
SECONDOSECONDOSECONDO

Version 4.2
User Manual 1

November 12, 2019

Ralf Hartmut Güting, Fabio Valdés, Holger Helmut Hennings, Jan Kristof
Nidzwetzki, Florian Heinz, Thomas Behr

FernUniversität in Hagen

Faculty for Mathematics and Computer Science
Database Systems for New Applications

59084 Hagen, Germany

1This work was partially supported by a grant Gu 293/8-2 from the Deutsche Forschungsgemeinschaft
(DFG), project ”Datenbanken für bewegte Objekte” (Databases for Moving Objects)

Contents

1 Introduction 1

1.1 The Secondo Kernel . 1

1.2 The Optimizer . 2

1.3 The Javagui . 3

1.4 The Two Language Levels . 5

1.5 This Manual . 6

2 Installation 7

2.1 Trying Secondo . 7

2.2 Full Secondo Installation . 7

2.2.1 SDK Installation on openSUSE, Fedora, and Ubuntu 7

2.2.2 SDK Installation on macOS . 8

2.2.3 SDK Installation on other Systems 8

2.2.4 Building Secondo . 9

3 Starting Secondo 10

3.1 Prerequisites . 10

3.2 Single User Interfaces . 10

3.2.1 SecondoTTYBDB . 10

3.2.2 SecondoPL . 12

3.2.3 SecondoPLTTY . 13

3.2.4 NT-Versions . 14

3.3 Client Server Architecture . 14

3.3.1 SecondoMonitor . 14

3.3.2 SecondoTTYCS . 16

3.3.3 SecondoPLCS / SecondoPLTTYCS 16

3.3.4 OptimizerServer . 16

3.3.5 Javagui . 17

4 Querying Secondo 18

4.1 Executable Language . 18

4.1.1 Stream Processing . 18

4.1.2 Operator Tree . 18

4.1.3 Direct Execution of the Query Plan 19

4.1.4 Constants . 20

4.1.5 Type Expressions . 20

4.1.6 Value Expressions . 21

4.1.7 Parameter Functions . 21

4.1.8 Operator Memory . 22

4.1.9 Commands . 23

4.1.10 Online Help . 25

4.2 SQL-like Language . 26

4.2.1 General Information . 26

4.2.2 Syntax of the Language . 27

4.2.3 Updating the Optimizer’s Knowledge 30

4.2.4 Optimizer Options . 31

5 Examples 32

5.1 Preparations . 32

5.2 Creating an Empty Relation . 33

5.2.1 Executable Language . 33

5.2.2 SQL-like Language . 33

5.3 Inserting Tuples into a Relation . 33

5.3.1 Executable Language . 33

5.3.2 SQL-like Language . 34

5.4 Removing Tuples from a Relation . 34

5.4.1 Executable Language . 34

5.4.2 SQL-like Language . 34

5.5 Changing Tuples in a Relation . 35

5.5.1 Executable Language . 35

5.5.2 SQL-like Language . 35

5.6 Importing Data from Files . 35

5.6.1 Comma Separated Values . 35

5.6.2 DBase Files . 36

5.6.3 Shape Files . 36

5.6.4 Other File Formats . 37

5.7 Finding Data . 37

5.7.1 Executable Language . 37

5.7.2 SQL-like Language . 37

5.8 Creating Indexes . 37

5.8.1 Executable Language . 37

5.8.2 SQL-like Language . 38

5.9 Using Indexes . 39

5.9.1 Executable Language . 39

5.9.2 SQL-like Language . 40

5.10 Updating Relations with Indexes . 40

5.11 Sorting . 41

5.11.1 Executable Language . 41

5.11.2 SQL-like Language . 41

5.12 Aggregations . 41

5.12.1 Executable Language . 41

5.12.2 SQL-like Language . 42

5.13 Grouping . 42

5.13.1 Executable Language . 42

5.13.2 SQL-like Language . 42

5.14 Combining Several Relations (Joins) . 43

5.14.1 Executable Language . 43

5.14.2 SQL-like Language . 44

5.15 Exporting Data . 45

5.16 Writing Scripts . 45

6 The Javagui 47

6.1 Preface . 47

6.2 Javagui in General . 47

6.3 Javagui Configurations . 54

6.4 Viewers . 55

6.4.1 Introduction . 55

6.4.2 HoeseViewer . 56

6.4.3 UpdateViewer/UpdateViewer2 . 61

6.4.4 RelationViewer . 68

6.4.5 Other Viewers . 73

7 Customization 76

7.1 Changing the Set of Algebra Modules . 76

7.2 Configuration of Parameters . 76

7.3 Command Line Parameters . 77

Secondo User Manual 1

1 Introduction

Secondo is a DBMS prototype built with a focus on extensibility and support of spatial and
spatio-temporal data. In fact, the desire to support spatial data types and their operations
led to the design of Secondo‘s extensible architecture.

Spatial data types such as point, line, and region allow one to represent geometries such as
points, curves, or areas in the Euclidean plane, for example, the location of a lighthouse, a
road, or a forest. Operations allow one to do calculations with such objects, for example,
determine whether the lighthouse is inside a forest, or compute the part of a road within a
forest.

