
SECONDO: An Extensible DBMS Platform
for Research Prototyping and Teaching

Ralf Hartmut Güting, Victor Almeida, Dirk Ansorge, Thomas Behr, Zhiming Ding,
Thomas Höse, Frank Hoffmann, Markus Spiekermann, Ulrich Telle

LG Datenbanksysteme für neue Anwendungen
 Fachbereich Informatik, Fernuniversität Hagen

D-58084 Hagen, Germany
rhg@fernuni-hagen.de
Abstract
In this document, we describe in a nutshell the
SECONDO extensible DBMS.

1. Introduction
The goal of SECONDO is to provide a “generic” database
system frame that can be filled with implementations of
various DBMS data models. For example, it should be
possible to implement relational, object-oriented, tempo-
ral, or XML models and to accomodate data types for spa-
tial data, moving objects, chemical formulas, etc. Whereas
extensibility by data types is common now (e.g. as data
blades, cartridges, etc.), the possibility to change the core
data model is rather special to SECONDO.

SECONDO was intended originally as a platform for
implementing and experimenting with new kinds of data
models, especially to support spatial, spatio-temporal, and
graph database models. We now feel, SECONDO has a
clean architecture, and it strikes a reasonable balance
between simplicity and sophistication. Since all the source
code is accessible and to a large extent comprehensible for
students, we believe it is also an excellent tool for teaching
database architecture and implementation concepts.

The original idea for SECONDO-like database systems
was outlined in [Gü93]. A first version of SECONDO was
built between 1995 and 2001. A major reimplementation
was started in 2001. The current system uses BerkeleyDB
as a storage manager, runs on Windows, Linux, and
Solaris platforms, and consists of three major components
written in different languages:
• The SECONDO kernel implements specific data mod-
els, is extensible by algebra modules, and provides
query processing over the implemented algebras. It is
implemented on top of BerkeleyDB and written in
C++.

• The optimizer provides as its core capability conjunc-
tive query optimization, currently for a relational
environment. Conjunctive query optimization is,
however, needed for any kind of data model. In addi-
tion, it implements the essential part of SQL-like lan-
guages, in a notation adapted to PROLOG. The
optimizer is written in PROLOG.

• The graphical user interface (GUI) is on the one hand
an extensible interface for an extensible DBMS such
as SECONDO. It is extensible by viewers for new data
types or models. On the other hand, there is a special-
ized viewer available in the GUI for spatial types and
moving objects, providing a generic and rather
sophisticated spatial database interface, including ani-
mation of moving objects. The GUI is written in Java.

The three components can be used together or indepen-
dently, in several ways. All three components can be used
together in a configuration shown in Figure 1. In this con-

figuration, the GUI can ask the kernel directly to execute
commands and queries (queries written as query plans,
i.e., term of the implemented algebras). Or it can call the
optimizer to get a plan for a given SQL query. The opti-
mizer when necessary calls the SECONDO kernel to get
information about relation schemas, cardinalities of rela-

Figure 1: Cooperation of SECONDO Components

GUI

Optimizer

SECONDO Kernel

− 2 −
tions, and selectivity of predicates. Here the optimizer acts
as a server for the GUI and as a client to the kernel. In the
following three sections we briefly sketch the three com-
ponents. A more detailed description of SECONDO can be
found in [GBA+00].

2. The SECONDO Kernel
A very rough description of the architecture of the SEC-
ONDO kernel is shown in Figure 2. A data model is imple-

mented as a set of data types and operations. These are
grouped into algebras.

The definition of algebras is based on the concept of
second-order signature [Gü93]. The idea is to use two
coupled signatures. Any signature provides sorts and oper-
ations. Here in the first signature the sorts are called kinds
and represent collections of types. The operations of this
signature are type constructors. The signature defines how
type constructors can be applied to given types. The avail-
able types in the system are exactly the terms of this signa-
ture.

The second signature defines operations over the types
of the first signature.

