
Querying Moving Objects in SECONDO

Victor Teixeira de Almeida, Ralf Hartmut Güting, and Thomas Behr
LG Datenbanksysteme für neue Anwendungen
 Fachbereich Informatik, Fernuniversität Hagen

D-58084 Hagen, Germany
{victor.almeida, rhg, thomas.behr}@fernuni-hagen.de
Abstract
Representing descriptions of movements in databases and
querying them is a basic capability required in mobile
data management. In this demonstration, we show for the
first time a prototype implementing a data model and
query language for moving objects (trajectories) com-
pletely integrated into a DBMS environment, including
query optimization and user interface issues such as ani-
mation.

1. Introduction

Location aware mobile devices have become a cheap com-
modity. For example, there are already millions of users of
GPS-equipped PDAs or car navigation systems. Such sys-
tems can also record movements. RFID tags are used as
well to track the movements of goods. Such trends will
result in the collection of massive amounts of moving
object data, sometimes called trajectories, in the near
future. There is a great interest in being able to represent
such movements in databases in order to perform analysis
on them, data mining, as well as ad-hoc querying.

The research area of moving objects databases has
addressed this need, and there has already been a lot of
research in the last years ranging from data models and
query languages to implementation aspects such as effi-
cient index structures (see [GS05]).

A query language for moving objects based on the idea
of spatio-temporal abstract data types has been developed
in earlier work [GBE+00]. Implementation aspects such as
data structures for the types and algorithms for the opera-
tions have also been addressed [FGNS00, CFG+03]. In
this demonstration we show for the first time a prototype
of this design. An algebra for moving objects has been
implemented in the SECONDO extensible DBMS environ-
ment. The design could be implemented in a similar way
in other object-relational or extensible systems.

SECONDO is a DBMS prototyping environment particu-
larly geared for extension by algebra modules for non-
standard applications. It is complete in the sense that all
aspects needed by such applications, ranging from effi-
cient query processing in the system kernel through opti-
mization to an extensible user interface are addressed.

Examples in this paper are based on the “Berlin” data-
base. It contains various geographic data sets from the city
of Berlin. To this we have added a synthetic data set for
moving objects, namely a relation describing underground
trains as moving points. The moving point data have been
generated by matching train schedules to train line geome-
tries. Whereas analyzing train movements is perhaps not
the most exciting application, it is a scenario that is easily
understood, and the query examples can easily be trans-
lated to other domains. Since we have the data available,
the queries in the paper can indeed be demonstrated.

This demonstration should be interesting because:
• It is to our knowledge the first presentation of a sys-

tem that implements a moving objects data model and
query language completely integrated into a DBMS
environment.

• All system levels including kernel, query optimiza-
tion, and user interface with animation for moving
objects are included and can be demonstrated.

The SECONDO system has been demonstrated before,
with a focus on architecture and extensibility and the use
for prototyping and teaching [GAA+05]. This is the first
demo addressing moving objects.

The complete SECONDO system, including the moving
objects algebra demonstrated here, is freely available for
download at http://www.informatik.fernuni-hagen.de/secondo.

2. Algebra for Moving Objects

In this section we review the system for representing mov-
ing objects presented in [GBE+00, FGNS00]. The core of
this system are the abstractions moving point and moving
region, describing objects with time-dependent position
such as vehicles and mobile-phone users, and objects
where the shape and extent are also time dependent, such
as hurricanes and oil spills. These abstract data types (and
their discrete representations described in [FGNS00]) may
be embedded as attribute types into OO- or ORDBMS, or
implemented as extension packages into extensible
DBMS. We use the latter approach with the SECONDO
Extensible DBMS [GBA+04], which is the subject of the
next section.

Temporal types use the sliced representation, which
represents a time-dependent value as a sequence of slices
(temporal units) such that within each slice, the develop-
ment of the value can be represented by a “simple” func-

tion, the so-called temporal function. As an example, for
values that can only change discretely (e.g. int and bool) a
constant function is applied. For the moving real (mreal),
the function is a quadratic polynomial or square root of
such (Figure 1(a)). Points move linearly inside each slice
in the moving point (mpoint) representation (Figure 1(b)).