Early work [Güt88] describes the integration of spatial data types into a relational data
model, the so-called georelational algebra. Spatial data types can be used as attributes within
a relation and relational operations such as selection or join can use spatial operations on
attribute values. Meanwhile, all major DBMS implementations support spatial data types.

To integrate spatial data types into a DBMS implementation, one needs to implement data
structures for the types and methods (algorithms) for the operations. In addition, one needs
special types of index structures (such as R-trees) for indexing spatial data and specialized
algorithms to perform spatial joins.

It would not be a good idea to build a DBMS with just these extensions. There are many
other applications that may be supported by a specialized set of data types and operations,
that is, an algebra. For example, one may want to store images, music, text documents,
molecules, CAD shapes, all with their respective operations and indexing techniques. Hence
one should build a DBMS extensible at least by data types, operations, and index structures.

What we have described so far is a relational or object-relational model extensible by abstract
data type packages (algebras). This is to some extent implemented in current open-source or
commercial DBMS. On the other hand, there is also a lot of interest in systems supporting
data models going beyond the relational model such as XML or graph databases.

1.1 The Secondo Kernel

Secondo takes a more radical view and structures the entire execution system (called the
kernel) as a set of algebras. Hence we not only have algebras for attribute types but also to
represent relations with relational operations, indexes with their creation, update and search
operations. Moreover, there are algebras providing alternatives to the relational model such
as graphs or nested relations.

The Secondo kernel is generic in the sense that it does not support a specific DBMS
data model. Instead, it is able to store data of arbitrary types implemented in any of the
available algebras. The kernel is an engine to evaluate arbitrary expressions over the data
and operations of the available algebras. Operations are typed so that the engine can check
for correctness of expressions.

The Secondo kernel manages a set of databases. Each database contains a set of named
types and named objects. A named object consists of a name, a type, and a value of this

2 Secondo User Manual

type. The kernel offers seven basic commands to manipulate types and objects:

1. type <identifier> = <type expression>

2. delete type <identifier>

3. create <identifier> : <type expression>

4. update <identifier> := <value expression>

5. let <identifier> = <value expression>

6. delete <identifier>

7. query <value expression>

Commands 1 - 2 define and delete types. Commands 3 - 6 create and delete objects and
assign values to them. Command 7 evaluates an expression and returns the result to the
user interface. Type expressions are built from type constructors provided by available
algebras and value expressions are built from object names, constants of available types, and
operations of available algebras.

Note that a value expression includes what is known in other systems as a query plan, usually
represented as an operator tree over query processing operations and generated by the query
optimizer. In Secondo, a user can write query plans directly as expressions. Hence one can
write, for example:

query 3 * 5

query Employees feed filter[.Age > 35] consume

In both cases, the expressions are evaluated and the result is returned to the user interface.
The latter is an example of a simple query plan implementing relational selection. Details
will be explained in later sections. We call the expressions, viewed as a language for writing
queries, the executable language of Secondo.

The Secondo kernel has a simple text-oriented user interface (SecondoTTYBDB, Secon-
doTTYCS) in a shell window. One can type basic commands as shown above, open and
close databases, import and export data, manage transactions and so forth.

The kernel is implemented in C++. It relies on several open source software components, in
particular BerkeleyDB as a storage manager providing shared files and transaction manage-
ment. Like the Secondo components Javagui and optimizer, yet to be discussed, it runs
on Linux and MacOS X platforms.

One can use the kernel with its simple user interface either in single user or in multi-user
mode. In the first case, all software components are linked together in a single process, in
the latter, they run as several processes as shown in Figure 1. Here, a TTY interface first
connects to a monitor process which starts a Secondo kernel instance on its behalf. The
Secondo instances are synchronized via their BerkeleyDB modules.

1.2 The Optimizer

The second major component of Secondo is the query optimizer. In contrast to the kernel,
it is restricted to a relational model extended by algebras for attribute types. This is partly
due to the fact that SQL itself is closely tied to the relational model.

The optimizer supports a basic part of SQL such as the select - from - where statement,
grouping, sorting, and aggregation, but no subqueries. The where-clause is written as a list
of conditions; the meaning is their conjunction. Data definition and update commands are
also supported.

Secondo User Manual 3

Figure 1: (a) Single User and (b) Multi-User Setup

The optimizer is implemented in Prolog, as this language is particularly suitable to implement
rule-based generation and enumeration of query plans. A novel algorithm for cost-based
query optimization is used. Selectivities for selections and joins, needed for cost estimation,
are determined by sampling, using materialized samples of database relations.

The optimizer creates a query plan in Secondo‘s executable language. Any such plan can
also be typed by the user directly. Explicit textual plans also help understanding what the
optimizer does.

The optimizer is extensible to support new algebras for attribute types. This includes adding
optimization rules to create specialized index accesses and join methods and associated cost
functions.

The SQL dialect understood by Secondo is implemented in the optimizer directly in Prolog
which means that an SQL query is understood as a Prolog term. This leads to some peculiar-
ities in the notation. Relation and attribute names need to be written in lower case because
Prolog interprets words starting with a capital as variables. Instead of a dot in a qualified
name such as s.name one needs to use a colon and write s:name. These restrictions apply
when the original user interfaces for the optimizer are used (SecondoPL, SecondoPLCS).

