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Abstract

This paper presents a novel approach to express and evaluatethe complex class of queries in mov-
ing object databases calledspatiotemporal pattern queries(STP queries). That is, one can specify
temporal order constraints on the fulfillment of several predicates. This is in contrast to a standard
spatiotemporal query that is composed of a single predicate. We propose a language design for spa-
tiotemporal pattern queries in the context of spatiotemporal DBMSs. The design builds on the well
established concept oflifted predicates. Hence, unlike previous approaches, patterns are neither re-
stricted to specific sets of predicates, nor to specific moving object types. The proposed language can
express arbitrarily complex patterns that involve varioustypes of spatiotemporal operations such as
range, metric, topological, set operations, aggregations, distance, direction, and boolean operations.
This work covers the language integration in SQL, the evaluation of the queries, and the integration
with the query optimizer. We also propose a simple language for defining the temporal constraints.
The approach allows for queries that were never available. We provide a complete implementation
in C++ and Prolog in the context of the SECONDO platform. The implementation is made pub-
licly available online as a SECONDOPlugin, which also includes automatic scripts for repeating the
experiments in this paper.

1 Introduction

The area of moving objects databases has been active since the early 2000s, and is recently receiving
a lot of interest because of the advances in the positioning and sensor technologies that generates large
amounts of moving objects data. These databases deal with the geometries thatchange over time, also
called spatiotemporal data. There are two classes of models for such data.The first deals with the current
movement and the predicted near future (e.g. [25]). These models are optimized for cheaper updates.
The second class deals with the trajectories or the history of the movement (e.g. [19]), and these models
are optimized for cheaper queries. In this paper, we focus on the second class of models, the trajectory
databases.

Having the spatiotemporal trajectories of the moving objects stored in a database system allows for
issuing spatiotemporal queries. One can query, for example, for animals which crossed a certain lake
during a certain time interval or for the total length of a car trajectory inside a certain zone. There
has been a lot of work on providing spatiotemporal data management and query operations (e.g. [8]).
Recently more focus is given to the nearest neighbor queries (e.g. [18], [14]), and the trajectory similarity
queries (e.g. [23]).

However, due to the recent application domains, trajectories are getting longer. Additionally, due
to the privacy restrictions, trajectories are getting anonymized. The precise position and/or extent of
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the moving objects are more and more replaced by the events or the changes that happened during the
movement, the so calledsemantic trajectories[6]. It is difficult to query, for example, sequences of such
changes of data using traditional spatiotemporal queries. This difficulty comes from the fact, that they
are composed of one predicate. In many cases, one would need to express temporal orders (relative or
absolute) of several changes, each of which need to be expressed as a predicate. For example,find all
trains that encountered a delay of more than half an hour after passing through a snow stormis a query
that expresses two changes/predicates, one happening after the other. It is very difficult if not impossible
to express such a query using the traditional spatiotemporal query methods.

Spatiotemporal pattern (STP) queries provide a more complex query framework for moving objects.
In particular, they specify temporal order constraints among a set of time-dependent predicates. For
example, suppose the predicatesP , Q, andR that may hold over one or more time intervals and/or
instants. We would like to be able to express conditions like the following:

• P then (later)Q thenR.

• P ending before 8:30 thenQ for no more than 1 hour.

• (Q thenR) duringP .

The predicatesP , Q, andR, etc. might be of the form:

• VehicleX on roadW .

• TrainX is inside a snow stormY .

• The extent of the storm areaY is larger than 4 square kms.

• The speed of air planeZ is between 400 and 500 km/h.

For such conditions to hold, there must exist a time interval for each of the predicates, during which it is
fulfilled, and this set of time intervals must fulfill the temporal order in the condition. The spatiotemporal
patterns described by such conditions cannot be expressed by traditional spatiotemporal queries. One
would rather need thespatiotemporal pattern queries.

More about the importance of STP queries in many fields of application is illustrated in [10]. So far
we are talking about the spatiotemporal patterns that occur within individualtrajectories. That is every
trajectory in the database can individually answer the pattern without knowledge of other trajectories.
The term Spatiotemporal Patterns is also used in the literature to refer togroup patterns. This is more
related to the spatiotemporal data mining literature. The methods analyze simultaneous movements and
the interaction between objects (e.g. patterns like leadership, play, fighting,migration, trend-setting,
... etc). The research in this direction aims at developing a toolbox of data miningalgorithms and
visual analytic techniques for movement analysis. For example, algorithms for the flock, leadership,
convergence and encounter patterns are presented in [15]. In this paper, we are focusing on the individual
spatiotemporal pattern queries, simply denoted spatiotemporal pattern queries (STP queries) during the
rest of the paper.

Few proposals exist for handling STP queries as will be detailed in the related work section. All of
them lack generality in the patterns that can be expressed. They are limited to certain moving objects
types (moving pointsin most of the proposals), and to certain types of spatiotemporal predicates(spatial
predicates andnearest neighborpredicates). The approach described in this paper, expresses and eval-
uates STP patterns that are neither restricted to certain types of moving objects, nor to certain types of
predicates. Our contributions are the following:

• The proposed approach is based on a very general and powerful class of predicates, the so-called
lifted predicates [19]. They are very powerful as they are simply the time dependent version of
arbitrary static predicates. Instead of returning abool value (like standard predicates) they return
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a moving(bool ) (time dependent booleans as defined later). Our approach allows one toformu-
late temporal constraints on the results of arbitrary expressions returningsuch moving booleans.
Formulating STP queries over lifted predicates allows for a wide range of queries that are not
addressed before.

• The proposed approach can be easily extended to support more complexpatterns. Section 6 de-
scribes one such extension.

• In contrast to previous work we are able to actually integrate STP queries into the query optimizer.
Obviously for an efficient execution of pattern queries on large databases the use of indexes is
mandatory. In Section 7 we consider how STP queries can be mapped by thequery optimizer to
efficient index accesses.

• We propose a simple language for describing the relationship between two time intervals (e.g.
Allen’s operators). The language makes it easier, from the user point of view, to express interval
relations without the need to memorize their names.

• The complete implementation of the work in this paper is done in the context of the SECONDO

platform [4]. It is publicly available as a SECONDO Plugin and can be downloaded from the
Plugins web site [1]. Parallel to this paper, we have written a user manual describing how to install
and run the Plugin within a SECONDOsystem.

• There are automatic scripts for repeating the experiments in this paper. Theyare installed during
the installation of the Plugin. Section 11 describes the procedure to repeat the experiments. The
scripts, together with the well documented source code provided in the Plugin, allow the readers
to explore our approach, further elaborate on it, and compare with other approaches.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3 gives
a brief background about the moving objects databases and recalls some necessary definitions from
previous work. In Section 4, we define the proposed language. Section5 formalizes the spatiotemporal
pattern predicate as a constraint satisfaction problem, and explains the evaluation algorithms. In Section
6, the basic spatiotemporal pattern predicate is extended into a more expressive version. In Section 7
we show how to integrate our approach seamlessely with the query optimizers.Section 8 is dedicated to
the technical aspects of the implementation in the SECONDO framework. The experimental evaluation
is shown in Section 9. In Section 10, we demonstrate two application examples that emphasize the
expressive power of our approach. Section 11 and the Appendices at the end of the paper describe the
experimental repeatability. Finally we conclude in Section 12.

2 Related Work

A theory and a design for spatiotemporal pattern queries, although important, are not yet well established.
Only few proposals exist. In [22], a model that relies on a discrete representation of the spatiotemporal
space is presented. The 2D space is partitioned in a finite set of user defined partitions, called zones, each
of which is assigned a label. The time domain is partitioned into constant-sized intervals. The trajectories
are represented as strings of labels. For example, the trajectory partrzzzhrepresents a moving object that
stayed in zoner for one time unit, moved to zonez and stayed there for three time units, then moved to
zoneh for one time unit. The user query is composed as a formal expression, which is then evaluated
using efficient string matching techniques.

This approach is not general in the sense that the space and time have to bepartitioned. The par-
titioning depends on the intended application and has to be done in advance. Moreover, only patterns
that describe the changes of the location of moving points can be expressed. The approach leaves behind
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all other kinds of predicates (e.g. topological, metric comparisons, ...) as wellas other types of moving
objects (e.g. moving regions).

In [20], an index structure and efficient algorithms to evaluate STP queries that consist of spatial and
neighborhood predicates is presented. The work addresses the problem of conjoint neighborhood queries
(e.g. find all objects that were as close as possible to A at timeT1 then were as close as possible to B at
timeT2). The two NN conditions in this query have to be evaluated conjointly. In otherwords, an object
which minimizes the sum of the two distances at the two time points is the answer of this query.

Again the approach addresses only limited types of predicates, and handles moving points only. It
tightly couples the evaluation of the predicates with the evaluation of the STP query itself. On the one
hand, this allows for efficient evaluation of the STP query. It also allows for the conjoint neighborhood
queries, which are not possible in our appraoch for example. On the other hand, it is very specific to
this set of predicates. In order to support other predicates and/or other data types, one has to find a way
to extend their evaluation algorithms. In the context of systems, a modular design that decouples the
predicate evaluation from the STP query evaluation would be preferred.

The series of publications [11], [12], [10], and [24] provide a concrete formalism for spatiotemporal
developments. A spatiotemporal development is a composite structure built as an alternating sequence of
spatiotemporal and spatial predicates, and they are themselves spatiotemporal predicates. They describe
the change, wrt. time, in the spatial relationship between two moving objects. Consider, for example, a
moving pointMP and a moving regionMR. The developmentMP Crosses MR is defined as:

Crosses= Disjoint meet Inside meet Disjoint

wheremeetis a spatial predicate that yields true when its two arguments touch each other,andDisjoint
is a spatiotemporal predicate that yields true when its two arguments are always spatially disjoint. The
spatiotemporal predicates, denoted by being capitalized, differ from the spatial predicates in that, the
former hold at time intervals while the later hold at instants. Spatiotemporal developments consider two
spatiotemporal objects and precisely describe the change in their topological relationship.

The spatiotemporal developments in their definition are not equivalent to spatiotemporal patterns, as
they can only describe the change in the topological relationship between twoobjects. This is not general
enough to describe STPs. A natural way of describing STPs would involve several interactions between
one trajectory and many other objects in the spatiotemporal space, as well asthe trajectory’s own motion
attributes (e.g. speed, direction, ...etc.).

Additionally, all the related works discussed above share two limitations. First,they do not address
issues of system integration and query optimization (e.g. SQL style syntax). Second, only sequential
patterns are allowed. A pattern is not allowed to include, for example, concurrent predicates. As shown
in the rest of this paper, our approach overcomes these limitations. Mainly, itis designed with expres-
siveness, system integration, and extensibility in mind.

3 Moving Objects Databases

In previous work [19], [13], and [8], a model for representing andquerying moving objects is proposed.
The work is based on abstract data types (ADT). Themovingtype constructor is used to construct the
moving counterpart of every static data type. Moving geometries are represented using three abstractions;
moving(point), moving(region) andmoving(line). Simple data types (e.g.integer , bool , real ) are also
mapped tomovingtypes. In theabstract model[19], moving objects are modeled as temporal functions
that map time to geometry or value. For example, moving points are modeled as curves in the 3D space
(i.e. time to the 2D space).

