2. Make sure that the berlintest database is restored, otherwiseengstor

3. Execute thexpr2Script.sedy writing @Expr 2Scri pt . sec at the SCONDO prompt. This
creates the necessary database objects.

4. Quit SecondoTTYNT (i.e. writqui t at the SCONDO prompt), go to the SBCONDO optimizer
folder $SECONDQBUILD_DIR/ Optimizerand write SecondoPL. This starts the ScCONDO
optimizer user interface in the single user mode.

5. Writeconsul t (expr2Queri es). tolet Prolog interpret the script filexpr2Queries.pl
6. Open theberlintestdatabase (i.e. writepen dat abase berli ntest.).

7. Write r unSTPQEXpr 2Di sabl eOpti ni zati on. to run the queries without enabling the
optimization of the STP predicate, ounSTPQEXpr 2Enabl eOpti i zati on. to run the
queries with the optimization of the STP predicate being enabled. This can taketimam an
hour.

The results are saved to the comma separatedEips2StatsDO.csand Expr2QueriesDO.csin
the SEconDooptimizer folder if the STP predicate optimization is disabled. If it is enabled abalts
are saved to the filedSxpr2StatsEO.csandExpr2QueriesEO.csv

The filesExpr2StatsDO.csand Expr2StatsEO.csshow the run times. They include the columns
described in Table 6.

Table 6: The schemas of the Expr2StatsDO.csv and Expr2StatseO.csv files

Attribute Meaning Example
NumberOfPredicates The number of the lifted predicates in the STP predicate. 2
NumberOfConstraints The number of the constraints in the STP predicate. 1
Serial A serial for the query in the range [0,9]. The serial is repdat 1

with every experimental setup
ExecTime The measured response time, in milliseconds, for this query| 443

31

The filesExpr2QueriesDO.csand Expr2QueriesEO.cslrave a similar structure. They exclude the
ExecTimaattribute and have two more attributes; 8@Lattribute which stores the SQL-like query, and
the ExecutablePlanvhich stores the execution plan generated by the Optimizer.

12 Conclusions

We propose a novel approach for spatiotemporal pattern queriemntines efficiency, expressiveness
and a clean concept. It builds on other moving objects database congégiefore, it is convenient
in the context of spatiotemporal DBMSs. Unlike the previous approachissintegrated with query
optimizers. We also propose an algorithm for evaluating the constraintagaitisf problems, that is
customized to fit the efficient evaluation of the spatiotemporal pattern ptedicdn the paper, we
demonstrate two application examples to emphasize the expressive powsragpsoach. Our work
is completely implemented in theeSBoNDO platform. The implementation and the scripts for experi-
mental repeatability are available on the Web. The experimental evaluatios gat the run times are
reasonable. As future work, we intend to revisit the definition of the liftedlipates, and extend them
to process only the parts of the trajectories that are candidates for a salfititee STP predicate. This
will allow for efficiently reporting patterns in long trajectories.

References

[1] SEcCONDOplugins.
http://dna.fernuni-hagen.de/secondo.html/staritentplugins.html.

[2] SECONDOprogrammer’s guide.
http://dna.fernuni-hagen.de/secondo.html/files/programmersguide.pdf.

[3] SEcoNDOuUser manual.
http://dna.fernuni-hagen.de/secondo.html/files/secondomanual.pdf.

[4] SECONDOWeb site.
http://dna.fernuni-hagen.de/secondo.html/.

[5] James F. Allen. Maintaining knowledge about temporal inten@tsmmun. ACM26(11):832—-843,
1983.

[6] Luis Otavio Alvares, Vania Bogorny, Bart Kuijpers, Jose Antoniorfeemdes de Macedo, Bart Moe-
lans, and Alejandro Vaisman. A model for enriching trajectories with semaatigrgphical infor-
mation. InGIS '07: Proceedings of the 15th annual ACM international symposiuidvances in
geographic information systensages 1-8, New York, NY, USA, 2007. ACM.

[7] Christian BessiereHandbook of Constraint Programminghapter 3. Elsevier, 2006.

[8] Jo Antonio Cotelo Lema, Luca Forlizzi, Ralf Hartmutiitihg, Enrico Nardelli, and Markus
Schneider. Algorithms for moving objects databasesmput. J.46(6):680—-712, 2003.

[9] Christian Dintgen, Thomas Behr, and Ralf Hartmdiitiag. BerlinMOD: a benchmark for moving
object databasedhe VLDB Journgl18(6):1335-1368, 2009.