However, recently user interfaces are available (SecondoPLTTY, SecondoPLTTYCS) which
do some preprocessing of a query so that relation and attribute names can be written in the
same way as in the kernel and also the dot notation may be used. Moreover, these interfaces
also allow one direct access to the kernel so that commands can be written as in the kernel
interfaces. Figure 2 shows some configurations involving the optimizer.

1.3 The Javagui

The third major component of Secondo is the graphical user interface written in Java,
therefore termed the Javagui. Its basic structure is shown in Figure 3.

In the command window, one can enter commands for the kernel or SQL commands for
the optimizer, similar to SecondoPLTTY. Results from queries are displayed in the viewer
window. The object window contains a list of queries or object names currently displayed
(or at least loaded into the user interface).

The Javagui is extensible by viewers that can be specialized to display particular data types.
Therefore the bottom part changes according to the selected viewer. Viewers exist, for

4 Secondo User Manual

Figure 2: Configurations involving the optimizer. (a) and (b) Single User Mode. (c) Multi-
User Mode

Figure 3: Structure of the Javagui

example, to represent relations in a tabular form, to show relations with spatial objects
displayed in a graphics window with a map background, to show moving objects (spatio-
temporal data) and animate their movement, to display large text documents (pdf) or images,
to play audio data, to update relations and format their data, or even to display chess games.

The Javagui cannot be linked together with the kernel or optimizer but only used in client-
server (multi-user) mode. This is shown in Figure 4. The Javagui can either communicate
with a kernel only as shown left. Of course, in this case only kernel commands are supported.
Or it may also use an optimizer server which works as a server for the Javagui and as a client
to the kernel. In this case, SQL commands are sent to the optimizer which computes a query
plan and sends it back to the Javagui. The optimizer server talks itself to the kernel to get
information about the database, compute selectivities, etc. The Javagui then sends the plan
to the kernel as if it had been typed directly by the user. The optimizer server can in fact
be added or removed while the Javagui is running.

In contrast to kernel and optimizer, the Javagui can also be used in a Windows environment.
Hence it is possible to have Secondo servers run on Linux or MacOS X and to access them
from a Javagui under Windows.

Secondo User Manual 5

Figure 4: Using the Javagui with or without Query Optimizer

1.4 The Two Language Levels

Secondo is to our knowledge unique in providing the executable language to formulate
queries, in addition to SQL as offered by DBMS in general. The question is which level to
use when. Both levels have advantages and disadvantages:

• The executable level is more complex to use and requires detailed knowledge of the
available query processing operations. The user also needs to select the best operations
for a query and to arrange them in a good order. This is normally the job of the
optimizer and may be impossible for a complex query.

• On the other hand, simple queries can be written easily in executable language. The
user has full control of the steps of manipulating data. The full power of the kernel
system is available, even the most recent additions of type or index structures may
be used. It is possible to use other structures than relations and indexes on disk.
For example, main memory relations and indexes, graphs and other data structures in
memory, column-oriented relation representations, or nested relations are all available
at the executable level in the current Secondo, but not (yet) in SQL.

• The SQL level is much easier to use. It provides cost-based optimization and may
therefore construct better plans than even an expert Secondo user. It is able to
construct quite sophisticated plans for certain queries or commands.

• On the other hand, the SQL level is restricted to the relational model and the shape
of queries supported by SQL. Advanced additions to the kernel require extra work
to be integrated into the optimizer if that is possible in the SQL framework. The
development of the optimizer therefore lags behind the development of the kernel.

The executable language can be characterized as being halfway in complexity and expressive
power between SQL and a programming language such as C++. In fact, one can write
complex “programs” in Secondo executable language. These can be stored as scripts in
files and be executed by Secondo. Examples of such scripts are the BerlinMOD benchmark
[DBG09] (e.g. BerlinMOD CreateObjects.SEC and other scripts) or the construction of a
road network from OpenStreetMap data (OrderedRelationGraphFromFullOSMImport.SEC)
in the directory secondo/bin.

6 Secondo User Manual

1.5 This Manual

This manual explains in some detail the use of Secondo. It is structured as follows. Section
2 describes installation on various platforms. Section 3 explains how to start Secondo for
the various configurations discussed above. Section 4 describes in more detail the concepts
for querying in executable language as well as in SQL. Section 5 shows for both language
levels how typical tasks can be expressed such as creating relations, updating and querying
them, with or without indexes. Data import and export is also covered. Section 6 is devoted
to the Javagui and its most important viewers. Finally, Section 7 addresses configuration
issues.

Secondo User Manual 7

2 Installation

2.1 Trying Secondo

For trying Secondo, it is possible to use a precompiled Secondo within a virtual machine.
As a first step, the Workstation player (formerly VMware player) must be installed. For
downloading this software and further instructions see www.vmware.com.

After installing the Workstation Player, visit the Secondo website dna.fernuni-hagen.

de/secondo. On the left side, there is the item VM Appliance in the section Other Down-

loads. Click on this link and download the latest version of the VM appliance. After
downloading the file, unpack it using your favored unpacking tool.

Now, start the Workstation player and select Open a Virtual Machine. Navigate to the folder
where you have unpacked the Secondo appliance. Select the vmx file and click on the Open

button, then click on Power On. In the following dialog select I Copied it. After starting
the system, a password is required, enter secondo here. Open a terminal by clicking the
appropriate symbol on the left side. From here, you can start Secondo according to the
instructions from Section 3.