In [13] a discrete data model implementing the abstract model is defined. For all data types in the
abstract model, correspondingdiscretetypes whose domains are defined in terms of finite representations
are introduced. In the discrete model, moving types are represented by thesliced representation as units.
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Definition 1 A data typemoving(α) is a set of units. Every unit is a pair (I, Instant → α). The seman-
tic of a unit is that at any time instant during the intervalI, the value of the instance can be calculated
from the temporal functionInstant → α. Unit intervals are not allowed to overlap, yet gaps are possible
(i.e. periods during which the value of the object is undefined). ¤

The moving data types are denoted by appendingm to the standard type (e.g.mpoint denotes
moving(point)). Similarly, the unit types are denoted by appendingu. Thempoint , for example, is
modeled in the discrete model as a set ofupoints, each of which consists of a time interval and a line
function. This is illustrated in Figure 1. The coordinates of thempoint at any time instant within the
interval are obtained by evaluating the line function. Themovingtype constructor is similarly applied to
the scalar data types (e.g.real , string , bool ) [19]. A precise definition of thembool data type is given in
Section 4.

Figure 1: The sliced representation of anmpoint
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The model offers a large number of operations that fall into three classes:

1. Static operations over the non-moving types. Examples are the topologicalpredicates, set opera-
tions and aggregations.

2. Spatiotemporal operations offered for the temporal types (e.g. trajectory of anmpoint , area of an
mregion).

3. Lifted operations offered for combinations of moving and non-moving types. Basically they are
time dependent versions of the static operations.

Lifted operations are obtained by a mechanism calledtemporal lifting[19]. All the static operations
defined for non-moving types are uniformly and consistently made applicableto the corresponding mov-
ing types. For example, a static predicate and its corresponding lifted predicate are defined as follows.

Definition 2 A static predicateis a function with the signature

T1 × .... × Tn → bool

whereTi is a type variable that can be instantiated by any static/non-temporal data type (e.g. integer ,
point , region). ¤

Example: BrandenburgGateinsideBerlin.

Definition 3 A lifted predicateis a function with the signature

T1 × .... × Tk× ↑ Tk+1 × ...× ↑ Tn → mbool

where↑ is themovingtype constructor. A lifted predicate is, hence, obtained by allowing one or more of
the parameters of a static predicate to be of amovingdata type. Consequently, the return type is a time
dependent booleanmbool . ¤

Example: TrainRE1206insideBerlin.
Note thatinsidein this example is a lifted predicate because theTrain RE1206is a moving object. It is
therefore different from the standardinsidepredicate in the previous example.
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4 Spatiotemporal Pattern Predicates

The Spatiotemporal Pattern Predicate(STP predicate) is the tool that we propose for expressing STP
queries. It describes the pattern as a set oftime-dependent predicatesthat are fulfilled in a certain
temporal arrangement (e.g. a sequence). To motivate the idea of our design, consider the following
example:

Example: A query for possible bank robbers may look for the cars which entered a gas station, kept close
to the bank for a while, then drove away fast.

The query describes an STP consisting of three time-dependent predicates:car inside gas station, car
close to the bank, andspeed of car≥ 80 km/h. The predicates are required to be fulfilled in a sequential
temporal order.

We propose a modular language design of the STP predicate. It consists of two parts. The first
defines a special kind of predicates that accept moving object argumentsand report the time intervals,
during which they are fulfilled. The second part is to define a language for temporal constraints on the
predicate fulfillments.

Fortunately, thelifted predicates[19] in Definition 3 do exactly what is needed in the first part. Lifted
predicates yield objects of typembool , which tell about the time intervals of the predicate fulfillment.
Moreover, they are not restricted to certain data types of arguments nor tocertain types of operations.
Formulating the STP predicate on the top of the lifted predicates easily leverages a considerable part
of the available infrastructure. The temporal constraints, in the second part, enforce certain temporal
arrangements between thembool results of the lifted predicates.

We start here by a rough illustration. The details follow later in this section. Thebank robbers query
is written as follows:

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and

pattern([ c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 80000 as leaving],

[stconstraint(gas, bnk, vec(aabb)),
stconstraint(bnk, leaving, vec(abab, aa.bb, aabb)])

wherec.trip is anmpoint that stores the car’s trajectory. The STP predicate, denotedpattern in the
SQL-like syntax, includes a set of three lifted predicates:

c.trip inside l.region,
distance(c.trip, bank) < 50.0,
speed(c.trip) > 80000

having the aliasesgas, bnk, andleaving. The syntax of the STP predicate assignsaliasesfor the lifted
predicates, so that they can be referred to in the temporal constraints. This is analogous to the aliases
given to attributes and tables in the standard SQL. An alias of a lifted predicatecan be any valid unique
identifier. The STP predicate in this example includes two temporal constraints,denotedstconstraint
in the SQL-like syntax. Each constraint is stating a temporal relationship between two of the lifted
predicates (i.e. binary temporal constraints). The syntaxvec(.) states the temporal order between the
fulfillments of the two lifted predicates. Roughly speaking, the first temporal constraint states that the
car came close to the bank after it has left the gas station. The second constraint is a bit more tricky.
We wish to say that the car left the bank area quickly. This means that the carstarted fast, or may have
started normally and then sped up after a while. The three arguments to thevec(.) operator state these
three possibilities, as formalized later in this section.

Now we start the formal definition of the STP predicate. We first recall the definition of thembool

data type from [13]. LetInstantdenote the domain of time instants, isomorphic toR. Let IT be the set
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of possible time intervals, i.e:

IT = {(t1, t2, lc, rc)|t1, t2 ∈ Instant ,

lc, rc ∈ {false, true}, t1 < t2,

(t1 = t2) ⇒ lc = rc = true}

That is, a time interval can be left-closed and/or right-closed as indicated bythe values oflc andrc

respectively. It is also possible that the interval collapses into a single time instant, see [13]. Let the
domain ofBoolean Unitubool be:

UBool = {(i, u)|i ∈ IT , u ∈ {false, true}}

and the domain ofmbool is:

MBool = {U ⊂ UBool | ∀(i1, u1), (i2, u2) ∈ U :

(i) i1 = i2 ⇒ u1 = u2

(ii) i1 6= i2 ⇒ i1 ∩ i2 = ∅ ∧

i1 adjacenti2 ⇒ u1 6= u2}

wherei1 adjacenti2 :⇔ i1.t2 = i2.t1 ∧ (i1.rc ∨ i2.lc). This last condition ensures thembool objects
have a unique representation, the one with the minimum number of units.

Following we define a language for temporal relationships between pairs oftime intervals. It will
be the base for the temporal constraints between the lifted predicates inside the STP predicate. In the
temporal logic literature some studies define the relationships between pairs oftime intervals, and assign
them names (e.g. the 13 Allen’s operators [5]). Here we propose a language, instead of names. This is
because, in our case 26 such relationships are possible, which makes it difficult for a user to memorize
the names. Table 1 shows the 26 terms of this language, and a graphical illustration of each. In the terms,
the lettersaa denote the begin and end time instants of the first interval. Similarlybb are the begin and
end of the second interval. The order of letters describes the temporal relationship, that is, a sequenceab

meansa < b. The dot symbol denotes the equality constraint, hence, the sequencea.b meansa = b, and
a.a means that the start and the ends of the first interval are the same (i.e. the interval degenerates into a
time instant).

Formally, letIR be the set of interval relationships of Table 1, that is

IR = {aabb, abba, ..., a.a.b.b}

Let i1, i2 ∈ IT , ir = s1s2...sk ∈ IR (note that4 <= k <= 7, that is, the shortest term includes twoa’s
and twob’s, and the longest term includes additionally three dots),

Let rep(si) =































i1.t1 if si is the first a in ir

i1.t2 if si is the second a inir

i2.t1 if si is the first b in ir

i2.t2 if si is the second b inir

. if si = .

i1 and i2 fulfill s1s2...sk :⇔∀j ∈ {1, ..., k − 1} :

(i)sj 6= . 6= sj+1 ⇒ rep(sj) < rep(sj+1)

(ii)sj+1 = . ⇒ rep(sj) = rep(sj+2)
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Table 1: A language for expressing interval relationships
Term Illustration Term Illustration Term Illustration

Both arguments are intervals (Allen’s operators)
aabb aaaa abba aaaaaaaa bbaa aaaa

bbbb bbbb bbbb
a.bab aaaa aa.bb aaaa a.bba aaaaaaaa

bbbbbbbb bbbb bbbb
bb.aa aaaa baa.b aaaa abab aaaa

bbbb bbbbbbbb bbbb
aba.b aaaaaa baba aaaa a.ba.b aaaa

bbbb bbbb bbbb
baab aaaa

bbbbbbbb
The first argument is an instant

a.abb a bb.a.a a a.a.bb a
bbbb bbbb bbbb

bba.a a ba.ab a
bbbb bbbb

The second argument is an instant
b.baa aaaa aa.b.b aaaa b.b.aa aaaa

b b b
aab.b aaaa ab.ba aaaa

b b
Both arguments are instants

a.ab.b a b.ba.a a a.a.b.b a
b b b

Two time intervalsi1, i2 ∈ IT fulfill a setof interval relationships if they fulfill any of them, that is:

i1 and i2 fulfill SI ⊆ IR :⇔∃ ir ∈ SI : i1 and i2 fulfill ir

The vec(.) in the SQL-like syntax allows for composing suchSI subsets. For syntactic elegance,
one can assign names to them, and use the names in the queries. This is done using thelet statement as
follows:

let then = vec(abab, aa.bb, aabb);
let later = vec(aabb);

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and

pattern([c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 80000 as leaving],

[stconstraint(gas, bnk, later),
stconstraint(bnk, leaving, then])

That is,later andthencan hence be used inside thestconstraintoperator.
For ease of presentation, in the following we define the STP predicate within the relational data

model. The definitions can however be adapted easily to fit within other database models (e.g. object
oriented), thanks to the ADT modeling of the moving objects which does not depend on a particular
database model.

Let tupledenote a tuple type in the sense of the relational data model1. LetDtuple denote the domain

1Heretuple is viewed as a type variable that can be instantiated by any valid tuple type.
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of the tuples conforming to this type. Let the domain of the typembool be:

Dmbool = MBool

A time-dependent predicateis a function with signature:

tuple → mbool

hence it is a function

f : Dtuple → Dmbool

We denote a predicate with this signature asptuple, and a set of such predicates asPtuple when the tuple
type is relevant.

Note that the definition of atime-dependent predicateis more general than that of alifted predicate.
A lifted predicate also yields anmbool , but it must correspond to some standard static predicate, see
Definition 3. Formally, the STP predicate is composed of a set of time-dependent predicates, and a set
of temporal constraints, as shown later in this section. Throughout the text,however, we are often using
the termlifted predicateinstead of the more general termtime-dependent predicatebecause the former
seems more relevant from the user point of view. That is, users will be using lifted predicates to compose
their STP queries. This will become obvious from the many query examples in the rest of this paper.

Let Ptuple = {p1, ..., pn} be a set of time-dependent predicates. A temporal constraint onPtuple is
an element of the set:

TC(Ptuple) = {1..n} × {1..n} × P(IR)

Hence it is a binary temporal constraint, that assigns a pair of predicates inPtuple a set of interval
relationships. In the SQL-like syntax, the operatorstconstraintexpresses a temporal constraint. It accepts
three arguments: twoaliasesof time-dependent predicates, and a set of interval relationships composed
by thevec(.) operator.

