
External Representation of Spatial and
Spatio-Temporal Values

Jose Antonio Cotelo Lema
extended by Thomas Behr and Christian Duentgen

April 2004

Last change: 21.6.2010

1 Introduction

For supporting the diffusion and interchange of any kind of information between systems, a
well defined and unambiguous specification of an external representation for such informa-
tion is required. Therefore, we need to specify an external representation for the spatial and
spatio-temporal information used by theSTDB package. The main goal in such a format
must be to allow the exchange of this information between completely different platforms.

1.1 Notation

In the definitions of the external representation of spatialand spatio-temporal data types in
theSTDB package, the following nomenclature will be used:

<x> a valuex, represented using the string representation corresponding to the type of such
a value.

<x1> <x2> · · · <xn> a list of n values. If nothing explicit is said,n≥0. Note thatn = 0
means an empty list.

2 Numerical Representation

For the representation of spatial and spatio-temporal data, a relevant issue is the representa-
tion of their numeric values (used for representing coordinates, instants in time or functions
from the time domain to the space domain). A requirement is that the representation used
for such numeric values must be able to represent their values exactly, so the process of
exporting and importing data will be safe and will allow (forexample) to restore the data
that we have previously exported.

For ensuring the robustness and closure of spatial and spatio-temporal operations, the
use of rational numbers for representing coordinates and time is required, and the precision
used in such numbers could be arbitrarily large. Therefore,we need to specify how the
numeric values of spatial and spatio-temporal types must berepresented in such cases. For
this purpose we will define the external representation of anauxiliary typeNumeric, to
which belong the coordinates in space, time instants and thecoefficients of spatio-temporal
functions. When representing a spatial or spatio-temporal value, it is allowed to mix the
different representation formats for theNumeric values in it, using for eachNumeric value
the more appropiate one.

Integer numbers: An integerNumeric valueI can be represented in two different ways,
depending on the size of the integer value:

• Signed integers of 32 or less bits:in this case it can be represented just as the
string representation of the integer number, optionally with sign (if no sign appears,
positive is assumed).

1

NOTE: such a representation of an integer number does NOT enclose the
integer value in brackets.

• Signed integers of more than 32 bits:this category includes arbitrary precision
integers. In this case the integer number is represented as an integer in base232, in
the form:

(largeint <sign> <size> <msize−1> · · · <m0>)

where:

– <sign> can be either the symbol “+” (positive number), “-” (negative number)
or nothing (interpreted as positive).

– <size> is an integer number (its string representation) defining the number of
elementsmi appearing after it.<size> must be bigger than 0.

– <mi> is the string representation of a 32 bits unsigned integer.
The valueI represented is:

I = sign_value ∗ (msize−1∗
(

232
)size−1

+· · ·+m1 ∗
(

232
)1

+ m0)

where<sign_value> is 1 if <sign> is positive (“+” or nothing) and -1 if<sign>
is negative (“-”).

Integer numbers of 32 or less bits can (optionally) be represented using the format
for integers of more than 32 bits.

Real numbers: A real number is represented as the string representation ofthe real num-
ber. The string is formed in the familar way used in the most programming languages like
C or Pascal. Because no cast function exists, a dot or an exponent is required to distinguish
a real number from an integer.

Rational numbers: A rationalNumeric valueR is represented as:

(rat <sign> <intPart> <numDecimal> / <denomDecimal>)

where

• <sign> can be either the symbol “+” (positive number), “-” (negative number) or
nothing (interpreted as positive).

• <intPart>, <numDecimal> and<denomDecimal> are non negative (≥ 0) integer
Numeric values (each of them in any of the formats defined above),<numDec-
imal> < <denomDecimal> and g.c.d.(<numDecimal>, <denomDecimal>) = 1 (if
<numDecimal> = 0 then<denomDecimal> = 1).

The value ofR represented is:

R = sign_value ∗ (intPart + numDecimal
denomDecimal)

where<sign_value> is 1 if <sign> is positive (“+” or nothing) and -1 if<sign> is negative
(“-”).

If the value ofR is in fact an integer value, it can (optionally) be represented as an
integerNumeric value.

3 Spatial Values

3.1 Point

(<xCoord> <yCoord>) | undef

where<xCoord> and <yCoord> are theX and Y coordinates of the point respectively.
Both areNumeric values. As an alternative, the undefined point is represented by the string
undef.

2

3.2 Points

((<x1> <y1>) (<x2> <y2>) · · · (<xn> <yn>)) | undef

where (<xi> <yi>) represents a defned point value andn≥0.