2.2 Full Secondo Installation

Secondo is available as source code and must be built from these sources before it can
be used. To enable the compilation, several tools and libraries are required. Furthermore,
some system variables must be set. In the following the set of required tools, libraries, and
variables is called Secondo Development Kit, SDK for short.

For several operating systems, we provide bash scripts executing the bulk of the work of
installing the SDK. Note that these scripts exploit the standard package manager of the
system implying that root access to the system is required. If no root access is available, ask
the system administrator to run the script or install the required tools and libraries locally
(see Section 2.2.3).

2.2.1 SDK Installation on openSUSE, Fedora, and Ubuntu

The procedure is very similar for all of these distributions. Visit the Secondo website
dna.fernuni-hagen.de/secondo and click on Installation Instructions on the left side.
Download the appropriate installation script. Then open a terminal and run the script by
entering bash <name of the script>. The root password will be requested. After some
time, all required tools are installed and a file .secondorc has been created in the home
directory.

On SUSE systems, a manual installation of the BerkeleyDB library is required, since the
distribution does not provide a version that is built with compiling options required by
Secondo. For installing it, just follow the instructions printed at the end of the installation
script.

In the file .secondorc, several environment variables are set. To activate these settings,
open the file .bashrc located in the home directory with an editor of your choice and add
the line

source $HOME/.secondorc $HOME/secondo

8 Secondo User Manual

at the end of this file. After saving this change, close the current terminal and open a new
one. You can check the success by entering

echo $SECONDO_BUILD_DIR

resulting in the output /home/<user>/secondo.

Download the newest Secondo version from the website (select Sources on the left side).
Unpack the version into your home directory.

2.2.2 SDK Installation on macOS

On macOS platforms, a lot of the required tools are part of the xcode command line tools.
For installing these tools, open a terminal and enter

gcc --version

If xcode is already installed, the compiler’s version is displayed. Otherwise, a window pops
up informing that xcode is necessary for the gcc-command. Just click on the install button
and wait for some time.

For compiling the graphical user interface of Secondo, the Java Development Kit is re-
quired. Open a terminal and enter

javac -version

If the JDK is installed, its version number is displayed. Otherwise, a new window appears.
By clicking on the install button, a web browser is opened showing Oracle’s Java download
page. Accept the license, download the JDK for macOS, and install it following the given
instructions.

The remaining required tools are collected in a file available on the Secondo website. On
the website dna.fernuni-hagen.de/secondo, select Installation Instructions on the left
side. After that scroll down until Installation of the Secondo SDK on OS X platforms.
Download the package for your macOS version. If it is not unpacked automatically, unpack
this file. Now open a terminal, navigate to the folder containing the unpacked files, and
run the script starting with Install On. The remainder of the file name depends on the
used macOS version. After the script finishes, open the file .profile located in the home
directory in an editor of your choice and append the following lines:

export SECONDO_SDK=$HOME/secondo-sdk

export SECONDO_PLATFORM=mac_osx

export SECONDO_BUILD_DIR=$HOME/secondo

source $SECONDO_SDK/secondorc

Save the changes, close the terminal and open a new one.

2.2.3 SDK Installation on other Systems

Even if no SDK installation script is provided for your system, it is possible to get Secondo

to run. The next table shows all required tools and libraries. Install these tools either
using the software management tool of your system or build them from scratch following the
instructions coming with these tools. If the tools are installed outside the normal system
paths, insert the paths to the header files into the system variable CPLUS INCLUDE PATH or
CPATH and the paths to the libraries into the variable LIBRARY PATH. If shared libraries are
involved, add the paths to them to the variable LD LIBRARY PATH, too.

Secondo User Manual 9

Tool/Library Edition Version
flex dev ≥ 2.5.33
bison dev ≥ 2.1
gcc/g++ ≥ 4.7
berkeley db dev,c++ ≥ 4.3.29
libjpeg dev 6.2
JDK dev ≥ 7
readline dev ≥ 5.2
recode dev ≥ 3.6
ncurses dev ≥ 6.0
swi-prolog dev ≥ 7.2.2
jpl dev ≥ 1.0
bash
make

required for certain algebras only
gsl dev
xml2 dev
boost dev

Beside the installation of tools, Secondo requires the presence of some variables listed in
the following table:

Variable Meaning Example Values
SECONDO BUILD DIR home of Secondo /home/user/secondo
SECONDO PLATFORM operating system linux, linux64, max osx
BERKELEY DB DIR home of the berkeley db /home/user/BDB
BERKELEY DB LIB name of the berkeley db lib db cxx
BDB INCLUDE DIR include dir of berkeley db /home/user/BDB/include
BDB LIB DIR home of the berkeley db lib /home/user/BDB/lib64
J2SDK ROOT home of the jdk /usr/lib64/jvm/java-1.8.0-openjdk-1.8.0/
JAVAVER java version 1.8
SWI HOME DIR home of swi prolog /usr/lib64/swipl-7.2.2
PL LIB DIR home of swi prolog lib /usr/lib64/swipl-7.2.2/lib/x86 64-linux/
PL LIB name of prolog lib swipl
PL INCLUDE DIR prolog’s include dir /usr/lib64/swipl-7.2.2/include
PL VERSION prolog’s version 72020
JPL DLL path to JPL library /usr/lib64/swipl-7.2.2/lib/x86 64-linux//libjpl.so
JPL JAR path to JPL java file /usr/lib64/swipl-7.2.2/lib/jpl.jar
readline should readline be used true, false
SECONDO CONFIG path to Secondo’s config file /home/user/secondo/bin/SecondoConfig.ini
PD HEADER path to PD header file /home/user/secondo/Tools/pd/pd header listing

2.2.4 Building Secondo

After installing all tools required by Secondo, it is an easy task to build the system. Just
open a terminal and enter:

cd secondo

make

This will take a while, thus it is a good idea to take a pot of coffee.

