
Parallel SECONDO: A Practical System for Large-Scale
Processing of Moving Objects

Jiamin Lu
Faculty of Mathematics and Computer Science,

FernUniversiẗat Hagen
Hagen, Germany

jiamin.lu@fernuni-hagen.de

Ralf Hartmut Güting
Faculty of Mathematics and Computer Science,

FernUniversiẗat Hagen
Hagen, Germany

rhg@fernuni-hagen.de

Abstract—Parallel SECONDO scales up the capability of
processing extensible data models inSECONDO. It combines
Hadoop with a set of SECONDO databases, providing almost
all existing SECONDO data types and operators. Therefore
it is possible for the user to convert large-scale sequential
queries to parallel queries without learning the Map/Reduce
programming details.

This paper demonstrates such a procedure. It imports
the data from the project OpenStreetMap into SECONDO
databases to build up the urban traffic network, and then
processes network-based queries like map-matching and sym-
bolic trajectory pattern matching. All involved queries were
stated as sequential expressions and time-consuming in single-
computer SECONDO. However, they can achieve an impressive
performance in Parallel SECONDO after being converted to
the corresponding parallel queries, even on a small cluster
consisting of six low-end computers.

I. I NTRODUCTION

In the past decade, along with the popularization of
portable positioning devices like navigators and smart
phones, a large amount of trajectory data (moving objects)
are collected and various database technologies are proposed
to analyze them for different purposes. SECONDO [7, 8]
was developed under this background. It is designed as an
extensible database system, providing a large number of data
types [6] and algorithms [9] to represent and process moving
objects efficiently.

Nowadays, like the many other databases, SECONDO

is facing the challenges from the big data, since it was
designed as a single-computer system and its capability is
restricted by the underlying computer resources. Regarding
the issue of large-scale data processing, parallel frameworks
like MapReduce [5] and its open-source implementation
Hadoop [1] are proposed in the recent years, in order to
help the user to analyze massive amounts of data on a
large cluster composed by cheap and low-end computers.
However, such platforms usually lay more stress on keeping
the balanced workload and fault-tolerance in heterogeneous
systems. Instead, their programming paradigms are low-level
and rigid, making custom user code difficult to maintain and

reuse. Besides, they also lack the capability of processing
special data types like moving objects.

For all these reasons and also inspired by the work like
HadoopDB [4], Parallel SECONDO [10] is proposed. It is
built up as a hybrid parallel system by combining Hadoop
and a set of SECONDO databases. On one hand, it scales up
the capability of processing special type data in SECONDO

on a cluster of computers, so as to improve the efficiency of
processing large-scale queries. On the other hand, it keeps
the front-end and the executable language in SECONDO to
make the end-users handle Parallel SECONDO still like a
single-computer system.

In the rest of this paper, we first introduce the infrastruc-
ture and the data model of Parallel SECONDO in the second
section. Afterwards, a practical example is presented in the
third section to demonstrate the procedure of using Parallel
SECONDO on solving realistic problems.

II. PARALLEL SECONDO

Parallel SECONDO uses the Hadoop framework to apply
and schedule tasks to a set of SECONDO databases that are
distributed on the cluster. Each task encapsulates a concrete
query which will be fully processed by SECONDO in order
to achieve the best performance.

The basic processing unit in Parallel SECONDO is called
Data Server (DS), consisting of a compact SECONDO sys-
tem named Mini-SECONDO and its database storage. Since
nowadays it is common that a commodity computer also
provides powerful computing resources, like multiple-core
processors, several hard disks and a large amount of memory,
the user can set several DSs on the same computer in
order to fully use the system. On every cluster node, one
DS is denoted as the Main Server (MS) for setting up the
Hadoop node. The Hadoop Distributed File System (HDFS)
is only used as the communication layer to schedule tasks
and control the workflow of parallel queries. In addition, a
simple distributed file system PSFS (Parallel SECONDO File
System) is developed to exchange intermediate data among
DSs directly, in order to improve the data transportation
performance.



