External Representation of Spatial and
Spatio-Temporal Values

Jose Antonio Cotelo Lema
extended by Thomas Behr and Christian Duentgen

April 2004

Last change: 21.6.2010

1 Introduction

For supporting the diffusion and interchange of any kindhédimation between systems, a
well defined and unambiguous specification of an externaésgmtation for such informa-
tion is required. Therefore, we need to specify an extesm@asentation for the spatial and
spatio-temporal information used by tB€DB package. The main goal in such a format
must be to allow the exchange of this information betweenptetaly different platforms.

1.1 Notation

In the definitions of the external representation of spaimal spatio-temporal data types in
the STDB package, the following nomenclature will be used:

<x> avaluex, represented using the string representation correspgtalihe type of such
avalue.

<X1> <X9> - -+ <X, > a list of n values. If nothing explicit is said)> 0. Note thaih=0
means an empty list.

2 Numerical Representation

For the representation of spatial and spatio-temporal datdevant issue is the representa-
tion of their numeric values (used for representing coatdisg, instants in time or functions
from the time domain to the space domain). A requirementdsttie representation used
for such numeric values must be able to represent their sauactly, so the process of
exporting and importing data will be safe and will allow (lxample) to restore the data
that we have previously exported.

For ensuring the robustness and closure of spatial andbsieatiporal operations, the
use of rational numbers for representing coordinates amelis required, and the precision
used in such numbers could be arbitrarily large. Therefareneed to specify how the
numeric values of spatial and spatio-temporal types mustfiresented in such cases. For
this purpose we will define the external representation ofaxiliary type Numeric, to
which belong the coordinates in space, time instants ancitbificients of spatio-temporal
functions. When representing a spatial or spatio-tempataley it is allowed to mix the
different representation formats for thieimeric values in it, using for eacNumeric value
the more appropiate one.

Integer numbers: An integerNumeric valuel can be represented in two different ways,
depending on the size of the integer value:

e Signed integers of 32 or less bitsin this case it can be represented just as the
string representation of the integer number, optionaltyhsign (if no sign appears,
positive is assumed).

NOTE: such a representation of an integer number does NOT entlese t
integer value in brackets.

¢ Signed integers of more than 32 bits:this category includes arbitrary precision
integers. In this case the integer number is represented imeger in bas@3?, in
the form:

(largeint <sign> <size> <@, 1> --- <my>)
where:

— <sign> can be either the symbol “+” (positive number), “-&frative number)
or nothing (interpreted as positive).

— <size> is an integer number (its string representationhuhegfithe number of
elementsn; appearing after it<size> must be bigger than 0.

— <m;> is the string representation of a 32 bits unsigned integer.
The valuel represented is:
| =sign valuex (msize_l*(232)8ize_l+~ Sy +(252) " my)
where<sign value> is 1 if <sign> is positive (“+” or nothing) and -1 iksign>
is negative (“-").

Integer numbers of 32 or less bits can (optionally) be represi using the format
for integers of more than 32 bits.

Real numbers: A real number is represented as the string representatitre oéal num-
ber. The string is formed in the familar way used in the mosgprmming languages like
C or Pascal. Because no cast function exists, a dot or an erpmrequired to distinguish
a real number from an integer.

Rational numbers: A rationalNumeric valueR is represented as:
(‘rat <sign> <intPart> <numDecimal> / <denomDecimal>)
where

e <sign> can be either the symbol “+” (positive number), “-" (negatimumber) or
nothing (interpreted as positive).

e <intPart>, <numDecimal> and<denomDecimal> are non negativeX 0) integer
Numeric values (each of them in any of the formats defined abow@ymDec-
imal> < <denomDecimal> and g.c.d€numDecimal>, <denomDecimal>)=1 (if
<numDecimal> = 0 then<denomDecimal> = 1).

The value ofR represented is:

R=sign_value * (intPart + jumDecimal

where<sign_value> is 1 if <sign> is positive (“+” or nothing) and -1 ik sign> is negative

(u_”).
If the value ofR is in fact an integer value, it can (optionally) be represdris an
integerNumeric value.

3 Spatial Values
3.1 Point
(<xCoord> <yCoord>) | undef

where<xCoord> and <yCoord> are theX andY coordinates of the point respectively.
Both areNumeric values. As an alternative, the undefined point is repredédnt¢he string
undef,

3.2 Points

(<x1> <1) (Xo> <) -+ (K> <y,>)) | undef

where €x;> <y;>) represents a defned point value angd 0.