Now, Secondo is ready to be started.

10 Secondo User Manual

3 Starting Secondo

Several ways exist to run the DBMS Secondo for different purposes. When debugging,
importing larger datasets or for smaller, isolated tasks, the single user interfaces are suffi-
cient. For regular use, the client-server interfaces, which communicate over TCP/IP network
connections, are recommended. The graphical user interface also depends on a server con-
nection.

3.1 Prerequisites

The scripts and program binaries for starting Secondo are located in the bin/ direc-
tory below the Secondo home directory or in the Optimizer/ directory for the pro-
grams integrating the Secondo optimizer. Secondo looks for its configuration in the file
specified in the variable $SECONDO CONFIG; the default location is $(SECONDO BUILD DIR)-

/bin/SecondoConfig.ini. The example configuration file packaged with Secondo is a
good starting point and can be tailored to specific needs (e.g. bind IP, port).

For debugging purposes, most scripts can also be called with the options --valgrind for
checking common errors, --valgrindlc for full memory leak checking, or --profile for
profiling function calls. The tool valgrind, which is available with many linux distributions,
has to be installed first.

3.2 Single User Interfaces

The single user interface runs the database management system and the user interface in a
single process. It is crucial, that only one process at a time accesses the same database
directory, which is specified in the configuration file SecondoConfig.ini and points to
$(HOME)/secondo-databases by default. No other process, single user or multi user, may
be running simultaneously, otherwise data corruption or crashes might occur.

3.2.1 SecondoTTYBDB

The script SecondoTTYBDB is a wrapper around SecondoBDB. After startup, a prompt waits
for user input. Database queries are sent straight to the Secondo kernel, but some op-
erations are processed directly by the user interface. For example, use @cmds to read and
execute database commands from a file named cmds. A comprehensive list of those com-
mands is shown with the HELP command. All other commands are terminated either with a
semicolon or with two newlines (for multi-line commands).

In the following example, the interface is started and the dump of the example database
berlintest, which is located in the bin/ directory, is restored:

db@server:/home/db$ cd secondo/bin

db@server:/home/db/secondo/bin$ SecondoTTYBDB

[... some informational output ...]

Secondo TTY ready for operation.

Type ’HELP’ to get a list of available commands.

Secondo => restore database berlintest from berlintest;

Secondo User Manual 11

command

’restore database berlintest from berlintest’

started at: Mon Sep 10 12:41:24 2018

Reading file /home/db/secondo/bin/berlintest ...

Restoring types ...

Restoring objects ...

BGrenzenLine ... processed and succeeded.

Faehren ... processed and succeeded.

[... some more informational output ...]

Total runtime ... Times (elapsed / cpu): 10.847sec / 10.28sec = 1.05515

=> []

The database berlintest has now been restored and is already open (ready for queries).

Secondo => query mrain atinstant instant("2003-11-20-06:06");

command

’query mrain atinstant instant("2003-11-20-06:06")’

started at: Mon Sep 10 12:45:19 2018

noMemoryOperators = 0

perOperator = 0

Total runtime ... Times (elapsed / cpu): 0.001737sec / 0sec = inf

Generic display function used!

Type : iregion

Value:

("2003-11-20-06:06"

(

(

(

(-1203.7703583062 5341.8599348534)

(-1299.9429967427 5966.9820846906)

(1200.5456026059 7024.8811074919)

(2835.4804560261 6111.2410423453)

(5528.3143322476 5582.2915309446)

(5720.6596091205 4380.1335504886)

(4566.5879478827 3370.3208469055)

(2883.5667752443 3177.9755700326)

(1056.2866449511 3177.9755700326)

(1777.5814332248 4332.0472312704)

(1248.6319218241 5438.0325732899)

(-290.1302931596 5197.6009771987)))))

Secondo => close database;

command

’close database’

started at: Mon Sep 10 12:46:09 2018

Total runtime ... Times (elapsed / cpu): 0.002482sec / 0.01sec = 0.2482

=> []

Secondo => Q

*** Thank you for using SECONDO!

12 Secondo User Manual

db@server:/home/db/secondo/bin$

Besides database queries, which are sent to the Secondo kernel, several commands are
directly processed by the interface:

HELP Displays a help message
@FILE Read and execute commands from FILE
@@FILE Read and execute commands from FILE, stop on errors
@%FILE Read and execute commands from FILE, ignore pd-style2

@&FILE Read and execute commands from FILE, ignore pd-style comments
and stop on errors