Based on the above definitions, a spatiotemporal pattern predicate is definedas follows:

Definition 4 A spatiotemporal pattern predicate(STP predicate) is a pair (Ptuple, C), where
C ⊆ TC(Ptuple). ¤

In SQL, the operatorpatterndenotes the spatiotemporal pattern predicate. For an STP predicate to hold,
all the temporal constraints inC must be fulfilled. Formally it is as follows:

Let t ∈ Dtuple be a tuple andPtuple = {p1, ..., pn}, we denote bypk(t) the evaluation ofpk ∈ Ptuple

on t. Hencepk(t) ∈ MBool . We also define the set ofcandidate assignmentsCA(Ptuple, t) as:

CA(Ptuple, t) = ptrue
1 × ... × ptrue

n

whereptrue
k = {i|(i, true) ∈ pk(t)}. That is, theCA(Ptuple, t) is simply the Cartesian product of the

sets of time intervals during which the time-dependent predicates inPtuple are fulfilled with respect to
the tuplet.

Let ca = (i1, ..., in) ∈ CA(Ptuple, t) and letc = (j, k, SI) ∈ TC(Ptuple) be a temporal constraint

ca fulfills c :⇔ ij and ik fulfill SI

Let C ⊆ TC(Ptuple) be a set of temporal constraints, and lett ∈ Dtuple be a tuple. The set of
supported assignmentsof C is defined as:

SA(Ptuple, C, t) = {ca ∈ CA(Ptuple, t) | ∀ c ∈ C : ca fulfills c}

That is, for acandidate assignmentto be asupported assignment, it must fulfill all the constraints inC.
An STP predicate is fulfilled for a given tuple if and only if such a supportedassignment is found.
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Definition 5 A spatiotemporal pattern predicateis a function with the signaturetuple→ bool . Given a
tuplet of typetuple, its evaluation is defined as:

eval((Ptuple, C), t) = (SA(Ptuple, C, t) 6= ∅)

¤

5 Evaluating Spatiotemporal Pattern Predicates

The formalization of the STP predicate in the previous section maps pretty well into the well known
Constraint Satisfaction Problem (CSP). This section illustrates this mapping and the algorithms used to
evaluate the STP predicate.

Definition 6 Formally, aconstraint satisfaction problemis defined as a triple〈X, D, C〉, whereX is a
set of variables,D is a set of initial domains, andC is a set of constraints. Each variablexi ∈ X has a
non-empty domaindi ∈ D. CSP algorithms remove values from the domains during evaluation once it is
discovered that the values cannot be part of a solution. Each constraint involves a subset of variables and
specifies the allowable combinations of values for this subset. An assignmentfor a subset of variables
is supportedif it satisfies all constraints. A solution to the CSP is in turn asupported assignmentof all
variables. ¤

Recalling, from Definition 4, that the STP predicate contains the setPtuple = {p1, ..., pn} of time-
dependent predicates, a straight forward way to construct the setsX, D of the CSP is as follows:

1. For everypi ∈ Ptuple, define a variablexi with the same name as thealias of pi in the user query.
SetX := X ∪ xi.

2. Given a tuplet of typetuple, compute for everypi ∈ Ptuple its evaluationpi(t).

3. For everyptrue
ij ∈ ptrue

i , setDi := Di ∪ ptrue
ij .

That is, a CSP variable is created for every time-dependent predicate in the STP predicate. The aliases of
the lifted predicates, as specified in the user query, are used as the variable names. Theinitial domainof
every CSP variable is the set of time intervals during which the corresponding time-dependent predicate
is fulfilled. Finally the set of constraints in the CSP is the same as the set of constraints in the STP
predicate. As is shown next, this is not exactly how we map the STP predicate into a CSP. The main
difference is that the domains of the variables (i.e. the setD) are evaluated in a lazy fashion. Following,
we briefly discuss the known algorithms for solving CSPs. Later in this section, we will be proposing
another algorithm for evaluating the CSP that fits more with our approach.

A CSP having only binary constraints is calledbinary CSPand can be represented graphically in a
constraints graph. The nodes of the graph are the variables and the links are the binary constraints. Two
nodes are linked if they share a constraint. The neighborhood of a variable in the constraints graph are
all variables that are directly linked to it. The spatiotemporal pattern predicateis fulfilled if and only if
its corresponding CSP has at least one supported assignment.

CSPs are usually solved using variants of the backtracking algorithm. The algorithm is a depth-first
tree search that starts with an empty list of assigned variables and recursively tries to find a solution (i.e.
a supported assignments of all variables). In every call, backtracking adds a new variable to its list and
tries all the possible assignments. If an assignment is supported, a new recursive call is made. Otherwise
the algorithm backtracks to the last assigned variable. The algorithm runs inexponential time and space.

Constraint propagation methods [7] (also called local consistency methods) can reduce the domains
before backtracking to improve the performance. Examples are the ARC Consistency and Neighborhood
Inverse Consistency (NIC) algorithms. They detect and remove some values from the variable domains
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that cannot be part of a solution. Local consistency algorithms do not guarantee backtrack-free search.
To have the nice property of backtrack-free search one would need toenforcen-consistency (equivalent
to global consistency), which is again exponential in time and space.

The solvers for CSPs assume that the domains of the variables are known inadvance. This is,
however, a precondition that we wish to avoid. In the STP predicate, calculating the domain of a variable
is equivalent to evaluating the corresponding lifted predicate. Since this can be expensive, we wish to
delay the evaluation of the domains.

The proposed algorithmSolve Patternbelow tries to solve the sub-CSP ofk− 1 variables (CSPk−1 )
first and then to extend it toCSPk . Therefore, an early stop is possible if a solution to theCSPk−1

cannot be found. Which means that, in case no solution is found, the evaluation will be stopped as soon
as this is realized, without the uncessary evaluation of the remaining lifted predicates.

TheSolve Patternalgorithm uses three data structures: theSA list (for Supported Assignments), the
Agendaand theConstraint Graph. The Agenda keeps a list of variables that are not yet consumed by the
algorithm. One variable from the Agenda is consumed in every iteration. Every supported assignment
in theSA list is a solution for the sub-CSP consisting of the variables that have been evaluated so far.
In iterationk there arek − 1 previously evaluated variables and one newly evaluated variable (Xk with
domainDk). Every entry inSA at this iteration is a solution for theCSPk−1 . To extend theSA, the
Cartesian product ofSA andDk is calculated. Then only the entries that constitute a solution forCSPk

are kept inSA. CSPk is constructed using the consumed variables and their corresponding constraints
in the constraint graph.

Algorithm Solve Pattern
input: variables, constraints
output: whether the CSP consistent or not

1. Clear SA, Agenda and Constraint Graph

2. Add all variables to Agenda

3. Add all constraints to the Constraint Graph

4. WHILE Agenda not empty

(a) Pick a variable Xi from the Agenda

(b) Calculate the variable domain Di (i.e. evaluate the
corresponding lifted predicate)

(c) Extend SA with Di

(d) IF SA is empty return NotConsistent

5. return Consistent

Algorithm Extend
input: i, Di; the index and the domain of the newly evaluated variable

1. IF SA is empty

(a) FOREACH interval I in Di

i. INSERT a new row sa in SA having sa[i]= I and
undefined for all other variables

ELSE

(a) set SA = the Cartesian product SA × Di

(b) Construct the subgraph CSPk that involves the
variables in SA from the Constraint Graph.

(c) FOREACH sa in SA

i. IF sa does not satisfy the CSPk, remove sa from SA
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The methodology for picking the variables from the Agenda has a big effect on the run time. The
best method will choose the variables, so that inconsistencies are detectedsoon. For example, suppose
an STP predicate having four predicates with aliasesu, v, w, andx. The constraints are:

stconstraint(u, x, vec(abab)),stconstraint(v, x, later) , andstconstraint(w, x, vec(bb.a.a)).
If the variables are picked in sequential orderu, v, w, thenx, the space and time costs are the maximum.
Sinceu, v, andw are not connected by any constraints, theSA is populated by the Cartesian product of
their domains in the first three iterations. The actual filter toSA starts in the fourth iteration afterx is
picked.

The function that picks the variables from the Agenda chooses the variables according to their
connectivity rankin the Constraint Graph. The connectivity rank of a variable is the summation of
its individual connectivities in the Constraint Graph. If a given variable isconnected to an Agenda vari-
able with a constraint, it gets 0.5 connectivity score for this constraint. This means that evaluating this
variable contributes 50% in evaluating the constraint because the other variable is still not evaluated. If
the other variable in the constraint is a non-Agenda variable (i.e. a variablethat is already evaluated), the
connectivity score is 1. Back again to the example, in the first iteration, the variablesu, v, andw have
connectivity ranks of 0.5, whereasx has 1.5. Therefore,x is picked in the first iteration. In the second
iterationu, v, andw have equal connectivity ranks of 1, so the algorithm picks any of them.

This variable picking methodology tries to maximize the number of evaluated constraints in every
iteration with the hope that they filter theSA list and detect inconsistencies as soon as possible.

The time cost of theSolve Patternalgorithm is

n
∑

i=1

i
∏

k=1

dk × ek

wheren is the number of variables,dk is the number of values in the domain of thekth variable andek

is the number of constraints inCSPk . The storage cost is

n
∑

i=1

i
∏

k=1

dk

The algorithm runs inO(edn) and takesO(dn) space.
The exponential time and space costs are not prohibitive in this case. This isbecause the calculations

done within the iterations are simple comparisons of time instants. Moreover, the number of variables
in an STP query is expected to be less than 8 in the normal case. TheSolve Patternalgorithm is more
focused on minimizing the number of evaluated lifted predicates (statement 4.b ofthe algorithm). The
cost of evaluating the lifted predicates varies, but it is expected to be expensive because the evaluation
usually requires retrieving and processing the complete trajectory of the moving object. The run time
analysis of many lifted predicates is illustrated in [8].

6 Extending the Definition of the STP Predicates

Back to the example of bank robbers, a sharp eyed reader will notice thatthe provided SQL statement
can retrieve undesired tuples. Suppose that long enough trajectories are kept in the database. A car that
entered a gas station in one day, passed close to the bank in the next day, and in a third day sped up will
be part of the result. To avoid this, we would like to constrain the period between leaving the gas station
till speeding up to be at most 1 hour.

Indeed the proposed design is flexible so that such an extension is easy tointegrate. The idea is
that after the STP predicate is evaluated, theSA data structure contains all the supported assignments.
As illustrated before, a supported assignment assigns an interval to eachlifted predicate during which
it is satisfied. At the same time the interval values of all variables satisfy all the constraints in the STP
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predicate. Now that we know the time intervals, we can impose more constraints on them. For example,
we state that the period between leaving the gas station (first predicate) till speeding up (third predicate)
must be at most 1 hour.