[10] Martin Erwig. Toward Spatiotemporal Patterns, Spatio-Temporal Databases (edweéaDe)
chapter 2, pages 29-54. Springer-Verlag New York, Inc., 2004.

[11] Martin Erwig and Markus Schneider. Developments in spatio-tempoiedy languages. IDEXA
'99: Proceedings of the 10th International Workshop on Database BexSystems Applications
page 441, Washington, DC, USA, 1999. IEEE Computer Society.

32

[12] Martin Erwig and Markus Schneider. Spatio-temporal predicéEsE Trans. on Knowl. and Data
Eng, 14(4):881-901, 2002.

[13] Luca Forlizzi, Ralf Hartmut @Gting, Enrico Nardelli, and Markus Schneider. A data model and data
structures for moving objects databasesSIGMOD '00: Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Datages 319-330, New York, NY, USA, 2000.
ACM.

[14] Elias Frentzos, Kostas Gratsias, Nikos Pelekis, and Yannis ThdaloAlgorithms for nearest
neighbor search on moving object trajectori@eoinformaticall(2):159-193, 2007.

[15] Joachim Gudmundsson, Marc van Kreveld, and Bettina Specknizfficient detection of motion
patterns in spatio-temporal data setsGli$ '04: Proceedings of the 12th annual ACM International
Workshop on Geographic Information Systepegges 250-257, New York, NY, USA, 2004. ACM.

[16] Ralf Hartmut Guiting, Victor Almeida, Dirk Ansorge, Thomas Behr, Zhiming Ding, Thomdssé]
Frank Hoffmann, Markus Spiekermann, and Ulrich Tellec&NnDO An extensible DBMS plat-
form for research prototyping and teaching. IGDE '05: Proceedings of the 21st International
Conference on Data Engineeringages 1115-1116, Washington, DC, USA, 2005. IEEE Computer
Society.

[17] Ralf Hartmut Quting, Thomas Behr, Victor Almeida, Zhiming Ding, Frank Hoffmann, and Mark
Spiekermann. ScoNDO. An extensible DBMS architecture and prototype. Technical Report
Informatik-Report 313, FernUniverait Hagen, March 2004.

[18] Ralf Hartmut QGiting, Thomas Behr, and Jiangiu Xu. Efficidahearest neighbor search on moving
object trajectories. IThe VLDB Journal, Online Firs2010.

[19] Ralf Hartmut Giting, Michael H. Bhlen, Martin Erwig, Christian S. Jensen, Nikos A. Lorentzos,
Markus Schneider, and Michalis Vazirgiannis. A foundation for regméeg and querying moving
objects.ACM Trans. Database Syse5(1):1-42, 2000.

[20] Marios Hadjieleftheriou, George Kollios, Petko Bakalov, and VasdiliBsotras. Complex spatio-
temporal pattern queries. MLDB '05: Proceedings of the 31st International Conference on Very
Large Data Basegages 877-888. VLDB Endowment, 2005.

[21] Yannis E. loannidis. Query optimizatioACM Comput. Sury28(1):121-123, 1996.
[22] Cédric Mouza and Philippe Rigaux. Mobility patterr@eoinformatica9(4):297-319, 2005.

[23] Nikos Pelekis, loannis Kopanakis, Gerasimos Marketos, IrenatbitadGennady Andrienko, and
Yannis Theodoridis. Similarity search in trajectory databaseBINtE '07: Proceedings of the 14th
International Symposium on Temporal Representation and Reasaiggs 129-140, Washington,
DC, USA, 2007. IEEE Computer Society.

[24] Markus Schneider. Evaluation of spatio-temporal predicates ofingabjects. INCDE '05: Pro-
ceedings of the 21st International Conference on Data Enginegpiages 516-517, Washington,
DC, USA, 2005. IEEE Computer Society.

[25] Ouri Wolfson, Bo Xu, Sam Chamberlain, and Ligin Jiang. Moving otjalatabases: Issues and
solutions. INSSDBM’98: 10th International Conference on Scientific and Statistical tzea
Managementpages 111-122, 1998.

33

A The ExprlScript.sec File

This is a commented version of tExprlScript.sescript.