3.3 Line

(<seg1> <seg2> · · · <segn>) | undef

where<segi> is a segment value andn≥0.
A segment value is represented as:

(<x1> <y1> <x2> <y2>)

where<xi> and <yi> are the coordinates of the end pointi. All of them areNumeric
values.

3.4 Region

(<face1> <face2> <facen>) | undef

where<facei> represents a face in the space, as a polygon with (optionally) holes, and
n≥0.

A face is represented as:

(<outer_cycle> <hole_cycle1> <hole_cycle2> · · · <hole_cyclen>)

where theouter_cycle and all thehole_cycles are cycles (simple polygons) andn≥0 (this
is, it can be a face without holes).

A cycle is represented as:

(<vertex1> <vertex2> · · · <vertexn>)

being <vertexi> and <vertex(i mod n)+1> consecutive vertices (andhence <vertex1> 6=
<vertexn>) andn≥3.

A vertex is aPoint value.

4 Representation of Time

They are two types of time. The first one isinstant, and the second one isduration.
If a time value is used internal (e.g. in moving objects), thelist will be:
(type <timevalue>)
where type is a Symbol atom which can holds one of the values{ instant,
duration}. For the reason of compatibility we allow also the valuedatetime as an
alias for an instant type.

The representations of<timevalue> are described in the next subsections.

4.1 String Representation

A <timevalue> of typeinstant can be represented as string in the following format:
year-month-day[-hour:minute[:second[.millisecond]]] | undef

The squared brackets indicate optionally parts, the vertical line separates exclusive al-
ternatives. All contained values are integers which must bein the appropriate interval.

4.2 Real Representation

A <timevalue> can just be represented as an real value. The conversion beween the for-
mats is described in section??. This format is accepted byinstant andduration
types.

3

4.3 Julian Representation

A <timevalue> in the Julian representation is defined forduration types as follow:
(day millisecond) | undef

day can be any integer and millisecond is an integer in the interval [0,86400000[.

4.4 Gregorian Representation

In the Gregorian Representation (forinstants only) a<timevalue> is written down as:
(day month year [hour minute [second [millisecond]]]) | undef

Like in the string representation (see section??), the squared brackets are not part of the
representation but indicates optionally information. Thevalues of the omitted parts are
assumed to be zero. The triple (day, month, year) must be a valid date. The remaining
values must be in the appropriate interval.

4.5 Conversions between Representations of Time

Both types of time can be represented by a tuple(day, milliseconds). The Mean-
ing for a duration type is clear. For an instant type this tuple is the difference to a fixed
NULL_DATE. Because thisNULL_DATE is given in the Julian calender, we denote this
representation as Julian Representation. The conversion betweenreal value and Julian
representation is straightforward:
JulToReal : int × int → IR
JulToReal(day,millisecond) = day + millisecond

86400000
The used operators are working on real numbers.

The another direction is computed as follow. Note a possiblelost of precision.
RealToJul : IR → (int, int)
RealToJul(instant) = (day,milli)
where:

day =



int(instant) if instant > 0 or int(instant) = instant

int(instant) − 1 otherwise

milli =



tmp if instant > 0 or int(instant) = instant

tmp + 86400000 otherwise

where : tmp = int ((instant-int(instant))*86400000+0.5)

A quadrupel(hour,min, sec,millisec) can be converted into an single integer repre-
senting all milliseconds using the following formula:
millis : int × int × int × int → int
millis(h,min, sec,msec) = (((h · 60) + min) · 60 + sec) · 1000 + msec

The inverse direction can be computed as follow:
splitmillis : int → (int, int, int, int)
splitmillis(ms) = (h,min, sec,msec)
where:

h = ms/3600000 mod 24

min = ms/60000 mod 60

sec = ms/1000 mod 60

msec = ms mod 1000

The functions for converting a Julian Date into a Gregorian date and vice versa are
given in the appendix.

5 Spatio-temporal Values

Basically any spatio-temporal value of type<moving_type> is represented as a string:

4

(<unit1> <unit2> · · · <unitn>) | undef

where<uniti> is a unit value of the unit type corresponding to<moving_type> andn≥0.
A unit value of a type<moving_type> is represented as:

(<interval> <map_type_value>)

An <interval> value is represented as:

(<start> <end> <leftclosed> <rightclosed>)

where<start> and<end> are defined instances of typeinstant representing the start and
end instant of the time interval, respectively, and<leftclosed> and<rightclosed> are de-
fined boolean values defining if the interval is open (false) or closed (true) at the start or
end time instant, respectively.

The representation of a<map_type_value> depends on the specifictype.