The following describes formally an extended version of the STP predicatethat allows for such addi-
tional constraints. LetPtuple = {p1, ..., pn} be a set of time-dependent predicates, and letC ⊆ TC(Ptuple)
be a set of temporal constraints. Letg be a function:

g : In
T × Dtuple → Dbool

That is,g is a predicate that accepts a set ofn time intervals and atuple, and yields abool.
An extended STP predicate is defined as follows:

Definition 7 An extended spatiotemporal pattern predicateis a triple (Ptuple, C, g). Given a tuplet of
typetuple its evaluation is defined as:

eval((Ptuple, C, g), t) = ({sa ∈ SA(Ptuple, C, t)| g(sa, t) = true} 6= ∅)

¤

That is, the boolean predicateg is applied to the supported assignments inSA and to the input tuplet.
For theextended STP predicateto be fulfilled,g must be fulfilled at least once. The evaluation of the
extended STP predicate is, hence, done in two parts, that both must succeed. The first solves the STP
predicate(Ptuple, C) for the given tuplet, and the second part, which is processed only after the success
of the first part, evaluates the boolean predicateg for every supported assignment. Hence, conditions on
the list of supported assignmentsSA are possible.

Syntactically, the user is provided with two functionsstart(.) andend(.) that yield the start and end
time instants of the intervals in anSA element. The two functions are in the form:

f : In
T × {1, ..., n} → Instant

Given a supported assignmentsa ∈ SA and anindex, the two functions yield the start and the end time
instants of the time interval at this index insa.

Formally letsa = {i1, ..., in} ∈ SA(Ptuple, C, t).

start(sa, k) = ik.t1, and

end(sa, k) = ik.t2

where1 ≤ k ≤ n.
To implement the extension, step 5 in theSolve Patternalgorithm is changed toreturn SA. The

predicateg is then iteratively evaluated for the elements of theSA. The algorithm of evaluating the
extended STP predicate is not shown in the paper, because it is a trivial change for theSolve Pattern
algorithm.

The extended STP predicate is denotedexpatternin the SQL-like syntax. The bank robbers query is
rewritten using it as follows:

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and

patternex([c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[stconstraint(gas, bnk, later),
stconstraint(bnk, leaving, then],
start(leaving) - end(gas) < 1)
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where the additional conditionstart(leaving) - end(gas) < 1 ensures that the time period
between the car getting out from the gas station (i.e.end(gas)) till it starts leaving the bank area
(i.e. start(leaving)) is less than one hour. Note that in the SQL-like syntax, thestart, andend opera-
tors get the predicatealiases, rather their indexes as in the definition.

More complex conditions can be expressed. The time intervals can be used,for example, to retrieve
parts from the moving object trajectory to express additional spatial conditions. For example, the query
for possible bank robbers may more specifically look for the cars which entered a gas station, made a
round or more surrounding the bank, then drove away fast. To check that the car made a round sur-
rounding the bank, a possible solution is to check the part of the car trajectory close to the bank for self
intersection. The query may be written as follows

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and

patternex([c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[stconstraint(gas, bnk, later),
stconstraint(bnk, leaving, then],
isSelfIntersecting(
trajectoryPart(c.trip, start(bnk), end(bnk))) and

(start(leaving) - end(bnk)) < 1)

wheretrajectoryPartcomputes the spatial trajectory of the moving object between two time instants and
isSelfIntersectingchecks a line for self intersection.

7 Optimizing Spatiotemporal Pattern Predicates

In Section 5 we explained the evaluation of the spatiotemporal pattern predicate. The proposed algorithm
is efficient because it avoids the unnecessary evaluation of lifted predicates. In the context of large-scale
DBMS, this is not enough. Obviously for an efficient execution of patternqueries on large databases
the use of indexes is mandatory. It should be triggered by the query optimizer during the creation of the
executable plans.

In this section, we demonstrate a generic procedure for integrating the STPpredicate with query
optimizers. We do not assume a specific optimizer or optimization technique. The optimizer is however
required to have some basic features that will probably be available in any query optimizer. In the
following subsection, we describe these basic assumptions.

7.1 Query Optimization

A typical query optimizer contains two basic modules; therewriter and theplanner [21]. The rewriter
uses some heuristics to transform a query into another equivalent querythat is, hopefully, more efficient
or easier to handle in further optimization phases. The planner creates forthe user query (or the rewritten
version) the set of possibleexecution plans(possibly restricted to some classes of plans). Finally it
applies a selection methodology (e.g. cost based) to select the best plan.

We assume that the query optimizer contains the rewriter and the planner modules. We also assume
that it supports the data types and operations on moving objects, in SQL predicates as described in [19]
and [13].

7.2 Query Optimization for Spatiotemporal Pattern Predicates

One observation that we like to make clear is that the STP predicate itself does not process database
objects directly. Instead, the first operation applied is the evaluation of the lifted predicates that compose
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the STP predicate. The idea, hence, is to design a general framework for optimizing the lifted predicates
within the STP predicate. This framework should trigger the optimizer to use the available indexes
for the currently supported lifted predicates as well as for those that mightbe added in the future. It
should utilize the common index structures. Although specialized indexes, as in[20], can achieve higher
performance, the overhead of maintaining them within a system is high and theyonly serve specific
purposes, which makes them unfavorable in the context of systems.

The idea is to add each of the lifted predicates, in a modified form, as an extrastandard predicate
to the query, that is, a predicate returning a boolean value. The standardpredicate is chosen according
to the lifted predicate, so that the fulfillment of the standard predicate implies thatthe lifted predicate
is fulfilled at least once. This is done during query rewriting. The additional standard predicates in the
rewritten query trigger the planner to use the available indexes. To illustrate the idea, the following query
shows how the bank robbers query in Section 4 is rewritten.

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and

pattern([c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[stconstraint(gas, bnk, later),
stconstraint(bnk, leaving, then])
and
c.trip passes l.region and
sometimes(distance(c.trip, bank) < 50.0) and
sometimes(speed(c.trip) > 100000)

The three lifted predicates in the STP predicatex inside y, distance(x, y) < z, and
speed(x) < y are mapped to the standard predicatesx passes y, sometimes(distance(x,
y) < z), andsometimes(speed(x) < y), respectively. Heresometimes(.) is a predicate that
accepts anmbool and yields true if the argument ever assumes true during its lifetime, otherwise false.
Each of the standard predicates ensures that the corresponding lifted predicate is fulfilled at least once, a
necessary but not sufficient condition for thepatternpredicate to be fulfilled. Clearly, the rewritten query
is equivalent to the original query.

The choice of the standard predicate depends on the type of the lifted predicate and the types of the
arguments. For example, the lifted spatial range predicates (i.e. the spatial projection can be described
by a box) are mapped into thepassesstandard predicate. The passes predicate [19], in this example, is
fulfilled if the carc.trip ever passed the gas stationl.region. If passesfails, then we know that
insideis never true and thatpatternwill also fail. The planner should have for the added passes predicate
already some optimization rule available (e.g. use a spatial R-tree index when available). In Section 9.2.2
we show an optimized query written in the SECONDOexecutable language.

To generalize this solution, we define a table of mappings between the lifted predicates (or groups of
them) and the standard predicates. Clearly, this mapping is extensible for the lifted predicates that can
be introduced in the future. The mapping for the set of lifted predicates proposed in [19] is shown in
Table 2.

For the lifted spatial range predicates, they map intopassesand the available translation rules for
passes do the rest. Thedistance(x, y) < z is conceptually equivalent to a lifted spatial range predicate,
where the spatial range is the minimum bounding box of the static argument extended byz in every side.
Other types of lifted predicates are mapped intosometimes. We need to provide translation rules that
translatesometimes(.) into index lookups. For every type of lifted predicates, one such translation rule
is required. For example, thesometimes(Pred), wherePred is a lifted left range predicate, searches for a
B-tree defined on the units of the moving object, and performs a left range search in the B-tree. We show
examples for these translation rules within SECONDO in Section 8.2.

15



Table 2: Mapping lifted predicates into standard predicates.
Lifted Predicates Type Standard Predicates

σ = α lifted spatial σ passesα
mpoint × point → mbool range
mregion × region → mbool

σ insideα

mpoint × region → mbool

mpoint × points → mbool

mpoint × line → mbool

mregion × region → mbool

mregion × points → mbool

mregion × line → mbool

σ intersectsα

mregion × points → mbool

mregion × region → mbool

mregion × line → mbool

σ = α lifted equality sometimes(σ = α)
mint × int → mbool

mbool × bool → mbool

mstring × string → mbool

mreal × real → mbool

σ <= α, σ < α lifted left sometimes(σ <= α),
mint × int → mbool range sometimes(σ < α)
mbool × bool → mbool

mstring × string → mbool

mreal × real → mbool

σ >= α, σ > α lifted right sometimes(σ >= α),
mint × int → mbool range sometimes(σ > α)
mbool × bool → mbool

mstring × string → mbool

mreal × real → mbool

distance(σ , α) < threshold lifted spatial σ passesenlargeRect(bbox(α), threshold, threshold)
mpoint × region → mreal range
mpoint × point → mreal

mregion × point → mreal

mregion × region → mreal

Other lifted predicates,P sometimes(P )

This two steps optimization helps develop a general framework for optimizing thesometimes(.) pred-
icate, which may also appear directly in the user queries. Note that we can alternatively rewrite all lifted
predicates intosometimes(.), and provide translation rules accordingly. It remains an implementation
decision, which approach to use.

8 The Implementation in SECONDO

SECONDO [4], [16], [17] is an extensible DBMS platform that does not presume a specific database
model. Rather it is open for new database model implementations. For example, itshould be possible to
implement relational, object-oriented, spatial, temporal, or XML models.

SECONDO consists of three loosely coupled modules: the kernel, GUI and query optimizer. The
kernel includes the command manager, query processor, algebra manager and storage manager. The
kernel may be extended by algebra modules. In an algebra module one candefine new data types and/or
new operations. The integration of the new types and/or operations in the query language is then achieved
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by adding syntax rules to the command manager.
The SECONDOkernel accepts queries in a special syntax called SECONDOexecutable language. The

SQL-like syntax is provided by the optimizer. For more information about SECONDO modules see [4]
and [3]. For more information about extending SECONDOsee the documentation on [2].

If it is the case that a new data type needs a special graphical user interface (GUI) for display, the
SECONDO GUI module is also extensible by adding viewer modules. Several viewers exist that can
display different data types. Moving objects, for example, are animated in the Hoeseviewer with a time
slider to navigate forwards and backwards.

A large part of the moving objects database model presented in [19], [13], [8], that we also assume
in the paper, is realized in SECONDO. That is, the current SECONDOversion 2.9.1 includes the algebra
modules, the viewer modules, and the optimizer support for moving objects. Inthe following subsec-
tions, we describe the implementation of the STP predicate in SECONDO2.9.1. This implementation is
available as a SECONDOPlugin as explained in Section 11.

8.1 Extending the Kernel

We have implemented the STP predicate in the SECONDOkernel in a new algebra module calledSTPat-
ternAlgebra. The algebra contains:

1. One data typestvector. The class represents a set of interval relationships as defined in Section 4.
The SECONDO operatorvec is used to create anstvectorinstance. The operator accepts a set of
strings from Table 1, and constructs thestvectorinstance accordingly.

Example:vec("aabb", "a.abb", "a.a.bb").

2. Thestconstraintoperator. The operator represents a temporal constraint within the STP predicate.
The signature of the operator is:

string × string × stvector → bool

The first and second parameters are the aliases for two lifted predicates.

Example:stconstraint("predicate1", "predicate2", vec("a.a.bb")).

3. Thestpatternoperator. The operator implements the STP predicate. It has the signature:

tuple×AliasedPredicateList × ConstraintList → bool

where theAliasedPredicateList is a list of time-dependent predicates, each of which has an
alias, and theConstraintList is a list of temporal constraints (i.e. a list ofstconstraint opera-
tors).