The script runs the first experiment with minimal user interaction. The exrpet, as described in
Section 9.1, is intended to evaluate the execution overhead of the STPapesdithis script first creates
the required database objects, then executes the queries and logstthreesun

cl ose dat abase;
open dat abase berlintest;

| et nmbl = randombool (now());

I et mM30 = randonmbool (now());

The commands open the databaselintestand creates 30 randombool objects with the names
mbl.. mb3Q These objects are needed for the queries. rahdommboobperator works as described
in Section 9.1.1.

let later = vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows = vec("aa.bb", "a.a.bb", "aa.b.b", "a.a.b.b");
l et inmediately = vec("a.bab", "a.bba",

| et meanwhil e = vec(
l et then = vec(

The five vector temporal connectors are used in the queries as exaommplestor temporal connec-
tors. They are used together with the 26 simple temporal connectors tatetier queries.

| et STPQEXprlQuery=
[const rel (tuple([no:int, queryText: text,

nunPreds: int, numConstraints: int])) value ()]
csvinport[’' STPQExpr 1Query.csv', 0, "", "$"] consune;

The query imports the experiment queries from the comma separat&d RIQ@Exprl1Query.csaand
stores them in a &conDoOrelation calledSTPQExprlQuery The [const . value]. operator tells the
cvsimportoperator the schema of the relation, which is shown in Table 7.

Table 7: The schemas of the STPQExprlQuery.csv file and the STPQ&xry table

Attribute Meaning

no A serial for the query in the range [0, 4899].

queryText The query statement written ire8oONDO executable language.
numPreds The number of the lifted predicates in the STP predicate.
numcConstraints The number of the constraints in the STP predicate.

The file contains 4900 queries that were randomly generated as desuriBection 9.1.2. The
gueries represent 49 experimental settings, each of which have @08xurhe following query executes
them and logs the results in the relat®mPQEXxpriResult

| et STPQExpr1Result =
STPQEXpr 1Query feed
| oopj oi n[fun(queryTupl e: TUPLE)
eval uate(attr(queryTupl e, queryText))
proj ect[El apsedTi neReal , El apsedTi neCPU]]
CONsune;

34

This query can take half an hour depending on your machine. You oany ¢jue results relation
in any of the $CONDO user interfaces [3] and create aggregations for the charts. Additipiadly
following query exports the relation to the comma separate&fileQExprlResult.céw the SECONDO
bin directory.

query STPQExpr1Result feed
proj ectextend[; Serial: .no,
Number O Pr edi cat es: . nunPr eds,
Number OF Constrai nts: . nunmConstraints,
ResponseTi ne: . El apsedTi neReal ,
CPUTI me: . El apsedTi meCPU|
csvexport[’ STPQExpr 1Resul t.csv’, FALSE, TRUE]
count

NOTE: We encourage the reader to get information about thediDo operators by using the built-in
operator descriptions. For example, to get help on the operator npor t , write the following query
at the ScoNDOprompt:

query SEC2O0OPERATORI NFO f eed
filter[.Nane contains "csvinport"]
consune

B The Expr2Script.sec File

This is a commented version for thpr2Script.sescript.
The script is used to generate the data required for running the sexpedneent in this paper without
executing the queries. The queries need to be executed 8ettendoPlenvironment afterwards.

cl ose dat abase;
open dat abase berlintest;

| et RestaurantsNunbered =
Rest aurants feed addcounter[no, 1] head[300] consune;
let pointl =
Rest aur ant sNumbered feed filter[. no

1] extract[geoData];

| et point300 =
Rest aur ant sNunbered feed filter[.no
del et e Restaur ant sNunber ed;

300] extract[geoData];

First, the commands open the datablbsdintest The geometries of the first 300 restaurants in the
Restaurantsable are then copied to point objects (pointl... point300) to be used in theguer

let later = vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows = vec("aa.bb", "a.a.bb", "aa.b.b", "a.a.b.b");
| et inmediately = vec("a.bab", "a.bba",

| et meanwhil e = vec(
I et then = vec(

The five vector temporal connectors, that are also creaté&kjpmlScript.secare included here so
that the two experiments can be run independently.

| et Trains20 = thousand feed head[20] Trains feed product consune;

This query creates thérains20relation by replicating the tuples of thiains relation 20 times.
In the following query, we create an index on theins20relation to test the proposed STP predicate

35

optimization. The index is a spatial R-tree on the units of Thp attribute. Instead of indexing the
complete movement, the index is built on the units (i.e. a bounding box is computedefy unit in the
Trip). This is done so that the bounding boxes better approximate the mawiinig p

| et Trains20_Tripsptuni =
Trai ns20 feed
projectextend[Trip; TID: tupleid(.)]
projectextendstrean] TID, MBR units(.Trip)
use[fun(U: upoint) bbox2d(U)]]
sort by[MBR asc]
bul kl oadrtree[MBR];

C The expr2Queries.pl File

This Prolog file is used to run the queries of the second experiment andelegdhution times. It defines
four prolog predicates:

1. runSTPQExpr2DisableOptimization/0: switches off STP predicate optimizbyicetting the op-
timizer options, and executes the queries.