3.3 Line

(<seg><seg@>--- <seg,>) | undef

where<sgg;> is a segment value ang>0.
A segment value is represented as:

(<X1> <y1> <xp> <y»>)

where<x;> and<y,;> are the coordinates of the end pointAll of them areNumeric
values.

3.4 Region

(<facg > <face> <face,>) | undef

where<face;> represents a face in the space, as a polygon with (optiQriadies, and
n>0.
A face is represented as:

(<outer_cycle> <hole_cycle <hole_cyclg> - - - <hole_cyclg>)

where theouter_cycle and all thehole _cycles are cycles (simple polygons) and> O (this
is, it can be a face without holes).
A cycle is represented as:

(<vertex > <vertex> - - - <vertex,>)

being <vertex;> and <Vertex; moqn)+1> consecutive vertices (arfience <vertex;> #
<vertex,>) andn > 3.
A vertex is aPoint value.

4 Representation of Time

They are two types of time. The first oneliast ant , and the second onedsir at i on.
If a time value is used internal (e.g. in moving objects),libiewill be:
(type <tinmeval ue>)
where t ype is a Symbol atom which can holds one of the valdes nst ant,
dur ati on}. For the reason of compatibility we allow also the vatiag et i ne as an
alias for an instant type.

The representations eft i neval ue> are described in the next subsections.

4.1 String Representation
A <timevalue> of typei nst ant can be represented as string in the following format:
year - nont h- day[- hour : m nut e[: second[. m |l isecond]]] | undef

The squared brackets indicate optionally parts, the \adrtilze separates exclusive al-
ternatives. All contained values are integers which mushliee appropriate interval.

4.2 Real Representation

A <timevalue> can just be represented as an real value. The conversiorebetve for-
mats is described in sectid??. This format is accepted biynst ant anddur ati on

types.

4.3 Julian Representation

A <timevalue> in the Julian representation is defined dur at i on types as follow:
(day millisecond) | undef
day can be any integer and millisecond is an integer in the iatd®/86400000].

4.4 Gregorian Representation

In the Gregorian Representation (fonst ant s only) a<timevalue> is written down as:
(day month year [hour minute [second [mllisecond]]]) | undef

Like in the string representation (see secti®), the squared brackets are not part of the
representation but indicates optionally information. Madues of the omitted parts are
assumed to be zero. The triple (day, month, year) must beic datle. The remaining
values must be in the appropriate interval.

4.5 Conversions between Representations of Time

Both types of time can be represented by a tymay, nilliseconds). The Mean-
ing for a duration type is clear. For an instant type this ¢uplthe difference to a fixed
NULL_DATE. Because thidNULL_DATE is given in the Julian calender, we denote this
representation as Julian Representation. The conversiovebnr eal value and Julian
representation is straightforward:

JulToReal : int x int — IR

JulToReal(day, millisecond) = day + "illisccond

i 86400000
The used operators are working on real numbers.

The another direction is computed as follow. Note a poss$isieof precision.
RealToJul : IR — (int,int)
RealToJul(instant) = (day, milli)

where: _

int(instant) if instant > 0 orint(instant) = instant
day = L .

int(instant) — 1 otherwise

a1 = tmp if instant > 0 or int(instant) = instant
T tmp + 86400000 otherwise

where : tmp = int ((instant-int(instant))*86400000+0.5)

A quadrupel(hour, min, sec, millisec) can be converted into an single integer repre-
senting all milliseconds using the following formula:
mallis : int X int X int X int — int
mallis(h, min, sec, msec) = (((h - 60) + min) - 60 + sec) - 1000 + msec

The inverse direction can be computed as follow:
splitmillis : int — (int,int, int, int)
splitmillis(ms) = (h, min, sec, msec)
where:

h =ms/3600000 mod 24

min = ms/60000 mod 60

sec = ms/1000 mod 60

msec = ms mod 1000

The functions for converting a Julian Date into a Gregoriatedand vice versa are
given in the appendix.

5 Spatio-temporal Values

Basically any spatio-temporal value of tygenoving_type> is represented as a string:

(<unit;> <unity> - - - <unit,>) | undef

where<unit;> is a unit value of the unit type correspondingtooving_type> andn > 0.
A unit value of a type<moving_type> is represented as:

(<interval> <map_type_value>)
An <interval> value is represented as:
(<start> <end> <leftclosed> <rightclosed>)

where<start> and<end> are defined instances of typestant representing the start and
end instant of the time interval, respectively, afi@ftclosed> and<rightclosed> are de-
fined boolean values defining if the interval is op&ad<€) or closed {rue) at the start or
end time instant, respectively.