4. Thestpatternexoperator. The operator implements the extended STP predicate, Section 6. It has
the signature:

tuple×AliasedPredicateList × ConstraintList× bool → bool

5. Thestart(.) and theend(.) operators, described in Section 6. They accept astring representing a
predicate alias and return the start/end of the corresponding time interval. The operators have the
signature:

string→ instant

Using these operators, the query for bank robbers can be written in SECONDO executable language
as follows:

17



query cars feed {c}
landmark feed {l}

filter[.type l = "gas station"]
product
filter[.

stpatternex[gas: .trip c inside .region l,
bnk: distance(.trip c, bank) < 50.0,
leaving: speed(.trip c) > 100000;

stconstraint("gas", "bnk", vec("aabb")),
stconstraint("bnk", "leaving", vec("abab", "aa.bb", "aabb"));

duration2real(start("leaving") - end("gas")) < (1/24) ]]
consume

wherefeedis a postfix operator that scans a relation sequentially and converts it into a stream of tuples.
The query performs a cross product between the tuples of thecars relation and the tuples oflandmark
relation that has the value“gas station” in their typeattribute. The resulting tuple stream after the cross
product is filtered using the extended STP predicatestpatternex. Finally, theconsumeoperator converts
the resulting tuple stream into a relation, so that it can be displayed.

8.2 Extending the Optimizer

The SECONDOoptimizer is written in Prolog. It implements an SQL-like query language which is trans-
lated into an optimized query in SECONDO executable language. The SECONDO optimizer includes a
separate rewriting module that can be switched on and off by setting the optimizer options. The plan-
ner implements a novel cost based optimization algorithm which is based onshortest path search in a
predicate order graph. The predicate order graph (POG) is a weighted graph whose nodes represent
sets of evaluated predicates and whose edges represent predicates,containing all possible orders of pred-
icates. For each predicate edge from nodex to nodey, so-called plan edges are added that represent
possible evaluation methods for this predicate. Every complete path via plan edges in the POG from the
bottom-most node (i.e. zero evaluated predicates) till the top-most node (i.e. all predicates evaluated)
represents a different execution plan. Different paths/execution plans represent different orderings of the
predicates and different evaluation methods. The plan edges of the graph are weighted by their estimated
costs, which in turn are based on given selectivities. Selectivities of predicates are either retrieved from
prerecorded values, or estimated by sending selection or join queries on small samples of the involved
relations to the SECONDOkernel and reading the cardinality of the results. The algorithm is described in
more detail in [17] as well as in the SECONDOprogrammers guide [2].

Our extension to the optimizer has three major parts: query rewriting, operator description, and
translation rules. In the query rewriting, we choose to rewrite all the lifted predicates intosometimes(.).
This is because an accurate rewriting based on the mapping in Table 2 requires that we know the data
types of the arguments. The SECONDOoptimizer knows the data types only after query rewriting is done.

Following are the Prolog rules that do the rewriting:

inferPatternPredicates([], []).

inferPatternPredicates([Pred|Preds],
[sometimes(Pred)|Preds2] ):-

assert(removefilter(sometimes(Pred))),
inferPatternPredicates(Preds,Preds2).

where theinferPatternPredicateaccepts the list of the lifted predicates within the STP predicate as a
first argument, and yields the a list of rewritten predicates in the second argument. The additionalsome-
times(.) predicates are kept in the tableremovefilter(.), so that it is possible to exclude them from
the executable plan afterwards.
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In the operator descriptions, we annotated the lifted predicates by their types (e.g. lifted left range)
as in Table 2. Then we provided translation rules forsometimes(.) for every type of lifted predicates.
Following is an example for such a rule:

indexselectLifted(arg(N), Pred ) =>
gettuples(rdup(sort(windowintersectsS(
dbobject(IndexName), BBox))), rel(Name, *))

:-
Pred =..[Op, Arg1, Arg2],
((Arg1 = attr(_, _, _), Attr= Arg1) ;
(Arg2 = attr(_, _, _), Attr= Arg2)),
argument(N, rel(Name, *)),
getTypeTree(Arg1, _, [_, _, T1]),
getTypeTree(Arg2, _, [_, _, T2]),
isLiftedSpatialRangePred(Op, [T1, T2]),
(
( memberchk(T1, [rect, rect2, region, point, line, points, sline]),
BBox= bbox(Arg1)

);
( memberchk(T2, [rect, rect2, region, point, line, points, sline]),
BBox= bbox(Arg2)

)
),
hasIndex(rel(Name, _), Attr, DCindex, spatial(rtree, unit)),
dcName2externalName(DCindex, IndexName).

where this rule translates thelifted spatial rangepredicates into an R-tree window query, as indicated in
the rule header. The=> operator can be read astranslates into. It means that the expression to the right
is the translation of the expression to the left, if the conditions in the rule body hold. The body of the
rule starts by inferring the types of the arguments of the lifted predicate within thesometimes(.). Then
it uses them to make sure that the predicate is of the typelifted spatial range. Finally, it checks whether
a spatial R-tree index on the involved relation and attribute is available in the catalog. It tries to find a
spatial R-tree built on the units of the moving object. Similar translation rules are provided for other
types of indexes. The optimized query in Section 9.2.2 shows the effect of these translation rules.

9 Experimental Evaluation

We proceed with an experimental evaluation of the proposed technique. The intention is to give an insight
into the performance. It is clear that the runtime of an STP predicate depends on the number and types
of the lifted predicates. Therefore, we show three experiments. The first measures only the overhead of
evaluating the spatiotemporal pattern predicate. That is, we set the time of evaluating the lifted predicates
to negligible values.

In the second experiment, we generate random STP predicates with varying numbers of lifted pred-
icates and constraints and measure the run time of the queries. The experiment also evaluates the opti-
mization of STP predicates. Every query is run twice; once without invokingthe optimizer, and another
time with the optimizer being invoked.

The third experiment is dedicated to evaluate the scalability of the proposed approach. It mainly
evaluates the proposed optimization approach in large databases. A random set of queries is generated
and evaluated againest relations of cardinalities 50,000, 100,000, 200,0000, and 300,000, where the
trajectories are indexed using the traditional RTree index.

The first two experiments use theberlintestdatabase that is available with the free distribution of
SECONDO. The last experiment uses theBerlinMOD benchmark [9] to generate the four relations. The
benchmark is available for download on [4]. The three experiments are run on a SECONDO platform
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installed on a Linux machine. The machine is a Pentium-4 dual-core 3.0 GHz processor with 2 GBytes
main memory.

9.1 The Overhead of Evaluating STP predicates

To perform the first experiment, we add two operators to SECONDO; randommboolandpassmbool. The
operatorrandommboolaccepts aninstant and creates anmbool object whose definition time starts at the
given time instant, and consists of a random number of units. The operatorpassmboolmimics a lifted
predicate. It accepts the name of anmbool database object, loads the object and returns it. More details
are given below.

9.1.1 Preparing the Data

This section describes how the test data for the first experiment is created. Therandommbooloperator
is used to create a set of 30 randommbool instances and store them as database objects. The operator
createsmbool objects with a random number of units varying between 0 and 20. The first unit starts
at the time instant provided in the argument. Every unit has a random durationbetween 2 and 50000
milliseconds. The value of the first unit is randomly set totrue or false. The value of every other unit
is the negation of its preceding unit. Hence, the minimal representation requirement [13] of the moving
types in SECONDO is met. That is, adjacent units can not be further merged because they have different
values.

The 30mbool objects are created by callingrandommbool(now()) 30 consecutive times. This
increases the probability that the definition times of the objects temporally overlap.

9.1.2 Generating the Queries

The queries of the first experiment are selection queries consisting of one filter condition in the form
of an STP predicate. The queries are generated with different experimental settings, that is, different
numbers of lifted predicates and constraints in the STP predicate. The number of lifted predicates varies
between 2 and 8. The number of constraints varies between 1 and 16. Thequeries are not generated
for every combination. For example, it does not make sense to generate STP predicates with 2 lifted
predicates and 10 constraints. ForN lifted predicates, the number of constraints varies betweenN − 1
and2N . The rationale of this is that, if the number of constraints is less thanN − 1, then the constraint
network can not be complete (i.e. some predicates are not referenced within constraints). On the other
hand, having more than2N constraints increases the probability of contradicting constraints. For every
experimental setting, 100 random queries are evaluated and the averagerun time is recorded.

A query with 3 lifted predicates and 2 constraints, for example, looks like:

query thousand feed
filter[.
stpattern[a: passmbool(mb5),
b: passmbool(mb13),
c: passmbool(mb3);

stconstraint("b", "a", later),
stconstraint("b", "c", vec("abab") ]]

count

wherequery thousand feed streams thethousandrelation, which contains 1000 tuples. For every
tuple, the STP predicatestpatternis evaluated. Note that the predicate does not depend on the tuples.
That is, the same predicate is executed 1000 times in the query. This is to minimize theeffect of the
time taken by SECONDO to prepare for query execution. The lifted predicates are all in the form of
passmbool(X), whereX is one of the 30 stored randommbool objects.
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The constraints are generated so that the constraint graph is complete. Westart by initializing a set
calledconnectedhaving one randomly selected alias. For every constraint, the two aliases are randomly
chosen from the set of aliases in the query, so that at least one of them belongs to the setconnected. The
other alias is added to the setconnectedif it was not already a member. After the required number of
constraints is generated, we check the completeness of the graph. If it is not complete, the process is
repeated till we get a connected graph. The temporal connector for every constraint is randomly chosen
from a set containing 31 temporal connectors namely, the 26 simple temporal connectors in Table 1 and
5 vector temporal connectors (later, follows, immediately, meanwhile, and then) (shown in Appendix A).

Before running the queries, we query for the 30mbool objects so that they are loaded into the
database buffer. The measured run times should, hence, show the overhead of evaluating the STP predi-
cates in SECONDObecause other costs are made negligible.

9.1.3 Results

The results are shown in Figure 2. The number of lifted predicates is denoted asN . Increasing the
number of lifted predicates and constraints in the STP predicate does not have a great effect on the run
time. This is a direct result of the early pruning strategy in theSolve Patternalgorithm. The results show
that the evaluation of STP predicate is efficient in terms of run time.
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Figure 2: The overhead of evaluating STP predicates

9.2 STP Queries with Optimization

The second experiment is intended to evaluate the run time of STP queries. Italso evaluates the effect
of the proposed optimization. Unlike the first experiment, the STP predicates inthis experiment contain
lifted predicates. We generate 10 random queries for every experimental setting and record the average
run time. Every query is run twice; without being optimized, and after optimization.

9.2.1 Preparing the Data

The queries use theTrains20relation. It is generated by replicating the tuples of theTrains relation in
theberlintestdatabase 20 times. TheTrains relation was created by simulating the underground trains
of the city Berlin. The simulation is based on the real train schedules and the real underground network
of Berlin. The simulated period is about 4 hours in one day. The schema ofTrains20is similar toTrains
with the additional attributeSerial:

Trains20[Serial:int , Id: int , Line: int , Up: bool , Trip: mpoint ]
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where Trip is anmpoint representing the trajectory of the train. The relation contains 11240 tuples and
has a disk size of 158 MB. To evaluate the optimizer, a spatial R-tree index called Trains20Trip sptuni
is built on the units of the Trip attribute. A set of 300 points is also created to be used in the queries. The
points represent geometries of the top 300 tuples in theRestaurantsrelation in theberlintestdatabase.