In Parallel SECONDO, one computer is set to be the master
node of the Hadoop framework and its MS is set to be the
master Data Server(mDS) of the whole system. The Mini-
SECONDO within the mDS is called themaster database.
All the other DSs are set asslave Data Servers(sDSs), and
their Mini-SECONDO systems are calledslave databases.

The existing SECONDO text and graphical interfaces are
kept unchanged in Parallel SECONDO. With them, the user
can access the system by simply connecting to themaster
database. Besides parallel queries, themaster databasepro-
cesses the common sequential queries as usual. Therefore,
Parallel SECONDO keeps the underlying cluster, the Hadoop
framework and allslave databasesinvisible to the end-user,
so as to integrate Parallel SECONDO with the conventional
single-computer SECONDO system seamlessly.

A. Auxiliary Tools

Parallel SECONDO also proposes a set of auxiliary tools
to help the user to easily install and manage the system on
large-scale clusters.

For example, theps-cluster-formathelps the user to install
Parallel SECONDO on the cluster, including the Hadoop
framework and all DSs. Besides, theps-secondo-buildMiniis
provided to distribute Mini-SECONDO to DSs immediately,
in case there is any new feature extended in the single-
computer SECONDO system. Further, theps-startTTYCSen-
ables the user to access any Mini-SECONDOdatabase within
DSs. Besides the tools that help the user to deploy Parallel
SECONDO on his/her own cluster, a free Parallel SECONDO

AMI (Amazon Machine Image) [3] is also published on
AWS (Amazon Web Services), with which and the toolps-
ec2-startInstancesthe user can quickly prepare a runnable
system on the cluster composed by Amazon EC2 instances.

Due to the length limit of this paper, it is impossible to
introduce all auxiliary tools here. However, they are fully
explained in plenty of tutorial documents that are published
on our website [3] and also some papers that we prepare to
publish.

B. Parallel Data Model

At present, queries in Parallel SECONDO are stated in
executable language, by which the user can describe the
work flow precisely with database objects and operators, in
order to achieve the best performance. Correspondingly, the
parallel data model is proposed to represent the distributed
data and the MapReduce operations in Parallel SECONDO.

Usually, distributed data in Parallel SECONDO are par-
titioned into a structure named PS-Matrix, in which the
content of piece data are stored in sDSs, while the partition
schema are kept in themaster databaseas so calledflist
objects. For a PS-Matrix, its piece data can be either stored
as SECONDO objects in slave databases, or exported as
disk files in PSFS. The first kind offlist is named DLO
(Distributed Local Objects)flist , and the latter is called DLF

(Distributed Local Files)flist . The purpose of exporting data
into PSFS is to exchange data among DSs directly, because
the Mini-SECONDO is able to read a set of PSFS files from
the remote DSs, like what Hadoop does in the shuffle stage,
and import the files back into the database. Essentially,flist

is designed as a wrap structure, with which all existing and
future SECONDOdata types can be distributed and processed
in Parallel SECONDO.

Parallel queries are normally formulated withHadoopop-
erators. EachHadoopoperator contains a template Hadoop
job and an argument function. During the runtime, a Hadoop
job is generated based on the template job, and the function
query is embedded into its Map or Reduce tasks according
to which Hadoop operator is used. Within the tasks, the
function is processed by Mini-SECONDO in all involved
sDSs simultaneously.

Figure 1: The System Usage of Parallel Processing

For example, in the latter demonstration, the following
sequential query makes a hash join between two relations
CityNodesNewand CityWays, based on theirNodeId and
NodeRefattributes, respectively.

query
CityNodesNew feed CityWays feed
itHashJoin[NodeId, NodeRef]

consume;

It can be easily transformed to the parallel statement as:

query
CityNodesNew_NodeId_dlo
CityWays_NodeRef_dlf
hadoopReduce2[NodeId, NodeRef, DLF, PS_SCALE
; . feed .. itHashJoin[NodeId, NodeRef] ]

collect[] consume;

Here both involved relations are first distributed on the
cluster as twoflist objectsCityNodesNewNodeId dlo and
CityWaysNodeRefdlf. Normally we recommend the user
to nameflist objects as triples consisting of the original
relation name, the partition attribute and theflist type. In
such a way, it is easier to distinguish theflist objects that
are created for the same data set, but partitioned in different
ways.