For moving regions (mregion), vertices of regions also
move linearly inside each slice, with several restrictions
applied to ensure that, for every time instant inside the
slice, a valid region is defined by the temporal function.
More details about the representation of the moving object
data types can be found in [FGNS00]. Figure 2 shows a
sample slice of a moving region.

Over these data types, a large set of operations is
defined in [GBE+00]. First, generic operations on non-
temporal data types are provided including predicates, set
operations, aggregate operations, etc. Examples are:

point × region → bool inside
region × region → region union
line → real length
point × point → real distance

where inside checks whether a point is inside a region,
union returns the region which is the union of the two
argument regions, length returns the total length of a line,
and distance computes the (Euclidean) distance between
two points.

Then, by an approach called lifting, all operations
defined in this first step are available for the corresponding
temporal types. For example, the inside operator can be
applied in the following ways

mpoint × region → mbool inside
point × mregion → mbool
mpoint × mregion → mbool

where the arguments as well as the return value are lifted
to their temporal counterparts.

Finally, special operators for temporal types are offered
with projections into time and range of values, intersec-
tions with values or sets of values from time and range of
values, and results that determine rate of change. Exam-
ples of such operators (appearing in queries below) are:

mpoint → line trajectory
mpoint × periods → mpoint atperiods
mpoint × periods → bool present
mpoint × instant → bool present
mpoint → periods deftime

mpoint × region → mpoint at
mpoint × region → bool passes
mpoint × point → bool passes
mpoint × instant → ipoint atinstant
ipoint → instant inst
ipoint → point val

Here trajectory projects the moving point to the 2-d plane
as a line value; atperiods restricts the movement to some
period of time; present checks whether the moving object
exists at a predefined period or instant of time; and
deftime projects the movement to the time dimension.
Operation at restricts a moving point to the times when it
is inside a region, passes checks whether it is ever inside a
region or at a point. Finally, atinstant evaluates the mov-
ing point at given instant of time, returning a pair consist-
ing of the instant and a point, a value of type ipoint, for
which inst and val return the components.

Now we are able to show how the abstract data types
can be embedded into a (relational) DBMS data model and
how the available operations can be used in queries.
Assume that we have the following relations containing a
set of underground trains and the train stations in Berlin.
There are 562 trains and 173 stations. Each train contains
about 100 temporal units. A larger version of this database
is described in Section 4.
Trains(Id:int, Line:int, Up:bool, Trip:mpoint)
Stations(SName:string, Type:string, Loc:point)

A train system administrator could ask “Where exactly
were the trains between 8:00 and 8:01 o’clock?”:

SELECT Id, Line,
trajectory(Trip atperiods eight00) AS Stretch

FROM Trains
WHERE Trip present eight00;

where eight00 is the period from 8:00 until 8:01 o’clock.
“At what times have trains passed through (under-

ground) the park “Tiergarten”?
SELECT Id, Line,

deftime(Trip at tiergarten) AS Times
FROM Trains
WHERE Trip passes tiergarten;

Here tiergarten is a region value for the park area.
The following query will be used throughout the rest of

the paper: “Where have the trains passing through the
Mehringdamm station been at 6:50 am (as far as they are
moving at this time):”
SELECT Id, Line,

val(Trip atinstant sixfifty) AS Pos
FROM Trains, Stations
WHERE Trip passes Loc AND

SName contains “Mehringdamm” AND
Trip present sixfifty

Here sixfifty is a value of type instant.

3. Moving Objects Algebra in SECONDO

In this section we present implementation issues of the
moving object algebra in SECONDO, emphasizing the
changes needed in order to accommodate the new data
types and operations.

The goal of SECONDO is to provide a “generic” database

Figure 1: Sliced representation of a moving real and a
moving point

Figure 2: Sample slice of a moving region

t

v

x

y

t

(b)(a)

x

t

y

system frame that can be filled with implementations of
various DBMS data models. For example, it should be
possible to implement relational, object-oriented, tempo-
ral, or XML models and to accomodate data types for spa-
tial data, moving objects, chemical formulas, etc. In this
paper we deal with the relational data model with extensi-
bility capabilities to provide the data types as attributes for
moving objects.

The SECONDO system consists of three major compo-
nents shown in Figure 3:

• The SECONDO kernel implements specific data mod-
els, is extensible by algebra modules, and provides
query processing over the implemented algebras. It is
written in C++.