An algebra module provides a collection of type con-
structors, implementing a data structure for each of them.
A small set of support functions is needed to register a
type constructor within an algebra. Similarly, the algebra
module offers operators, implementing support functions
for them such as type mapping, evaluation, resolution of
overloading, etc.

The query processor evaluates queries by building an
operator tree and then traversing it, calling operator imple-
mentations from the algebras. The framework allows alge-
bra operations to have parameter functions and to handle
streams. More details can be found in [DG00].

The SECONDO kernel manages databases. A database is
a set of SECONDO objects. A SECONDO object is a triple of
the form (name, type, value) where type is a type term of
the implemented algebras and value a value of this type.
Databases can be created, deleted, opened, closed,
exported to and imported from files. In files they are repre-
sented as nested lists (like in LISP) in a text format.

On an open database, there are some basic commands
available:

type <ident> = <type expr>
delete type <ident>

create <ident>: <type expr>
update <ident> := <value expr>
let <ident> = <value expr>
delete <ident>
query <value expr>

Obviously, the type expressions and value expressions are
defined over the implemented algebras. Note that create
creates an object whose value is yet undefined. Let creates
an object whose type is defined by the given value, so one
does not need to specify the type.

The kernel offers further commands for inspection of
the implemented system (list type constructors, list operators, list
algebras, list algebra <algebraName>), the available databases (list
databases), or the contents of the open database (list types, list
objects). Objects can also be exported into and restored
from files. Finally there are commands for transaction
management.

Currently there exist about twenty algebras imple-
mented within SECONDO. All algebras include approppri-
ate operations. Some examples are:

• StandardAlgebra. Provides data types int, real, bool,
string.

• RelationAlgebra. Relations with all operations needed
to implement an SQL-like relational language.

• BTreeAlgebra. B-Trees.
• RTreeAlgebra. R-Trees.
• SpatialAlgebra. Spatial data types point, points, line,

region.
The following examples are based on these algebras.

Here are some commands:
create x: int
update x := 7
let inc = fun(n:int) n + 1
query “secondo” contains “second”

A more complex example involves some SECONDO objects
in the open database: (i) a relation Kreis with type (schema)
rel(tuple([KName: string, ..., Gebiet: region])) containing the
regions of 439 counties (“Kreise”) in Germany, (ii) an
object magdeburg of type region, containing the geometry of
county “Magdeburg”, and (iii) an object kreis_Gebiet of type
rtree(tuple([KName: string, ..., Gebiet: region])) which is an R-tree
on the Gebiet attribute of relation Kreis.

The following query finds neighbour counties of magde-
burg:

query kreis_Gebiet Kreis windowintersects[bbox(magdeburg)]
filter[.Gebiet touches magdeburg] filter[not(.KName contains
"Magdeburg")] project[KName] consume

The query uses the R-tree index to find tuples for which
the bounding box (MBR) of the Gebiet attribute overlaps
with the bounding box of the magdeburg region. The quali-
fying stream of tuples is filtered by the condition that the
region of the tuple is indeed adjacent (“touches”) the
region of magdeburg and then by a further condition elimi-
nating the county “Magdeburg” itself. Tuples are then pro-
jected on their KName attribute and the stream is collected
into a result relation. Hence the operations used are:

windowintersects: rtree(Tuple) x rel(Tuple) x rect -> stream(Tuple)
filter: stream(Tuple) x (Tuple -> bool) -> stream(Tuple)
project: stream(Tuple) x Attrs -> stream(Tuple2)
consume: stream(Tuple) -> rel(Tuple)
bbox: region -> rect
touches: region x region -> bool
contains: string x string -> bool
not: bool -> bool

We consider it a major asset of SECONDO that it provides

Figure 2: Rough architecture of the kernel

Query Processor & Catalog

Storage Manager & Tools

Command Manager

Alg1 Alg2 Algn

− 3 −
precise and relatively comfortable notations for query
plans like the one shown here. Queries in this notation are
completely type-checked by SECONDO. Being able to type
query plans interactively is crucial for experimenting with
a DBMS. Besides, the notation for query plans is also the
interface to the optimizer.