Steps
Sequential Processing Parallel Processing

Query Number
Elapsed Time (secs)

Query Number
Elapsed Time (secs)

Arnsberg China California Arnsberg China California
1 1 241 432 2181 3 150 223 875
2 1 288 583 2750 3 260 260 634
3 4 2192 4077 60170 6 473 444 2280
4 1 422 722 4925 1 381 395 612
5 3 962 2320 9294 5 339 336 845

In total 10 4105 8134 79320 18 1603 1834 5246

Table I: The Comparison of Generating Road Network between SECONDO and Parallel SECONDO

Figure 2: A Screenshot of Symbolic Trajectory Pattern Matching in Parallel SECONDO

The parallel query basically is built up with aHadoop
operatorhadoopReduce2. It takes two inputflist objects,
re-distributes them based on the partition attributes in the
Map stage, and then processes the argument function in
the Reduce stage. The partition attributes are the first two
parameters that the operator accepts, here they are indicated
exactly the same as the join attributes since the whole
query makes up a reduce-side join operation. Afterwards,
PS SCALEreduce tasks are started, processing the argument
function on all sDSs at the same time. ThePS SCALE is
an integer, denoting the size of the reduce tasks, and the
argument function is almost the same as the sequential query.
At last, this Hadoopoperator is set to return a DLFflist ,
so that the distributed result can be gathered into themaster
databasewith the operatorcollect, and then be saved as a
normal SECONDO relation by theconsume operator.

Figure 1 illustrates the system usage during the parallel
procedure for this example, by profiling one computer from
our testbed with the default system monitor. Obviously the
whole procedure is divided into two parts, corresponding to

the Map and Reduce stages. All processor cores are fully
used during the Reduce stage, and the network is also fully
used at the beginning of both stages.

III. D EMONSTRATION

Our demonstration illustrates the practicability of Parallel
SECONDO by solving realistic problems. First a road net-
work is generated with the data from OpenStreetMap (OSM)
[2] . Next a set of personal geometric trajectories is given,
which is observed by GPS devices, and matched to the road
network [11]. At last, symbolic trajectories are produced so
as to find certain trajectories with semantic patterns [12].
Although all these technologies are far beyond the scope of
this paper and studied in single-computer SECONDO, they
can still be easily stated and processed in Parallel SECONDO

efficiently.
In the process of the demonstration, both the sequential

and the parallel solutions are introduced on our cluster. The
cluster contains six computers, each has a AMD Phenom(tm)
II X6 1055T processor with six cores, 8 GB memory and



two 500 GB hard disks. A Parallel SECONDO is set up on
five of them, each computer is set with two DSs. Besides,
a single-computer SECONDO is installed on the remaining
computer of the cluster. The performances of these two
systems are compared with the default system monitor, like
the one shown in Figure 1.

The road network generation contains a number of queries
that can be roughly divided into the following five steps.

1) Decompose the downloaded OSM data and import
them into SECONDO as six relations.

2) Make up a relation namedNewNodesto get all nodes
from an imported relation. Each node is a SECONDO

point object, containing both its longitude and latitude
values. At last, all nodes are sorted according to the
Z-order.

3) Save all ways into a relation namedWays. Each way
indicates a continuous poly-line, containing a set of
line objects that are assigned with the sameWayId
attribute value. Afterwards, all ways that contain the
“highway” tag are extracted to make up a new relation
namedRoads. This tag is defined by OSM, indicating
all routes connecting two nodes and being used by
motorised vehicles, pedestrians, cyclists, horse riders
etc. At last, two R-Tree indices are built upon these
two relations.

4) Find all starting, ending and crossing nodes of the
Roads, and save them into the relationNodes.

5) Split the roads to edges, while each edge is a piece of
road without being cut off by the other edges. In order
to indicate one-way roads, each edge is stored as a
sline object which uses a boolean value to indicate its
direction. For a road with two directions, its edges are
stored twice with both directions. They are all stored
in the relation calledEdges.