The representation ofamap_type value> depends on the specifigpe.

5.1 moving(point)
The representation of@map_point_value> is:
(<X1> <y > <X9> <yp>)

where % and y; areNumeric values. In a given Unit
((<start> <end> <leftclosed> <rightclosed>) (&x<y;> <X»> <y,>)) the point moves in
the given interval from (xy;) to (X2,y2). The position of a moving point can be computed
for a single unit using the following function:
pos : unit(point) X instant — point

undefined ifl ¢ (selr)
pos(((selr)(x1yrmey2))),I) =1 (x1,y1) ifs=eandl e (selr)

(xr,y1) otherwise

where:
rr=x1+ i:i “(z2 — 1)
yr=u1+ =2 (y2— 1)

5.2 moving(points)
The representation ofemap_points value> is:
(<map_point_valug> <map_point_valug> - - - <map_point_valug>)
with n> 0. If the movingpoints value is empty for a given time interval, no unit referring
to such a time interval appears in its representation.
5.3 moving(line)
The representation ofamap _line value> is:
(<map_seg_valye <map_seg_valye - - - <map_seg_valyg>)

where<map_seg_value;> is the mapping value of a segment and Q. If the movingline
value is empty for a given time interval, no unit referringstach a time interval appears in
its representation.

A <map_seg value> is represented as:

(<map_point_value;> <map_point_value,>)
representing themap_point_value> values of its end points.

Restriction: a<map_seg_value> must be defined over a plane in the 3D spac¥, Time.

1This is the reason why £ 0.

5.4 moving(region)

The representation ofamap_region value> is:
(<map_face valuer <map_face_ valuye --- <map_face_valug>)

where n> 0.

If the movingregion value is empty for a given time interval, no unit referringstaech a
time interval appears in its representation.

The representation ofemap_face value> is the same as the spatial representation of
a<face>, but in this case each vertex of its cycles is representedasap_point_value>.

Restriction: in a similar way as with the representation of <anap line value>,
any segment defined by two consecutive verticesiap point_value,> and
<map_point_value; ,oqn)+1> in a cycle of a<map_face value> must be defined
over a plane in the 3D spaeg Y, Time.

A Conversion from a Gregorian Date to Julian Date and
vice versa

#i ncl ude <math. h>
static const |ong NULL_DAY = 2451547;
/1 this corresponds to 3.1.2004 and nust be a nultiple of 7

| *
The function ToJdulian conputes the Julian day nunber of the given
Gregorian date + the reference tine.Positive year signifies A D.,
negative year B.C. Renenber that the year after 1 B.C. was 1 A D.
Julian day 0 is a Monday.
This algorithmis fromPress et al., Nunerical Recipes
in C, 2nd ed., Canbridge University Press 1992

*/

static long Todulian(int year, int nmonth, int day){
int jy = year;
if (year < 0)
jy++;
int jm= nonth;
if (nonth > 2)
j
el se{
jy--;
jm+= 13;
}

int jul = (int)(floor(365.25 = jy) + floor(30.6001xjn)
+ day + 1720995.0);
int 1GREG = 15 + 31%(10+12+1582);
/'l Gregorian Cal endar adopted Cct. 15, 1582
if (day + 31 = (month + 12 x year) >= | GREQ) {
/'l change over to G egorian cal endar
int ja = (int)(0.01 * jy);
jul +=2 - ja + (int)(0.25 * ja);
}
return jul - NULL_DAY;

}

[*
This function converts a Julian day to a date in the Gegorian cal ender.

This algorithmis fromPress et al., Nunerical Recipes
in C 2nd ed., Canbridge University Press 1992

*/
static void ToGregorian(long Julian, int &ear, int &month, int &day){
int j=(int)(Julian+NULL_DAY);
int ja=j;
int JGREG = 2299161;
/+ the Julian date of the adoption of the Gregorian
cal endar
*/

if (j >= J®{

[+ cross-over to Gregorian Cal endar produces this
correction

*/
int jalpha = (int)(((float)(j - 1867216) - 0.25)/36524.25);
ja +=1 + jalpha - (int)(0.25 * jalpha);

}

int jb = ja + 1524;

int jc = (int)(6680.0 + ((float)(jb-2439870) - 122.1)/365.25);
int jd = (int)(365 * jc + (0.25 * jc));

int je = (int)((jb - jd)/30.6001);

day = jb - jd - (int)(30.6001 * je);
month = je - 1,

if (nmonth > 12) nonth -= 12;

year = jc - 4715;

if (month > 2) --year;

if (year <= 0) --year;