5.1 moving(point)

The representation of a<map_point_value> is:

(<x1> <y1> <x2> <y2>)

where xi and yi areNumeric values. In a given Unit
((<start> <end> <leftclosed> <rightclosed>) (<x1> <y1> <x2> <y2>)) the point moves in
the given interval from (x1,y1) to (x2,y2). The position of a moving point can be computed
for a single unit using the following function:
pos : unit(point) × instant → point

pos(((s e l r)(x1y1x2y2))), I) :=







undefined ifI /∈ (s e l r)
(x1, y1) if s = e and I ∈ (s e l r)
(xI , yI) otherwise

where:

xI = x1 + I−s

e−s
· (x2 − x1)

yI = y1 + I−s

e−s
· (y2 − y1)

5.2 moving(points)

The representation of a<map_points_value> is:

(<map_point_value1> <map_point_value2> · · · <map_point_valuen>)

with n > 0. If the movingpoints value is empty for a given time interval, no unit referring
to such a time interval appears in its representation.1

5.3 moving(line)

The representation of a<map_line_value> is:

(<map_seg_value1> <map_seg_value2> · · · <map_seg_valuen>)

where<map_seg_valuei> is the mapping value of a segment and n> 0. If themovingline
value is empty for a given time interval, no unit referring tosuch a time interval appears in
its representation.

A <map_seg_value> is represented as:

(<map_point_value1> <map_point_value2>)

representing the<map_point_value> values of its end points.

Restriction: a<map_seg_value> must be defined over a plane in the 3D spaceX, Y, Time.

1This is the reason whyn 6= 0.

5

5.4 moving(region)

The representation of a<map_region_value> is:

(<map_face_value1> <map_face_value2> · · · <map_face_valuen>)

where n> 0.
If the movingregion value is empty for a given time interval, no unit referring tosuch a

time interval appears in its representation.
The representation of a<map_face_value> is the same as the spatial representation of

a<face>, but in this case each vertex of its cycles is represented as a<map_point_value>.

Restriction: in a similar way as with the representation of a<map_line_value>,
any segment defined by two consecutive vertices<map_point_valuei> and
<map_point_value(i mod n)+1> in a cycle of a<map_face_value> must be defined
over a plane in the 3D spaceX, Y, Time.

A Conversion from a Gregorian Date to Julian Date and
vice versa

#include <math.h>
static const long NULL_DAY = 2451547;
// this corresponds to 3.1.2004 and must be a multiple of 7

/*
The function ToJulian computes the Julian day number of the given
Gregorian date + the reference time.Positive year signifies A.D.,
negative year B.C.Remember that the year after 1 B.C. was 1 A.D.
Julian day 0 is a Monday.
This algorithm is from Press et al., Numerical Recipes
in C, 2nd ed., Cambridge University Press 1992

*/

static long ToJulian(int year, int month, int day){
int jy = year;
if (year < 0)

jy++;
int jm = month;
if (month > 2)

jm++;
else{

jy--;
jm += 13;

}

int jul = (int)(floor(365.25 * jy) + floor(30.6001*jm)
+ day + 1720995.0);

int IGREG = 15 + 31*(10+12*1582);
// Gregorian Calendar adopted Oct. 15, 1582
if (day + 31 * (month + 12 * year) >= IGREG){

// change over to Gregorian calendar
int ja = (int)(0.01 * jy);
jul += 2 - ja + (int)(0.25 * ja);

}
return jul-NULL_DAY;

}

/*
This function converts a Julian day to a date in the Gregorian calender.

This algorithm is from Press et al., Numerical Recipes
in C, 2nd ed., Cambridge University Press 1992

*/
static void ToGregorian(long Julian, int &year, int &month, int &day){

int j=(int)(Julian+NULL_DAY);
int ja = j;
int JGREG = 2299161;
/* the Julian date of the adoption of the Gregorian

calendar

*/

6

if (j >= JGREG){
/* cross-over to Gregorian Calendar produces this

correction

*/
int jalpha = (int)(((float)(j - 1867216) - 0.25)/36524.25);
ja += 1 + jalpha - (int)(0.25 * jalpha);

}
int jb = ja + 1524;
int jc = (int)(6680.0 + ((float)(jb-2439870) - 122.1)/365.25);
int jd = (int)(365 * jc + (0.25 * jc));
int je = (int)((jb - jd)/30.6001);
day = jb - jd - (int)(30.6001 * je);
month = je - 1;
if (month > 12) month -= 12;
year = jc - 4715;
if (month > 2) --year;
if (year <= 0) --year;

}

7