The above queries are time-consuming in single-computer
SECONDO since there are a lot of sort and join operations.
However, all of them can be converted into corresponding
parallel queries and gain considerable speed-up by being
processed in Parallel SECONDO. The left part of Table I
shows the elapsed time of generating the road network se-
quentially for three regions: Arnsberg, China and California.
The OSM data update all the time, hence till this paper is
written, the sizes of the involved data are 1.3GB, 2.3GB
and 9.1GB, respectively. The computer comes from either
the cluster or one that has a comparable computing power.
The same procedure is converted and processed in Parallel
SECONDO with all six computers of the cluster, and the
performance is shown in the right part of the table. It is
clear that Parallel SECONDO usually needs more queries for
the same step, but it achieves an impressive speed-up on all
steps, especially for large-scale problems.

It is unpractical to perform the complete road network
generation during the demonstration period, therefore only

several of them are picked out and explained with details,
like the one that we introduced in the last section.

In the latter demonstration, we keep using the personal
collected trajectories that described in [12], but generating
the map-matched and symbolic trajectories all within Paral-
lel SECONDO. The road network is built for the Arnsberg
region, and created in advance. The result of one matched
trajectory is shown in Figure 2, where the dark green
rectangle fences a certain area within the network. Inside
that region, roads imported from the OSM data are marked
as yellow poly-lines. Apart from that, the red path indicates
a trajectory of a person, denoted by the white icon, who
took a short walk within twenty minutes inside that road
network. The movement of the person can also be animated
by the graphical interface. Along with that, the name of the
passed street is displayed below the humanoid icon.

IV. A CKNOWLEDGMENT

We are grateful for the research grant provided by AWS
in Education, which supports our study in EC2. Besides,
the first author is also thankful to the financial support from
Chinese Scholarship Council (CSC).

REFERENCES

[1] Hadoop. http://hadoop.apache.org/.
[2] Open Street Map. http://www.openstreetmap.org.
[3] Parallel Secondo. http://dna.fernuni-hagen.de/secondo/

ParallelSecondo.
[4] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silber-

schatz, and A. Rasin. HadoopDB: An Architectural Hybrid
of MapReduce and DBMS Technologies for Analytical Work-
loads. Proc. VLDB Endowment, 2(1):922–933, 2009.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. InProceedings of the 6th
Symposium on Operating Systems Design & Implementation -
Volume 6, pages 10–10, Berkeley, CA, USA, 2004. USENIX
Association.

[6] L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider.
A Data Model and Data Structures for Moving Objects
Databases.ACM SIGMOD Record, 29:319–330, 2000.

[7] R.H. Güting, T. Behr, and C. Düntgen. SECONDO: A
Platform for Moving Objects Database Research and for
Publishing and Integrating Research Implementations.IEEE
Data Eng. Bull., 33(2):56–63, 2010.

[8] R.H. Güting, V.T. De Almeida, and Z. Ding. Modeling and
Querying Moving Objects in Networks.The VLDB Journal,
15(2):165–190, 2006.

[9] C. Lema, J. Antonio, L. Forlizzi, R.H. Güting, E. Nardelli,
and M. Schneider. Algorithms for Moving Objects Databases.
The Computer Journal, 46(6):680, 2003.

[10] Jiamin Lu and Ralf Hartmut Güting. Parallel Secondo:
Boosting Database Engines with Hadoop. InICPADS, pages
738–743, 2012.

[11] F Marchal, J Hackney, and Kay W Axhausen. Efficient map
matching of large global positioning system data sets: Tests
on speed-monitoring experiment in Zürich.Transportation
Research Record: Journal of the Transportation Research
Board, 1935(1):93–100, 2005.

http://hadoop.apache.org/
http://www.openstreetmap.org
http://dna.fernuni-hagen.de/secondo/ParallelSecondo
http://dna.fernuni-hagen.de/secondo/ParallelSecondo


[12] Fabio Valdés, Maria Luisa Damiani, and Ralf Hartmut G¨uting.
Symbolic Trajectories in SECONDO: Pattern Matching and
Rewriting. In DASFAA (2), Lecture Notes in Computer
Science, pages 450–453. Springer, 2013.


	Introduction
	Parallel Secondo
	Auxiliary Tools
	Parallel Data Model

	Demonstration
	Acknowledgment