9.2.2 Generating the Queries

The queries are generated in the same way as in the first experiment. In this experiment, however, we
use actual lifted predicates instead ofpassmbool. Every lifted predicate in the STP predicate is randomly
chosen from

1. distance(trip,randomPoint) < randomDistance.

2. speed(trip)> randomSpeed.

whererandomPointis apoint object selected randomly from the 300 restaurant points,randomDistance
ranges between 0 and 50, andrandomSpeedranges between 0 and 30. Thedistance(., .) < . is a sample
for the lifted predicates that can be mapped into index access, so that we can evaluate the optimizer.
While the queries in the first experiment are created directly in the SECONDOexecutable language, they
are created here in SECONDOSQL. It is an SQL-like syntax that looks similar to the standard SQL, but
obeys Prolog rules. The main differences are that everything is written in lower case, and lists are placed
within square brackets.

Here is one query example from the generated queries:

SELECT count(*)
FROM trains20
WHERE pattern([ distance(trip, point170) < 18.0 as a,

speed(trip) > 11.0 as b],
[stconstraint("a", "b", vec("b.ba.a"))])

wherepattern is the SQL operator equivalent tostpatternin the executable language. The rewritten
version of the query as generated by the rewriting module of the SECONDOoptimizer is:

SELECT count(*)
FROM trains20
WHERE [ pattern([ distance(trip, point170) < 18.0 as a,

speed(trip) > 11.0 as b],
[stconstraint("a", "b", vec("b.ba.a"))]),

sometimes(distance(trip, point170) < 18.0),
sometimes(speed(trip) > 11.0)]

Finally, the optimal execution plan is:

Trains20 Trip sptuni
windowintersectsS[ enlargeRect(bbox(point170), 18.0, 18.0)]
sort rdup Trains20 gettuples

filter[sometimes((distance(.Trip,point170) < 18.0))]
{0.00480288, 1.69712}
project[Trip]
filter[. stpattern[ a: (distance(.Trip, point170) < 18.0),

b: (speed(.Trip) > 11.0);
stconstraint("a", "b", vec("b.ba.a"))]]

{0.00480288, 1.49038}
filter[sometimes((speed(.Trip) > 11.0))]
{0.883731, 1.48077}

count
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where the predicates are placed within thefilter[] operator, which means that they belong to thewhere
clause in SQL. The rewriter generates for the two lifted predicates in the original query two standard
sometimespredicates. The predicatesometimes( distance(., .) < .) is handled by the optimizer as a
special kind of range predicate. Since the optimizer can find the spatial R-tree index that we created, it
is used. The index access part in the query is:

Trains20 Trip sptuni windowintersectsS[enlargeRect(., ., .)]

This part expands the minimum bounding box ofpoint170by the distance threshold value 18.0. The
enlarged box is intersected with the R-tree to get the candidate tuple id’s. Therest of the query retrieves
the data of the candidate tuples and performs the query. The pairs of numbers between the curly brackets
do not affect the semantics of the query. They are estimated predicate selectivities and run time statistics
used to help estimate the query execution progress.

9.2.3 Results

In Figure 3, the chart to the left shows the average run times of the non-optimized STP queries. The chart
to the right shows the average run times of their optimized counterparts. TheN is again the number of
lifted predicates. The run times of the optimized STP predicates are very promising.
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Figure 3: The run times for STP queries on theTrains20relation

The high peak in the optimized queries chart atN = 2 and Number of Constraints = 2is be-
cause it happened that five of the ten generated queries have onlyspeed(.) < . predicates. Since the
sometimes(speed(.) < .) predicate does not map into index access, the average run time for this experi-
mental setting is close to the non-optimized version.

9.3 Scalability Experiment

This experiment evaluates the performance of the proposed approach inlarge databases. As shown in
Section 7.2, the optimization of the STP predicate is carried out without specialindex structures, which
is practically preferred in the context of systems. It remains however questionable, how far are the
traditional indexes (e.g. RTrees) effective for such a type of queries. This experiment tries to answer this
question.

Obviously if all the lifted predicates within the STP predicate in a given query are not supported by
the indexes in the database system, then one is out of luck, and the STP predicate will be evaluated for
every tuple. Therefore, in this experiment, we compose the STP predicatesby lifted predicates that are
supported by index structures available in SECONDO.
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9.3.1 Generating the Data

The data for this experiment is generated using theBerlinMOD benchmark [9]. It simulates an arbitrary
number of cars moving in the city Berlin. The scenarios of the trips are quite realistic, simulating the
trips to and from the work place, and the leasure time trips. The benchmark is downloadable from the
SECONDO web site [4]. The trajectory data is generated by running SECONDO scripts. It is possible to
control the number of cars, and the number of observation days by editinga configuration file.

For this experiment, we have generated the four relations described in Table 3. The table shows for
every relation the number of cars/trajectories, the number of simulation days,the number of units of all
trajectories, and the storage space of the relation. The number of units is analogous to the total number
of observations of all cars, in the discrete sense. Note that in this moving objects model, the trajectories
are continuous. That is, the locations of the cars between any two consecutive observations are linearly
interpolated. The generation of the four relations using theBerlinMODbenchmark took about 5 days on
the machine described in Section 9.

Table 3: The Database Relations Used In The Scalability Experiment
Relation
Name

Number of Cars Duration Number of Units Size

datascar50 50,000 1 day 64,331,426 9.1 GB
datascar100 100,000 1 day 128,437,840 18.2 GB
datascar200 200,000 1 day 256,373,737 36.3 GB
datascar300 300,000 1 day 384,923,972 54.5 GB

For each of the four relations, a spatial RTree index is derived for thetrip attribute. The RTree
contains the bounding boxes of theunitsof theTrip attribute, which are of typeupoint .

9.3.2 Generating the Queries

The BerlinMOD benchmark generates for every car up to five trips in a working day. Two of them go
to and from the work place, and the other three trip are leasure time trips in the afternoon/evening. The
leasure time destinations are randomly chosen from theneighborhoodof the car’s home location with
a probability of 80%, and from the whole map with a probability of 20%. We use this information to
design the experiment queries.

For each of the four relations in this experiment, a set of 10 queries is randomly generated. Each of the
queries randomly picks a car, and retrieves its home location and threelocationsfrom its neighborhood,
call thematmmachine, supermarket, andbakeryfor example. The query looks for the cars that made a
leasure time trip starting from the locationhome, and passing by the locationsatmmachine, supermarket,
andbakeryin order. Since the locations are chosen from the neighborhood of an existing car, there is
some probability that the cars will fulfill the pattern. A sample query for the relation datascar300looks
as follows:

SELECT count(*)
FROM datascar300 c
WHERE [ pattern([ c.trip = home as pred1,

c.trip = atmmachine as pred2,
c.trip = supermarket as pred3,
c.trip = bakery as pred4],

[stconstraint("pred1", "pred2", later),
stconstraint("pred2", "pred3", later),
stconstraint("pred3", "pred4", later)])

]

wherehomeis the home location of the car, and the= lifted predicate is fulfilled in the time instants/inter-
vals when its two arguments have the same spatial coordinates. Ten such queries are randomly generated
for every relation. The next subsection shows the average runtimes.
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9.3.3 Results

In this experiment, we switch on the optimizer. Since the= lifted predicates in the queries belong to
the lifted spatial rangepredicates, as shown in Table 2, the optimizer generates execution plans that use
the RTree indexes, that are generated during the data generation. Figure 4 shows the average runtimes.
These results conclude two points:

• Taking into consideration the large relation sizes as shown in Table 3, and themoderate machine
specifications described in Section 9, the average runtimes are cheap regarding such complex query
type. To be able to compare, we measured the average runtime of an optimized spatiotemporal
range query on the 300,000 relation, and it shows 20 seconds. This is in comparison to an average
of 28.6 seconds for the STP query. This confirms that the proposed optimization approach works
fine without the need for specialized index structures.

• The runtime seems to scale linearly with the relation size. This is already expectedsince the STP
predicate is applied to every tuple in the input (i.e. the tuples retrieved after theindex access). Note
that the BerlinMOD benchmark generates all the trips within the limited spatial space of the city
Belrin. A larger number of cars in the simulation implies that the window queries onthe RTree
index yield more candidates.
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Figure 4: Scalability results

To sum things up, the scalability of the STP queries as proposed in this paperis affected by four
parameters:

1. The number of lifted predicates in the STP predicate.

2. The number of the temporal constraints in the STP predicate.

3. The number of input tuples/trajectories.

4. The length of the trajectories in terms of number of units.

The scalability in terms of the first three parameters is evaluated already in the three experiments in this
paper. The last parameter, the length of trajectories, affects the evaluation time of the STP predicate
indirectly as it affects the evaluation time of the lifted predicates. This is because the lifted predicates are
evaluated for the complete trajectory. When the trajectories are long (e.g. several weeks of observation
time), the cost of evaluating the lifted predicates increases accordingly. The majority of them scale
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linearly with the number of units in the trajectory. More about the lifted predicateevaluation algorithms
can be found in [8].

In the STP predicate, the temporal constraints impose a certain temporal order between the lifted
predicates. While evaluating the STP predicate, one gets temporal informationfrom the lifted predicates
evaluated so far. A proper analysis of this information can identify parts ofthe trajectory that can be
safely ignored while evaluating other lifted predicates. In future work we plan to study how to utilize
this information. Roughly, one would need to redefine the lifted predicates, so that they process the
trajectory parts upon request (e.g. in a stream fashion) rather than the whole trajectory.

10 Application Examples

To illustrate the expressive power of the proposed approach, we present in the following two subsections
more examples for STP queries. Section 10.1 demonstrates a scenario calledFinding Ali. It is about a
kid called Ali, who moves on the street network of Cairo (the capital of Egypt). He makes several trips
riding in several cars. We want to query for these cars using their movement profiles.

In Section 10.2, we demonstrate example queries that the reader can try himself/herself in SECONDO.
The queries are based on theberlintestdatabase, that is available with the SECONDOdistribution. Unlike
the first application, the queries are not linked to a single scenario. Hencewe can demonstrate STP
queries that involve moving points, moving regions, and many kinds of lifted operations.

10.1 Finding Ali

We assume that the road network of Cairo is observed for one month and that the complete trajectories
of the cars are stored in the database. The queries assume the following schema:

• Car[PlatesNumber:string , Trip: mpoint ] where Trip is the complete trajectory of the car for the
whole observation period.

• Landmark[Name:string , Type:string , Location:point ]

• Heliopolis: A region object marking the boundary of the districtHeliopoliswhere Ali lives.

• AliHome: A point object marking Ali’s home.

• FamilyHome: Apoint object marking the house of the father’s family.

• SportsClub: Aregion object marking the boundary of the sports club in which Ali is a member.

10.1.1 The Go-to-school Trips With the School Bus

The bus starts at the school at 6:00 am - 6:30 am, enters the district Heliopolis at 6:45 am - 7:00 am,
stops near Ali’s home, picks Ali, exits Heliopolis at 7:45 am - 8:00 am, then goes back to school.