• The optimizer provides as its core capability conjunc-
tive query optimization, currently for a relational
environment, and also implements the essential part
of SQL-like languages. It is written in PROLOG.

• The graphical user interface (GUI) is an extensible
interface for an extensible DBMS such as SECONDO,
where new data types or models can provide their
own viewers or extend an existing viewer by display
methods. It is written in Java.

3.1. The Kernel

A very rough description of the architecture of the SEC-
ONDO kernel is shown in Figure 4. A data model is imple-

mented as a set of data types and operations. These are
grouped into algebras. For example, there is an algebra
with relations and tuples as data types and operations like
projection or hashjoin. Index structures are also offered as
algebras; currently SECONDO has an algebra for B-trees
and another one for R-trees.

The focus of this paper is in the implementation of the
Spatial and the Temporal Algebras. The Spatial Algebra
implements the types point, points, line, and region fol-
lowing the implementation of the ROSE Algebra
([GRS95]). The Temporal Algebra mainly provides types
for moving points and moving regions following the
description in [FGNS00]. For every moving data type, a
unit data type is provided implementing the corresponding

temporal function, e.g. for the mpoint data type, the upoint
is also provided. A subset containing the most important
operators in [GBE+00] is implemented.

The kernel can evaluate a query plan, also called an exe-
cutable query, or a query at the executable level, which is
just a term of the implemented algebras. Query processing
is performed as follows: the Command Manager receives
an executable query, parses it and passes the result to the
Query Processor. The Query Processor then evaluates the
query by building an operator tree and then traversing it,
calling operator implementations from the algebras. More
details about this process can be found in [DG00]. SEC-
ONDO objects are stored (and retrieved) by the Storage
Manager into a database and managed by the Catalog. As
an example, one possible way of writing the last query of
Section 2 at the executable level is:
Trains feed filter[.Trip present sixfifty]
Stations feed filter[.SName contains
"Mehringdamm"] symmjoin[.Trip passes ..Loc]
extend[Pos: val(.Trip atinstant sixfifty)]
project[Id, Line, Pos] consume

where feed, filter, symmjoin, extend, project, and con-
sume are operators of the Relational Algebra. Feed con-
verts a relation into a stream of tuples and consume does
the contrary, filter filters the stream of tuples given a con-
dition, extend adds a calculated attribute to the tuple, and
project projects the tuples to the given attributes. The dot
is used to retrieve an attribute from the given tuple.
Symmjoin is a symmetric variant of nested loop join, the
double dot notation refers to an attribute of a tuple of the
second argument.

3.2. The Optimizer

The optimizer provides as its core functionality cost-based
optimization of conjunctive queries. That is, it receives a
set of relations together with a collection of selection and
join predicates, and produces a plan. It employs a novel
algorithm for query optimization described in detail in
[GBA+04], based on shortest path search through a predi-
cate order graph. This technique is remarkably simple to
implement, yet is efficient and is guaranteed to find the
optimal plan even in the presence of expensive predi-
cates1.

The optimizer is written in PROLOG, using the SWI-
PROLOG system. PROLOG is an excellent language for
implementing optimizers, extensible optimizers in particu-
lar as new optimization rules can be formulated easily. It is
also very efficient for this kind of task. The SECONDO opti-
mizer handles queries with up to ten predicates in less than
a second. The number of relations involved plays no role.

On top of the conjunctive query optimizer, the essential
parts of an SQL-like language have been implemented.
The SQL notation was slightly adapted so that queries can
be written directly as PROLOG terms.

The algebra for moving objects, like other non-standard
applications, poses the following requirements to an opti-

Figure 3: SECONDO Components.

Figure 4: Rough architecture of the kernel

GUI

Optimizer

SECONDO Kernel

Query Processor & Catalog

Storage Manager & Tools

Command Manager

Alg1 SpatialAlgn... Temporal

1. This is, of course, relative to the given cost functions, assu-
ming correct estimations of selectivity and no correlations.

mizer:
• Selectivity estimation must work for complex data

types and an extremely large set of operations. The
traditional histogram-based approach does not scale
to this case.

• Operations can be expensive; hence expensive predi-
cates must be supported in optimization.