DEBUG 1 debug mode (show annotated query and operator tree)
DEBUG 2 trace (show recursive calls)
DEBUG 4 trace nodes (construction of nodes of the operator tree, and execu-

tion of the query processor’s Eval() method)
DEBUG 8 localInfo (prints a warning if an operator did not destroy its local-

info before the operator tree is deconstructed)
DEBUG 16 debug progress (after sending a REQUESTPROGRESS message to

an operator, the ranges in the ProgressInfo are checked for whether
they are reasonable. If not so, the according operator and Progress-
Info are reported)

DEBUG 32 trace progress (prints the result of each REQUESTPROGRESS
message)

DEBUG 64 show type mappings
Hint: The debug numbers can be added to activate multiple features

3.2.2 SecondoPL

The interface SecondoPL, which resides in the directory Optimizer/ runs the SWI Prolog
interpreter with Secondo bindings. The Secondo query optimizer is integrated seamlessly.

db@server:/home/db$ cd secondo/Optimizer

db@server:/home/db/secondo/Optimizer$./SecondoPL

[... some informational output ...]

Type ’helpMe.’ to get an overview on user level predicates.

?-

For input, the normal SWI prolog syntax applies; usually a predicate name followed by an
optional list of arguments in brackets and terminated by a period. The following command
opens the database berlintest, which was imported previously in Section 3.2.1.

?- open database berlintest.

The predicate (command) showOptions lists all optimizer-specific options. These can be
modified with setOption(X) or delOption(X) and saved with saveOptions.

2PD (program with document) comments follow a certain format, which allows one to create nicely
formatted PDF documentation directly from source files with pdview in the Tools/pd/ directory.

Secondo User Manual 13

?- showOptions.

Optimizer options (and sub-options):

[x] standard: Adopt options for standard optimization process.

[] useCounters: Insert counters into the computed plan.

[] noHashjoin: Disables hashjoin.

[] noSymmjoin: Disables symmjoin.

[... more options ...]

?- setOption(useCounters).

Switched ON option: ’useCounters’ - Insert counters into the computed plan.

true.

?- saveOptions.

true.

?-

The predicate helpMe lists all other Secondo database commands available. To take ad-
vantage of the optimizer, SQL queries have to be formulated. The following example lists all
cities with a population greater than 100000 people. The query is then optimized and sent
to the Secondo kernel in native format. The whole query must be formulated in lowercase
characters.

?- sql select * from staedte where bev > 100000

Computing best Plan ...

Destination node 1 reached at iteration 1

Height of search tree for boundary is 0

The best plan is:

Staedte feed filter[(.Bev > 100000)] {1} consume

Estimated Cost: 0.38494000000000006

command

’query Staedte feed filter[(.Bev > 100000)] {1} consume’

started at: Tue Sep 11 11:54:42 2018

[... query result ...]

true.

?-

Many other predicates are just wrappers around standard Secondo commands (create,
query, update, open to name just a few).

3.2.3 SecondoPLTTY

This interface is a combination of the SecondoPL and the SecondoTTYBDB interface. The same
preprocessing semantics of SecondoTTYBDB apply: Commands are terminated with semicolon
or two newlines and files can be loaded and executed with @FILE (see also Section 3.2.1).
The terminating period for Prolog queries may be omitted here. Both SQL and executable
style queries can be formulated here (lowercase and the leading sql are not mandatory any
more):

14 Secondo User Manual

SecondoPLTTY => select * from Staedte where Bev > 100000;

SName : Aachen

Bev : 239000

PLZ : 5100

Vorwahl : 0241

Kennzeichen : AC

...

SecondoPLTTY => query Staedte feed filter[.Bev > 100000] consume;

SName : Aachen

Bev : 239000

PLZ : 5100

Vorwahl : 0241

Kennzeichen : AC

...

3.2.4 NT-Versions

The single user interfaces also exist in NT (No Transactions) variants SecondoTTYNT, Secon-

doPLNT and SecondoPLTTYNT. The main difference is that the runtime flag SMI:NoTrans-

actions is set, which disables the transaction submodule (see also Section 7.2). This means,
performance is improved, but the database is prone to unrecoverable inconsistencies when
crashes occur, since no transaction logs are written; hence, this mode should only be used for
big imports, which would otherwise fail (“out of locks/lockers”) or take too long to conclude,
but not for regular production use.

3.3 Client Server Architecture

The Client Server model for Secondo enables multiple users or applications to access
databases concurrently by splitting into a server part and a user interface (client), which
uses a TCP/IP connection to the server and hence does not need to be local anymore.

3.3.1 SecondoMonitor

The Secondo listener, which in turn starts a Secondo server on an incoming client con-
nection, is started by the program SecondoMonitor in the bin/ directory. Currently, it has
to be started in the bin/ directory itself, since it depends on two other programs being
located in the current working directory.

After startup, a prompt waits for command input. Currently, the following commands are
defined:

Secondo User Manual 15

HELP Displays the command help
STARTUP Starts the Secondo Listener
SHUTDOWN Stops a running Secondo Listener
SHOW LOG Shows new logfile entries
SHOW USERS Displays a list with connected users
SHOW DATABASES Shows the currently opened databases
SHOW LOCKS Shows a list of active database locks

The Secondo listener is started with the STARTUP command. Alternatively, it is started au-
tomatically with the SecondoMonitor if the -s flag is specified. The listen port of the server
can be configured with the option SecondoPort in the file SecondoConfig.ini (Default:
1234).

db@server:/home/db$

db@server:/home/db$ cd secondo/bin

db@server:/home/db/secondo/bin$./SecondoMonitor -s

*** Secondo Monitor ***

[... some informational output ...]