This query can be written without a spatiotemporal pattern predicate. The spatiotemporal window
of every predicate is known. It can be expressed as a conjunction of 5spatiotemporal range predicates
(Bus inside School at the time interval [6:00, 6:30] AND Bus inside Heliopolis at the time interval
[6:45, 7] ...). We include this as an example of spatiotemporal pattern queries that can be expressed
without STP predicates.

10.1.2 The Evening Trips With Grandfather

Starting from Ali’s home, the grandfather drives Ali to the sports club. They stop at the sports club for at
least two hours. After the club they go by car to buy some bread, then backhome.
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SELECT c.PlatesNumber
FROM Car c, Landmark l
WHERE l.Type like("%Bakery%") and

patternex([distance(c.Trip, AliHome) < 20.0 as AtHome,
c.Trip inside SportsClub as AtClub,
distance(c.Trip, l.Location) < 20.0 as AtBakery,
distance(c.Trip, AliHome) < 20.0 as BackHome],

[AtHome later AtClub,
AtClub later AtBakery,
AtBakery later BackHome],

end("AtClub") - start("AtClub") >= 2.0 and
daypart(AtHome) = daypart(BackHome))

In this query, the extended STP predicate is used to state that they stayed atleast two hours in the
sports club and that the whole pattern occurred in one day. Another note isthat the query uses the
predicatedistance(c.Trip, AliHome) < 20.0 twice with two different aliases. The two
aliases are needed to write the constraints. It is the responsability of the query optimizer to detect this
common predicate (i.e. using common sub-expression optimization techniques) and evaluate it only
once.

10.1.3 The Weekend Trips With Mother

The mother starts from Ali’s home, drives only in main roads, stops near a shopping mall for at most
4 hours then back home. The trip to the mall takes more than 1.5 times the estimated time because the
mother uses only main roads. In Cairo it is easier to drive in main roads but they have high traffic.

SELECT c.PlatesNumber
FROM Car c, Landmark l
WHERE l.Type like("%Mall%") and

patternex([distance(c.Trip, AliHome) < 20.0 as AtHome,
distance(c.Trip, l.Location) < 40.0 as AtMall,
distance(c.Trip, AliHome) < 20.0 as BackHome],

[AtHome later AtMall,
AtMall later BackHome],

end("AtMall") - start("AtMall") <= 4.0 and
(start("AtMall") - end("AtHome") >
1.5 * EstimatedDriveTime(l.location, AliHome) ))

where we assume for simplicity thatEstimatedDriveTimeis a function that computes the normal period
that a drive between two places takes. It may do so by finding the shortestpath and multiply by the
average driving speed.

10.2 The Berlintest Example

In this example, we use the databaseberlintest, more specifically, theTrains relation and three newly
added relations with the following schemas:

SnowStorms[Serial:int , Storm:mregion]
TrainsMeet[Line:int , Uptrip: mpoint , Downtrip: mpoint , Stations:points]
TrainsDelay[Id:int , Line: int , Actual: mpoint , Schedule:mpoint ]
TheSnowStormsrelation contains 72 tuples, each of which contains a moving region, representing a

snow storm that moves over Berlin. TheTrainsMeetrelation is generated from theTrains relation. The
tuples contain all possible combinations of two trains that belong to the same line and move in opposite
directions. TheStationsattribute represents the train stations of the associated line. TheTrainsDelayre-
lation is also generated from theTrainsrelation. Each tuple contains the originalTrip attribute (renamed
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into Schedule), and a delayed copy of it with delays of around 30 minutes. The scripts for creating the
three relation and for executing the example queries are available for download as will be explained in
Appendix D.

Table 4 lists the lifted operations used within the queries. We have designed thequeries so that they
illustrate the expressive power of our approach by using various lifted operations to compose complex
pattern queries. The table shows only the operator signatures that are used in the queries. The complete
list of valid signatures is in [19].

Table 4: Lifted Operations
Operation Signature Type Meaning

at mregion× point → mpoint topological opera-
tion

computes a moving point that
exist whenever the point argu-
ment is inside the moving re-
gion argument.

isempty mpoint→ mbool set operation true whenever the argument is
defined.

not mbool→ mbool boolean operation logical negation.
roughcenter mregion → mpoint aggregation aggregates the moving region

into a moving point that repre-
sents its center of gravity.

speed mpoint → mreal metric property the metric speed of the moving
point.

distancetraversed mpoint → mreal metric property the distance that the moving
point traversed since the start
of its definition time.

area mregion → mreal metric property the area of the moving region.
intersection mpoint × mpoint → mpoint set operation computes the common parts of

the two arguments.

inside
mpoint × mregion → mbool spatial range predi-

cate
true whenever thempoint is
contained in themregion,

mpoint × points → mbool or passes some of thepoints.
delay mpoint × mpoint → mreal metric operation considers the first argument

actual, and the secondsched-
ule movementand computes
the delay of the actual move-
ment in seconds.

= mpoint × point → mbool spatial range predi-
cate

true whenever the moving
point passes the point.

xangle mpoint → mreal direction the angle (in degrees) between
x-axis and the tangent of the
moving point.

and mbool × mbool → mbool boolean operation logical and.
<, <=, >, >= mreal × real → mbool left/right range

predicate
true in the time intervals
during which the comparison
holds.

10.2.1 Find the snow storms that passed over the train stationmehringdamm with speed greater
than 40 km/h.

SELECT *
FROM snowstorms
WHERE pattern([not(isempty(storm at mehringdamm)) as pred1,

speed(rough_center(storm)) > 40.0 as pred2],
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[stconstraint("pred1","pred2", together)])

wheretogetheris a vector temporal connector that yields true if the two predicates happen simultane-
ously.

10.2.2 Find the snow storms that could increase their area over 1/4 square km during the first
traversed 5 km.

SELECT *
FROM snowstorms
WHERE pattern(

[distancetraversed(rough_center(storm)) <= 5000.0 as pred1,
area(storm) > 250000.0 as pred2],

[stconstraint("pred1","pred2", meanwhile)])

10.2.3 Find the trains whose up and down trips meet inside one of the train stations.

SELECT *
FROM trainsmeet
WHERE pattern(

[not(isempty(intersection(uptrip, downtrip))) as pred1,
uptrip inside stations as pred2 ],

[stconstraint("pred1","pred2", together)])
ORDERBY line

10.2.4 Find the trains that encountered a delay of more than 30 minutes after passing through
the snow stormmsnow.

SELECT *
FROM trainsdelay
WHERE pattern([not(delay(actual, schedule) > 1800.0) as pred1,

actual inside msnow as pred2,
delay(actual, schedule) > 1800.0 as pred3 ],

[stconstraint("pred1", "pred2", vec("abab", "aba.b", "abba")),
stconstraint("pred2", "pred3",

vec("abab", "aba.b", "abba", "aa.bb", "aabb"))])

10.2.5 Find the trains that are always heading north-west after passing mehringdamm.

SELECT *
FROM trains
WHERE patternex([trip = mehringdamm as pred1,

ndefunit(((xangle(trip) >= 90.0) and
(xangle(trip) <=180.0)), int2bool(1)) as pred2],

[stconstraint("pred1","pred2",then)],
(((start("pred2")- end("pred1")) < create_duration(0, 120000))
and
((inst(final(trip)) - end("pred2")) < create_duration(0, 15000))))

where we use thendefunitoperator in this query to replace the undefined periods within thembool by
true units. This is because thexangle2 operator yields undefined during the train stops in the stations.
In other words,pred2is true whenever the train is not heading other than north-west. The queryrestricts
the results to the trains which started heading north at most 2 minutes after passing mehringdammand

2The xangleoperator is a corrected copy of the SECONDO mdirectionoperator. It is presented only for the sake of this
example. In the SECONDOversions newer than 2.9.1, themdirectionoperator works fine.
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remained so till at least 15 seconds before the end of the trip. These time margins are used to cut out
small noisy parts in the data, so that the query yields results.

11 System Use and Experimental Repeatability

The implementation of the described approach is made available as a Plugin for the SECONDO system.
It can be downloaded from the Plugin web site [1]. TheUser Manual(also available on the Plugin we
site) describes how to install and run the Plugin. We have also made available the scripts for running the
first and the second experiments in this paper, and theBerlintestapplication example, so that the results
are repeatable. There are no scripts here for the third experiments. Forinterested readers, please refer to
theBerlinMODbenchmark [9] to generate the test data, then use the queries as described in Section 9.3.

Before running the scripts of the experiments, you need to install:

1. The SECONDO system version 2.9.1 or later3. A brief installation guide is given in thePlugin
User Manualon [1], and a detailed guide is given in the SECONDOUser Manual[3].

2. The Spatiotemporal Pattern Queries Plugin (STPatterns) as described in[1].

11.1 Repeating the First Experiment

During the installation of the STPattern Plugin, two files are copied to the SECONDO bin directory
$SECONDOBUILD DIR/ bin. These two filesExpr1Script.secandSTPQExpr1Query.csv(described
in Appendix A) automate the repeatability of the first experiment in this paper. The experiment can then
be run as follows:

1. Run SecondoTTYNT (i.e. in a shell, go to $SECONDOBUILD DIR/bin and writeSecondoTTYNT).

2. Make sure that the berlintest database is restored (i.e. at the SECONDO prompt, writelist
databases and make sure that berlintest database is in the list). Otherwise, restore it bywriting

restore database berlintest from berlintest

at the SECONDOprompt (press<return> twice).

3. Execute the script by writing@Expr1Script.sec at the SECONDOprompt. The script creates
the required database objects and executes the experiment queries. Thismay take half an hour
depending on your machine.

Executing the script creates a SECONDOrelationSTPQExpr1Resultin theberlintestdatabase, which
stores the experimental results. Its schema is shown in Table 5.

The experimental results are also saved to a comma separated fileSTPQExpr1Result.csvin the SEC-
ONDO bin directory. The file has a similar structure as the tableSTPQExpr1Result.

11.2 Repeating the Second Experiment

Repeating the second experiments is also automated by script files that are copied to the SECONDO

directories during the installation of the STPattern Plugin. For the second experiment, two script files are
used; the$SECONDOBUILD DIR/ bin/ Expr2Script.secfile creates the necessary database objects, and
the $SECONDOBUILD DIR/ Optimizer/ expr2Queries.plexecutes the queries. TheExpr2Script.sec
file is described in Appendix B, and theexpr2Queries.plin Appendix C. The experiment is repeated as
follows:

3Since our optimizer extension wraps around the standard optimizer implementation, you may get different optimization
results in later SECONDOversions. The described results in this paper are obtained from version2.9.1
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Table 5: The schema of the STPQExpr1Result relation
Attribute Meaning Example

no A serial number for the query. 0
queryText The query text. thousand feed

filter [.stpattern[
a:passmbool(mb10),
b:passmbool(mb30);
stconstraint("a", "b",
vec("aa.b.b"))]] count

numPreds The number of the lifted predicates in the
STP predicate.

2

numConstraints The number of the constraints in the STP
predicate.

1

ElapsedTimeReal The measured response time, in seconds,
for this query.

0.171932

ElapsedTimeCPU The measured CPU time, in seconds, for
this query

0.16

1. Run SecondoTTYNT.

2. Make sure that the berlintest database is restored, otherwise, restore it.

3. Execute theExpr2Script.secby writing @Expr2Script.sec at the SECONDO prompt. This
creates the necessary database objects.