SECONDO provides selectivity estimation by sampling;
for each relation a small materialized sample is kept.
Unknown selectivities are determined in advance by send-
ing selectivity queries to the kernel before starting the
proper optimization process; they are then stored for later
use.

The cost for expensive predicates is determined as well
in the execution of the selectivity queries on samples by
measuring the actual execution time, subtracting overhead.

The beauty of this scheme is that optimization works to
a large extent automatically without manual work when a
new algebra with non-standard types is added. What has to
be provided manually are optimization rules for adding
specialized indexes, and possibly syntax rules for opera-
tions (the latter is very easy).

An example interaction with the SECONDO optimizer is
shown in Figure 5. It shows the example query from Sec-

tion 2 as written by the user. Here all symbols are written
in lower case, and the PROLOG notation for lists is used.
For the two predicates trip passes loc and sname contains
“Mehringdamm”, selectivities and predicate evaluation costs
are determined (for trip present sixfifty this was known
already). Then the query plan is constructed and shown.
The latter is a term of the executable level of SECONDO
that is readable and which can as well be typed in directly,
e.g. for experimenting.

3.3. The User Interface

A visualization of query results is possible in the graphical
user interface “Javagui” of the SECONDO system. Javagui

communicates with the system kernel and the optimizer
via TCP/IP. It can be extended by viewers. Each viewer
can display a set of different data types. In this way, Jav-
agui is able to display each type implemented in the sys-
tem kernel.

The user interface consists of three parts (see Figure 7),
namely the command area (top-left), the object manager
(top-right), and an area containing the current viewer (bot-
tom). In the command area, the user can input queries and
commands controlling Javagui. Javagui recognizes
whether a query is given at the executable level or in the
syntax of the optimizer. If the query is in optimizer syntax,
Javagui sends it to the optimizer and receives a plan at the
executable level. This plan is sent to the system kernel.
The result of a query is delivered in a generic format based
on nested list structures to the object-manager. It stores the
result of the query, selects a viewer able for displaying the
result, and finally it transfers the query result to this
viewer for further processing.

The HoeseViewer (named by its author) is a fairly
sophisticated viewer for spatial and spatio-temporal data.
This viewer can be extended for displaying further data
types using display classes. Existing implementations
include classes for displaying:

• simple types like integer and string
• spatial types like point, line, and region
• temporal types, e.g. moving reals
• spatio-temporal types, for example, moving points

and moving regions
The HoeseViewer contains in principle three areas dis-

playing different informations about query results. At the
left, textual information is shown. The right part is divided
into a big area displaying spatial and spatio-temporal
objects and a smaller area for temporal data, e.g. periods
or moving reals (this area is not shown in Figure 7).

Depending on the type to display, each display class
converts an object given as a nested list into an internal
format, e.g. a string or a geometrical object. For spatio-
temporal objects, a display class has to provide a method
taking an instant and returning the shape of this object at
this instant or nothing when the object is not defined at
this time.

If an object does not fit well into existing areas, the
class implementer is free to create a new window. This is
done for example within display classes for text, pictures
and moving reals.

For spatial and spatio-temporal objects, the appearance
(linewidth, filling etc.) can be changed to the user’s prefer-
ences. This and further functionality like zooming and
labeling of objects are part of the HoeseViewer. A display
class must not worry about such things.

Moving spatial objects are animated. The animation is
controlled using a few buttons and a slider (Figure 6).

Using the time slider, any instant can be selected. The ani-

 opt-server >
 optimization-input : select [id, line, val(trip atinstant sixfifty) as
pos] from [trains, stations] where [trip passes loc, sname contains
"Mehringdamm", trip present sixfifty]

Computing best Plan ...

Elapsed Time: 1218 ms
Predicate Cost: 0.0994104 ms
Selectivity : 0.119884

Elapsed Time: 62 ms
Predicate Cost: 0.001 ms
Selectivity : 0.00578035
Destination node 7 reached at iteration 5
Height of search tree for boundary is 2

 optimization-result : Trains feed project[Id, Line, Trip] Stations
feed project[Loc, SName] filter[(.SName contains
"Mehringdamm")] symmjoin[(.Trip passes ..Loc)] filter[(.Trip
present sixfifty)] extend[Pos: val((.Trip atinstant sixfifty))]
project[Id, Line, Pos] consume

 opt-server >

Figure 5: Protocol of the SECONDO optimizer

Figure 6: Controlling the animation

Figure 7: The graphical user interface
mation speed can be doubled or halved by the correspond-
ing buttons. By the remaining buttons, the animation can
be started/stopped or set to its begin or to its end. Below
the time slider, the current time of the animation and the
spatial position of the cursor can be seen.