Startup in progress ... Starting Process:

Program: SecondoListener

Args: "/home/db/secondo/bin/SecondoConfig.ini" 1234 /home/db/secondo-databases

completed.

SEC_MON> QUIT

SEC_MON> yes

Shutdown in progress ... completed.

Secondo Listener terminated with return code 0.

Terminating Secondo Monitor ...

Terminating Secondo Registrar ... completed.

Secondo Registrar terminated with return code 0.

Terminating Checkpoint Service ... completed.

Checkpoint service terminated with return code 0.

SecondoMonitor terminated.

db@server:/home/db/secondo/bin$

Several command line options exist:

--help show the command line options
-s or -startup Automatically start up the listener
-V or -version Display version information and exit
-c <configfile> Specifies the configuration file (overrides the default location)
-d <directory> Use this database directory (overrides the configuration file)
-p <port> Sets the listen port (overrides the configuration file)

16 Secondo User Manual

3.3.2 SecondoTTYCS

The program SecondoTTYCS is the console client program, which connects to a running
Secondo server instance. The host and port of the server can be specified on the command
line with the flags -h and -p; otherwise the defaults from the configuration file are used
(SecondoHost and SecondoPort).

After successfully connecting to the server, this client behaves pretty much like the Secondo-

TTYBDB client described in Section 3.2.1. Some informational output from SecondoTTYBDB
such as the running time of queries is omitted.3

db@server:/home/db$ SecondoTTYCS -h 127.0.0.1 -p 1234

*** Secondo TTY ***

[... some informational output ...]

Connecting with Secondo server ’127.0.0.1’ on port 1234 ...

You are connected with a Secondo server.

Secondo TTY ready for operation.

Type ’HELP’ to get a list of available commands.

Secondo =>

These command line options are available:

--help show the command line options
-c <configfile> Specifies the configuration file (overrides the default location)
-h <host> Sets the server host (overrides the configuration file)
-p <port> Sets the server port (overrides the configuration file)
-u <user> Connect with the specified user name
-s <secret> Authenticate using a given secret (password)

3.3.3 SecondoPLCS / SecondoPLTTYCS

The programs SecondoPLCS and SecondoPLTTYCS both behave analogously to SecondoTTYCS;
they connect to a server instance and behave otherwise just like SecondoPL resp. Secondo-

PLTTY as already documented in Sections 3.2.2 and 3.2.3.

3.3.4 OptimizerServer

If the optimizer should be used together with the Javagui interface, the optimizer server has
to be started. The startup script StartOptServer is located in the Optimizer/ directory
and also has to be executed from this directory. After starting, it connects to the Secondo

host and port specified in the configuration file SecondoConfig.ini and opens the port 1235
for incoming connections (an alternative port number can be specified at the command line).

3Nevertheless, the running time of queries can be determined in this interface or in the Javagui by a
query SEC2COMMANDS, which lists previous queries with their running times.

Secondo User Manual 17

db@server:/home/db$ cd secondo/Optimizer

db@server:/home/db/secondo/Optimizer$./StartOptServer 1235

java -Djava.library.path=. -cp ../Jpl/lib/classes:. OptimizerServer 1235

[... some informational output ...]

waiting for requests

opt-server > quit

db@server:/home/db/secondo/Optimizer$

Valid commands are:

quit Stops the server and exits
clients Shows the number of connected clients
trace-on Print debug messages about commands and optimizations
trace-off Disable debug messages

3.3.5 Javagui

Aside from the command line interfaces there is a convenient graphical user interface, the Jav-
agui, which is located in the directory Javagui/. The Javagui connects through a TCP/IP
connection to a running Secondo server (see Section 3.3.1). If the optimizer server is
running, the Javagui automatically connects and makes use of it. The host and port of the
server can be specified in the main configuration file Javagui/gui.cfg. The most interesting
parameters are described in Section 6.3.

The Javagui itself is started with the script sgui and has to be executed in Javagui/ as
current working directory.

db@server:/home/db$ cd secondo/Javagui

db@server:/home/db/secondo/Javagui$./sgui

Info: start Javagui without any argument

Info: load configuration data from: /home/db/secondo/Javagui/gui.cfg

Info: set ServerName to 127.0.0.1

Info: set port to 1234

[... some more informational output ...]

18 Secondo User Manual

4 Querying Secondo

Query processing is the main task of Secondo. As in other database management systems
(DBMS), queries are written in a query language. In contrast to other systems, Secondo

offers two query languages: (1) an executable language and (2) an SQL-like language.

Executable language: The executable language is a low-level language. In this language,
the data flow and the interaction between operators are described in detail. The
description of the data flow is called the query plan. Specifying query plans directly is
a unique feature of Secondo. To the best of our knowledge, no other system allows
the direct specification of query plans. In other DBMS query plans are generated
automatically from another input language (e.g., an SQL query). The advantage of
the executable language is that it is possible to specify exactly how a query should be
processed and which operators should be used.