2. runSTPQEXxpr2EnableOptimization/0: switches on STP predicate optimizatidrexecutes the
gueries.

3. executeSQL/4: helper predicate for executing queries.

4. runSTPQEXxpr2/4. the facts table that stores the queries. The fileitod@0 such facts, 10
queries for each of the 49 experimental settings. The queries aremgndenerated as described
in Section 9.2.2. For every query, the fact also stores its serial, numiiéedfpredicates, and
number of constraints.

D Running the Berlintest Application Example

To execute the queries in the berlintest example, you need first to runripeBserlintestScript.sefrom
the SecondoTTYNT prompt. The script is installed within the STPattern Plugin.a¥6o need to have
the berlintest database restored in your system. The script file createsjtied database objects but it
doesn’'t execute the queries. It first defines some temporal consector

cl ose dat abase;

open dat abase berlintest;

let later= vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows= vec(...

| et inmediately= vec(...

| et neanwhil e= vec(...

| et then= vec(...

| et together= vec(...

Then it restores th&nowStormselation from theSnowStorméile in the SEcoNDdbin directory,
which is installed with the Plugin.

restore SnowStorns from SnowSt or ns;

The following command creates the relatiminsMeetthat is used in the example in Section 10.2.3.
Every tuple in the relation is a different combination of an up train, down triiheosame line, and the
stations where the train line stops.

36

| et TrainsMeet =

Trains feedproject[Line, Trip, Up] {t2} filter[.Up_t2

Trains feedproject[Line, Trip, Up] {t1l} filter[.Up_t1

hashjoin[Line t2 , Line_ tl , 99997]

extend[Line: .Line_tl1, Uptrip: .Trip_tl, Downtrip: .Trip_t2,

Stations: ((breakpoints(.Trip_tl, create_duration(0,5000))

union val (initial (. Trip_t1)))
union val (final (. Trip_t1)))]

project[Line, Uptrip, Downtrip, Stations]

consune;

FALSE]
TRUE]

Next we create the relatiofrainsDelay used in the example in Section 10.2.4. Every tuple has a
scheduleand anactual moving point. Theschedulemovement is a copy from thérip attribute in the
Trainsrelation. The actual movement should have delays of about half an Weushift theTrip 1795
seconds forward, and apply a random positive or negative delay Wp seconds to the result. This
creates actual movements with random delays between 29:45 and 30:05 minutes

| et Trai nsDel ay=
Trains feed
ext end[Schedul e: . Trip,
Actual : randondel ay(

.Trip translate[create_duration(0, 1795000) , 0.0, 0.0],
create_duration(0,10000))]

project[ld, Line, Actual, Schedul e]

COoNsune;

After running theBerlintestScript.sescript, use thdavaguito execute the queries. Itis the graphical
user interface for SconDO. To launch it:

1. Start the &coNnDokernel in server mode, the optimizer server, and the GUI:
In a new shell, go to $SECONDBUILD _DIR/bin, and typeSecondolbni t or -s.
In a new shell, go to $SECONDBUILD _DIR/Optimizer, and typét ar t Opt Ser ver .
In a new shell, go to $SECONDG®UILD _DIR/Javagui, and typsgui . The Javagui will start
and connect to both the kernel and the optimization server.

2. Open the database. In the Javagui type:
open dat abase berlintest.

3. Set the optimizer options. TheeSONDO optimizer maintains a list of options that controls the
optimization. The examples in this paper require the optionmovedcostsdeterminePredSig
autoSamplegewriteInferencertreelndexRulesandautosave To set each of these options, type
in the Javagui:
optim zer setOption(option)

4. View the underlying network. Type:
sel ect * from ubahn to display the underground trains network.
sel ect * from trains todisplay the moving trains. Use the slider to view the results.
Select the last query in the top-right panel and press hide to hide the trains
sel ect * from snowst or ns to display the moving snow storms.
hide the snow storms.

5. Type the example queries as in Section 10.2, and make sure to type exgenytlower case.

37