If an object is selected, the object is kept in the visible
area of the animation. For seeing moving objects within a
spatial context, a picture, e.g. a city map, can be used as
background image.

Non-spatial temporal objects can be shown at the bot-
tom right or in a new window. The default is the display of
the single units within the HoeseViewer. For moving real
values an implementation exists opening a new window
showing the value of this object as a function of time.

4. What Will be Demonstrated

The demonstration will be focused on query execution and
visualization, and will be divided into parts, using the fol-
lowing databases.

The Berlin Database. The Berlin database contains
several relations with spatial objects such as streets, under-
ground train lines, green and water areas, sightseeing
spots, restaurants, etc. and a relation containing several
lines of underground trains as moving points. We will
show the capabilities of all three components of SECONDO
performing several different queries in this database.

GPS Data. This database contains some real data about
tracings collected using a GPS device. The main focus on
this demonstration will be to show the
animation of moving objects in the
user interface of SECONDO.

Moving Region Data. This small
sample database contains some
regions, moving points, and moving
regions. We will show with this exam-
ple query processing using the moving
region data type.

Big Berlin Database. We translated
the Berlin database five times in all
directions: x, y, and time. We then have
a database that is 125 times larger than
the Berlin database. With this database
we can show how queries scale with
bigger data sets and how indexes are
used.

Acknowledgements

We thank Slaven Rezic for allowing us
to use the Berlin database taken from
the BBBike application (http://
bbbike.sourceforge.net). We
also thank everybody that has contrib-
uted in the development of SECONDO
and the algebra for moving objects,
especially Markus Spiekermann,
Zhiming Ding, Frank Hoffmann, Tho-
mas Höse, and Holger Münx.
References

[CFG+03] J. A. Cotelo Lema, L. Forlizzi, R. H. Güting, E.
Nardelli, M. Schneider, Algorithms for Moving Objects Data-
bases, The Computer Journal, 46(6), 2003.

[DG00] S. Dieker and R.H. Güting, Plug and Play with Query
Algebras: SECONDO. A Generic DBMS Development Envi-
ronment. Proc. IDEAS 2000, 380-392.

[FGNS00] L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schnei-
der, A Data Model and Data Structures for Moving Objects
Databases. In Proc. ACM SIGMOD Intl. Conf. on Manage-
ment of Data, 2000, 319-330.

[GAA+05]R.H. Güting, V.T. de Almeida, D. Ansorge, T. Behr,
Z. Ding, F. Hoffmann, M. Spiekermann, and U. Telle, SEC-
ONDO: An Extensible DBMS Platform for Research Prototyp-
ing and Teaching. In Proc. 21st Intl. Conf. on Data
Engineering (ICDE), 2005, 1115-1116.

[GBA+04]R.H. Güting, T. Behr, V.T. de Almeida, Z. Ding, F.
Hoffmann, and M. Spiekermann, SECONDO: An Extensible
DBMS Architecture and Prototype. Fernuniversität Hagen,
Informatik-Report 313, 2004.

[GBE+00] R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen,
N.A. Lorentzos, M. Schneider, and M. Vazirgiannis, A Foun-
dation for Representing and Querying Moving Objects. ACM
Transactions on Database Systems, 25(1): 1-42, 2000.

[GRS95] R.H. Güting, T. de Ridder, and M. Schneider, Imple-
mentation of the ROSE Algebra: Efficient Algorithms for
Realm-Based Spatial Data Types. In Proc. 4th. Intl. Symp. on
Advances in Spatial Databases (SSD), 1995, 216-239.

[GS05] R.H. Güting and M. Schneider, Moving Objects Data-
bases. Morgan Kaufmann Publishers, 2005.

	1. Introduction
	2. Algebra for Moving Objects
	3. Moving Objects Algebra in Secondo
	4. What Will be Demonstrated

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