A “live” interaction with SECONDO at the command
interface with the query above is shown in Figure 3. It

shows how the parser first translates the query into a
nested list expression, resolving at the same time some
implicit notations for parameter functions.

3. The Optimizer
The optimizer is written in PROLOG, running in the SWI-
PROLOG environment which interfaces with C-code. The
core functionality is optimization of conjunctive queries.
That is, it takes a set of relations and a set of selection and
join predicates, and produces a plan.

We have found that PROLOG is an excellent language
for implementing query optimizers. The pattern matching
and search capabilities of PROLOG make the formulation
of optimization rules relatively easy. Execution is very
fast. Plans for conjunctive queries with up to 9 predicates

are determined in less than a second, from 10 onwards due
to the exponential nature of the process, optimization
times become noticeable. We feel for an experimental sys-
tem like SECONDO this is quite sufficient.

The optimizer implements a novel algorithm for query
optimization described in [GBA+04]. It uses selectivity
estimation and cost estimation to determine good plans.

On top of the conjunctive query optimization capability,
we have implemented the essential part of an SQL-like
language. The SQL notation was adapted to be able to
write queries directly as PROLOG terms. A sample inter-
action with the optimizer is shown in Figure 4. This is
based on a relation Orte containing 506 cities in Germany
and a relation plz with 41267 pairs of postal code and city
name.

4. User Interface
Besides the command interface, SECONDO has a generic
graphical user interface independent of a particular data
model. This interface is extensible by viewers. At the bot-
tom left of the next page the GUI is shown. It has a com-
mand area (top left), an area for managing the results of
queries (top right), and an area for viewers (bottom). Vari-
ous viewers are available, here a particular viewer is
shown. This one, the so-called Hoese-Viewer (named by
its author) is able to represent relations with embedded
spatial or spatio-temporal objects and offers a rather
sophisticated functionality. In itself, it makes a quite inter-
esting demonstration of a user interface for spatial data-
bases. The viewer can also animate moving objects. In the
figure, a map of Germany has been created containing cit-
ies, rivers, and highways. A query has returned the lines
for the river Rhine, and another query has found the coun-
ties intersecting the Rhine.

As examples for other viewers, recently three viewers
have been written that allow one to manipulate, play and

(E) Secondo => query kreis_Gebiet Kreis windowinter-
sects[bbox(magdeburg)] filter[.Gebiet touches magdeburg] fil-
ter[not(.KName contains "Magdeburg")] project[KName] consume
(E) Secondo ->

(query
 (consume
 (project
 (filter
 (filter
 (windowintersects kreis_Gebiet Kreis
 (bbox magdeburg))
 (fun
 (tuple1 TUPLE)
 (touches
 (attr tuple1 Gebiet)
 magdeburg)))
 (fun
 (tuple2 TUPLE)
 (not
 (contains
 (attr tuple2 KName)
 "Magdeburg"))))
 (KName))))
Analyze query ...
11:27:11 -> elapsed time 0:00 minutes. Used CPU Time: 0.17 seconds.
Execute ...
11:27:11 -> elapsed time 0:00 minutes. Used CPU Time: 0.22 seconds.

KName: LK Schönebeck

KName: LK Bördekreis

KName: LK Ohre-Kreis

KName: LK Jerichower Land

(E) Secondo =>

Figure 3: A query at the command interface

Figure 4: Interaction with the optimizer on top of SECONDO

2 ?- sql select count(*) from [orte as o, plz as p1, plz as p2] where [o:ort
= p1:ort, p2:plz = p1:plz + 7, (p2:plz mod 5) = 0, p1:plz > 30000, o:ort
contains "o"].
selectivity : 0.000560748
selectivity : 1.6377e-005
selectivity : 0.700935
selectivity : 0.31
Destination node 31 reached at iteration 6
Height of search tree for boundary is 4

The best plan is:

Orte feed {o} filter[(.Ort_o contains "o")] loopjoin[plz_Ort plz exact-
match[.Ort_o] {p1}] filter[(.PLZ_p1 > 30000)] loopjoin[plz_PLZ plz
exactmatch[(.PLZ_p1 + 7)] {p2}] filter[((.PLZ_p2 mod 5) = 0)] count

Estimated Cost: 66818.7

Command succeeded, result:

273

Yes
3 ?-

− 4 −
show data types mp3, jpeg, and midi, for respective alge-
bras.