4. Quit SecondoTTYNT (i.e. writequit at the SECONDO prompt), go to the SECONDO optimizer
folder $SECONDOBUILD DIR/ Optimizerand writeSecondoPL. This starts the SECONDO

optimizer user interface in the single user mode.

5. Writeconsult(expr2Queries). to let Prolog interpret the script fileexpr2Queries.pl.

6. Open theberlintestdatabase (i.e. writeopen database berlintest.).

7. Write runSTPQExpr2DisableOptimization. to run the queries without enabling the
optimization of the STP predicate, orrunSTPQExpr2EnableOptimization. to run the
queries with the optimization of the STP predicate being enabled. This can take more than an
hour.

The results are saved to the comma separated filesExpr2StatsDO.csvandExpr2QueriesDO.csvin
the SECONDOoptimizer folder if the STP predicate optimization is disabled. If it is enabled, the results
are saved to the filesExpr2StatsEO.csvandExpr2QueriesEO.csv.

The filesExpr2StatsDO.csvandExpr2StatsEO.csvshow the run times. They include the columns
described in Table 6.

Table 6: The schemas of the Expr2StatsDO.csv and Expr2StatsEO.csv files
Attribute Meaning Example

NumberOfPredicates The number of the lifted predicates in the STP predicate. 2
NumberOfConstraintsThe number of the constraints in the STP predicate. 1
Serial A serial for the query in the range [0,9]. The serial is repeated

with every experimental setup
1

ExecTime The measured response time, in milliseconds, for this query. 443

31



The filesExpr2QueriesDO.csvandExpr2QueriesEO.csvhave a similar structure. They exclude the
ExecTimeattribute and have two more attributes; theSQLattribute which stores the SQL-like query, and
theExecutablePlanwhich stores the execution plan generated by the Optimizer.

12 Conclusions

We propose a novel approach for spatiotemporal pattern queries. It combines efficiency, expressiveness
and a clean concept. It builds on other moving objects database concepts.Therefore, it is convenient
in the context of spatiotemporal DBMSs. Unlike the previous approaches,it is integrated with query
optimizers. We also propose an algorithm for evaluating the constraint satisfaction problems, that is
customized to fit the efficient evaluation of the spatiotemporal pattern predicates. In the paper, we
demonstrate two application examples to emphasize the expressive power of our approach. Our work
is completely implemented in the SECONDO platform. The implementation and the scripts for experi-
mental repeatability are available on the Web. The experimental evaluation shows that the run times are
reasonable. As future work, we intend to revisit the definition of the lifted predicates, and extend them
to process only the parts of the trajectories that are candidates for a solution of the STP predicate. This
will allow for efficiently reporting patterns in long trajectories.
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A The Expr1Script.sec File

This is a commented version of theExpr1Script.secscript.
The script runs the first experiment with minimal user interaction. The experiment, as described in

Section 9.1, is intended to evaluate the execution overhead of the STP predicates. This script first creates
the required database objects, then executes the queries and logs the runtimes.

close database;
open database berlintest;

let mb1 = randommbool(now());
...
let mb30 = randommbool(now());

The commands open the databaseberlintestand creates 30 randommbool objects with the names
mb1... mb30. These objects are needed for the queries. Therandommbooloperator works as described
in Section 9.1.1.

let later = vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows = vec("aa.bb", "a.a.bb", "aa.b.b", "a.a.b.b");
let immediately = vec("a.bab", "a.bba", ...
let meanwhile = vec( ...
let then = vec( ...

The five vector temporal connectors are used in the queries as examples for vector temporal connec-
tors. They are used together with the 26 simple temporal connectors to generate the queries.

let STPQExpr1Query=
[const rel(tuple([no:int, queryText: text,
numPreds: int, numConstraints: int])) value ()]

csvimport[’STPQExpr1Query.csv’, 0, "", "$"] consume;

The query imports the experiment queries from the comma separated fileSTPQExpr1Query.csvand
stores them in a SECONDO relation calledSTPQExpr1Query. The [const . value .] operator tells the
cvsimportoperator the schema of the relation, which is shown in Table 7.

Table 7: The schemas of the STPQExpr1Query.csv file and the STPQExpr1Query table
Attribute Meaning

no A serial for the query in the range [0, 4899].
queryText The query statement written in SECONDOexecutable language.
numPreds The number of the lifted predicates in the STP predicate.
numConstraints The number of the constraints in the STP predicate.

The file contains 4900 queries that were randomly generated as described in Section 9.1.2. The
queries represent 49 experimental settings, each of which have 100 queries. The following query executes
them and logs the results in the relationSTPQExpr1Result:

let STPQExpr1Result =
STPQExpr1Query feed
loopjoin[fun(queryTuple: TUPLE)
evaluate(attr(queryTuple, queryText))

project[ElapsedTimeReal, ElapsedTimeCPU]]
consume;
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This query can take half an hour depending on your machine. You can query the results relation
in any of the SECONDO user interfaces [3] and create aggregations for the charts. Additionally, the
following query exports the relation to the comma separated fileSTPQExpr1Result.csvin the SECONDO

bin directory.

query STPQExpr1Result feed
projectextend[; Serial: .no,
NumberOfPredicates: .numPreds,
NumberOfConstraints: .numConstraints,
ResponseTime: .ElapsedTimeReal,
CPUTime: .ElapsedTimeCPU]

csvexport[’STPQExpr1Result.csv’, FALSE, TRUE]
count

NOTE: We encourage the reader to get information about the SECONDOoperators by using the built-in
operator descriptions. For example, to get help on the operatorcsvimport, write the following query
at the SECONDOprompt:

query SEC2OPERATORINFO feed
filter[.Name contains "csvimport"]

consume

B The Expr2Script.sec File

This is a commented version for theExpr2Script.secscript.
The script is used to generate the data required for running the second experiment in this paper without
executing the queries. The queries need to be executed in theSecondoPLenvironment afterwards.

close database;
open database berlintest;

let RestaurantsNumbered =
Restaurants feed addcounter[no, 1] head[300] consume;

let point1 =
RestaurantsNumbered feed filter[.no = 1] extract[geoData];

...
let point300 =

RestaurantsNumbered feed filter[.no = 300] extract[geoData];
delete RestaurantsNumbered;

First, the commands open the databaseberlintest. The geometries of the first 300 restaurants in the
Restaurantstable are then copied to point objects (point1... point300) to be used in the queries.

let later = vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows = vec("aa.bb", "a.a.bb", "aa.b.b", "a.a.b.b");
let immediately = vec("a.bab", "a.bba", ...
let meanwhile = vec( ...
let then = vec( ...

The five vector temporal connectors, that are also created inExpr1Script.sec, are included here so
that the two experiments can be run independently.

let Trains20 = thousand feed head[20] Trains feed product consume;

This query creates theTrains20relation by replicating the tuples of theTrains relation 20 times.
In the following query, we create an index on theTrains20relation to test the proposed STP predicate
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optimization. The index is a spatial R-tree on the units of theTrip attribute. Instead of indexing the
complete movement, the index is built on the units (i.e. a bounding box is computed for every unit in the
Trip). This is done so that the bounding boxes better approximate the moving point.

let Trains20 Trip sptuni =
Trains20 feed
projectextend[Trip; TID: tupleid(.)]
projectextendstream[TID; MBR: units(.Trip)
use[fun(U: upoint) bbox2d(U) ]]

sortby[MBR asc]
bulkloadrtree[MBR];

C The expr2Queries.pl File

This Prolog file is used to run the queries of the second experiment and log the execution times. It defines
four prolog predicates:

1. runSTPQExpr2DisableOptimization/0: switches off STP predicate optimization by setting the op-
timizer options, and executes the queries.

2. runSTPQExpr2EnableOptimization/0: switches on STP predicate optimization, and executes the
queries.

3. executeSQL/4: helper predicate for executing queries.

4. runSTPQExpr2/4: the facts table that stores the queries. The file contains 490 such facts, 10
queries for each of the 49 experimental settings. The queries are randomly generated as described
in Section 9.2.2. For every query, the fact also stores its serial, number oflifted predicates, and
number of constraints.

D Running the Berlintest Application Example

To execute the queries in the berlintest example, you need first to run the script BerlintestScript.secfrom
the SecondoTTYNT prompt. The script is installed within the STPattern Plugin. You also need to have
the berlintest database restored in your system. The script file creates therequired database objects but it
doesn’t execute the queries. It first defines some temporal connectors:

close database;
open database berlintest;
let later= vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows= vec(...
let immediately= vec(...
let meanwhile= vec(...
let then= vec(...
let together= vec(...

Then it restores theSnowStormsrelation from theSnowStormsfile in the SECONDO/bin directory,
which is installed with the Plugin.

restore SnowStorms from SnowStorms;

The following command creates the relationTrainsMeet, that is used in the example in Section 10.2.3.
Every tuple in the relation is a different combination of an up train, down train of the same line, and the
stations where the train line stops.
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let TrainsMeet =
Trains feedproject[Line, Trip, Up] {t2} filter[.Up_t2 = FALSE]
Trains feedproject[Line, Trip, Up] {t1} filter[.Up_t1 = TRUE]
hashjoin[Line_t2 , Line_t1 , 99997]
extend[Line: .Line_t1, Uptrip: .Trip_t1, Downtrip: .Trip_t2,
Stations: ((breakpoints(.Trip_t1, create_duration(0,5000) )
union val(initial(.Trip_t1)))
union val(final(.Trip_t1)))]

project[Line, Uptrip, Downtrip, Stations]
consume;

Next we create the relationTrainsDelay, used in the example in Section 10.2.4. Every tuple has a
scheduleand anactual moving point. Theschedulemovement is a copy from theTrip attribute in the
Trains relation. The actual movement should have delays of about half an hour.We shift theTrip 1795
seconds forward, and apply a random positive or negative delay up to10 seconds to the result. This
creates actual movements with random delays between 29:45 and 30:05 minutes.

let TrainsDelay=
Trains feed
extend[Schedule: .Trip,
Actual: randomdelay(
.Trip translate[create_duration(0, 1795000) , 0.0, 0.0],
create_duration(0,10000) ) ]

project[Id, Line, Actual, Schedule]
consume;

After running theBerlintestScript.secscript, use theJavaguito execute the queries. It is the graphical
user interface for SECONDO. To launch it:

1. Start the SECONDOkernel in server mode, the optimizer server, and the GUI:
In a new shell, go to $SECONDOBUILD DIR/bin, and typeSecondoMonitor -s.
In a new shell, go to $SECONDOBUILD DIR/Optimizer, and typeStartOptServer.
In a new shell, go to $SECONDOBUILD DIR/Javagui, and typesgui. The Javagui will start
and connect to both the kernel and the optimization server.

2. Open the database. In the Javagui type:
open database berlintest.

3. Set the optimizer options. The SECONDO optimizer maintains a list of options that controls the
optimization. The examples in this paper require the optionsimprovedcosts, determinePredSig,
autoSamples, rewriteInference, rtreeIndexRules, andautosave. To set each of these options, type
in the Javagui:
optimizer setOption(option)

4. View the underlying network. Type:
select * from ubahn to display the underground trains network.
select * from trains to display the moving trains. Use the slider to view the results.
Select the last query in the top-right panel and press hide to hide the trains.
select * from snowstorms to display the moving snow storms.
hide the snow storms.

5. Type the example queries as in Section 10.2, and make sure to type everything in lower case.
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