5. Research Prototyping and Teaching
At this point, it should be obvious that SECONDO is a great
platform for experimenting with new data types and even
data models. Implementation techniques can be easily
tried within the extensible environment. New index struc-
tures studied in research can be integrated as an algebra
and put to work in a relatively complete DBMS environ-
ment. We ourselves use it to study spatial and moving
objects databases [CFG+03], network models, fuzzy spa-
tial data types, and optimization techniques.

In addition, we believe SECONDO is an excellent envi-
ronment for teaching concepts of database systems. It has
a clean architecture and an attractive mix of known con-
cepts and implementation techniques and novel features
with respect to extensibility. Carefully written user guide,
programmer’s guide, and installation guide are available.

Of course, SECONDO can be used for writing bachelor
and master theses, and has been built in such work to some
extent. Recently we have started to offer student projects
(“Praktika”) for groups of students. The topic of such a
project is “Extensible database systems,” the duration is
one term. We structure a project into two stages: In the
first stage, students become familiar with SECONDO by
solving a number of exercises:

1. Write a small algebra containing data types for point,
line segment and triangle with a few operations. Also
implement some stream operations.

2. Add a few simple operations to the relational algebra,
e.g. duplicate removal by hashing.

3. Learn to manage large objects by implementing a
polygon type.

4. Make data types for point, segment, and triangle
available as attribute types for relations.

5. An exercise with the storage management interface.
6. Write extensions of the optimizer, for example, rules

to use an R-tree and a loopjoin. (This is optional for
students with knowledge of PROLOG. Required are
programming capabilities in C++ and Java.)

7. Extend the GUI by writing a simple viewer. Also
extend the Hoese-Viewer by display classes for point,
segment and triangle.

The first stage takes roughly half a term. Here each stu-
dent works by himself. In the second stage, groups of 3 or
4 students implement together some extension of SEC-
ONDO. In the current winter term (2003/04) three groups
have been asked to build algebras for midi, mp3, and jpeg
data types. We found the outcome rather impressive. All
groups have successfully built such algebras, with interest-
ing operations and appropriate viewers/players.

6. What Will be Demonstrated
All the capabilities of SECONDO described in this text can
be shown, for example:

• basic commands, writing queries as query plans
• inquiries about the system, e.g. list operators
• using the optimizer
• extensibility: add a rule to the optimizer
• spatial database functionality in the GUI. Managing

layers, text-graphics interaction, etc.
• Show animation of a collection of moving points (the

underground trains of Berlin).

References
[CFG+03] J. A. Cotelo Lema, L.

Forlizzi, R. H. Güting, E. Nardelli, M.
Schneider, Algorithms for Moving
Objects Databases, The Computer
Journal, 46(6), 2003.

[DG00] Dieker, S., and R.H.
Güting, Plug and Play with Query
Algebras: SECONDO. A Generic
DBMS Development Environment.
Proc. IDEAS 2000, 380-392.

[GBA+04] Güting, R.H., T. Behr,
V.T. de Almeida, Z. Ding, F. Hoff-
mann, and M. Spiekermann, SEC-
ONDO: An Extensible DBMS
Architecture and Prototype. Fer-
nuniversität Hagen, Informatik-
Report 313, 2004.

[Gü93] R. H. Güting, Second-Order
Signature: A Tool for Specifying Data
Models, Query Processing, and Opti-
mization. Proc. SIGMOD 1993.

	1. Introduction
	2. The Secondo Kernel
	3. The Optimizer
	4. User Interface
	5. Research Prototyping and Teaching
	6. What Will be Demonstrated

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