SQL-like language: The SQL-like language is a declarative language; only the result of
the query is specified. The query optimizer of Secondo generates the needed query
plan (described in the executable language) which calculates the desired result. The
SQL-like language has some advantages compared to the executable language. The
language is easier to use for people that are familiar with SQL, the queries are shorter
and the queries are optimized (the query optimizer generates a cost-optimized query
plan).

See also the discussion of the two language levels in the introduction.

4.1 Executable Language

The executable language is used to specify query plans by describing an operator tree.
Operator trees describe the way how the data are processed. No optimization of the query
plan is performed, the operations are executed exactly in the specified way.

4.1.1 Stream Processing

A relation consists of tuples. When a relation is processed, the processing is done tuple by
tuple. For example, the filter operator of the RelationAlgebra uses a stream of tuples as
input and produces a stream of tuples as output. The filter operator lets only the tuples
pass from the input stream to the output stream which match a certain criterion.

The filter operator cannot operate directly on a relation, the relation has to be converted
into a stream of tuples first. This can be done by the feed operator.

In Secondo, the result of a query has to be of a known data type and cannot be a stream.
Several operators do exist to collect a stream and convert it into a certain data type. The
operator consume takes the stream and creates a new relation (see Figure 5). The operator
count instead takes the stream and produces an integer with the number of elements in the
stream as the result.

4.1.2 Operator Tree

The main task of the executable language is to describe operator trees. These operator trees
are executed by the query processor of Secondo. In this section an example is presented

Secondo User Manual 19

relation fe
ed

co
n
su

m
e

relation

Stream of tuples

tuple tuple tuple tuple

Figure 5: Converting a relation into a stream of tuples with the operator feed and converting
the stream back into a relation with the operator consume.

to show how an operator tree can be described.

In this example an equi-join of the two tables Orte and plz should be computed. The table
Orte contains towns with their names and additional information like the population. The
table plz contains zip codes and town names. The join is executed to combine the data of
both tables. To make the query a bit more complex, only towns with a zip code greater than
80000 should be included in the result. In the executable language the join can be described
with the expression from Figure 6.

Orte feed {r1} plz feed {r2} filter[.PLZ r2 > 80000]

itHashJoin[Ort r1, Ort r2] consume

Tuple stream 1 Tuple stream 2

Join operator Consume operator

Figure 6: A join of two tables described in the executable language.

The operator tree in Figure 7 shows the operator tree for this calculation. Both relations are
read by the feed operator. Each operator instance creates one tuple stream for its argument
relation. The stream of the plz relation is filtered, the stream of the Orte relation is used
directly. The join operator performs the join of both tuple streams and emits a stream of
joined tuples. The consume operator creates a new relation from the stream.

4.1.3 Direct Execution of the Query Plan

For many tasks, Secondo provides a wide range of operators. These operators implement
different algorithms to achieve the same goal. Besides, different query plans can calculate
the same result. Some of the plans are faster and some of the plans are slower. It is the
responsibility of the user to specify an efficient query plan which calculates the result in a
short time.

For example, an equi-join can be executed in Secondo by the operators sortmergejoin,
mergejoin, or itHashJoin (among others). The operator sortmergejoin takes up two tuple
streams, sorts them and calculates the join result. The operator mergejoin instead assumes,
that the input streams are already sorted. This operator avoids the expensive sorting step,
but the operator produces the correct result only if both input streams are sorted. The
operator itHashJoin creates a hash table from the first stream and matches the tuples of the
second stream against the hash table to find join candidates. The efficiency of the different
operators depends on factors such as the size of the input, the available memory for the
operator and additional characteristics of the data (e.g., whether both input streams are
sorted).

20 Secondo User Manual

Plz

feed

rename

filter

Orte

feed

rename

join

consume

Result

T
u
p
l
e

s
t
r
e
a
m

1

T
u
p
l
e

s
t
r
e
a
m

2

Figure 7: The operator tree for the join. The figure shows a simplified version. Some nodes
(e.g., the function of the filter operator) have been omitted.

4.1.4 Constants

A constant value can be needed to formulate queries. For example, a filter operator can
compare the values in an input stream with an integer. This operation was already shown
in the operator tree in Figure 7. In the operator tree, the filter operator lets only pass the
tuples which have a zip code greater than 80000. In Secondo, constants have a type and
a value and they can be defined with the following syntax:

[const <type expression> value <value description>]

For example, the following expressions define constants:

[const int value 5]

[const string value "secondo"]

[const bool value TRUE]

[const rectangle value (12.0 16.0 2.5 50.0)]

Please note, simple types such as integers, strings or booleans can be used directly as con-
stants. The first three examples can be written as 5, "secondo", and TRUE.

4.1.5 Type Expressions

Secondo supports a wide range of data types. As shown in the last section, a type expression
has to be specified when a constant is defined. Besides the already shown simple types (e.g.,
integer or boolean) more complex types such as relations can be specified. The general
syntax for creating a type is:

<type constructor>

or

Secondo User Manual 21

<type constructor>(<arg_1>, ..., <arg_n>)

Type expressions in Secondo can be used to describe relations. The following term defines
a relation of tuples. Each tuple has two attributes (Name and Pop):

rel(tuple([Name: string, Pop: int]))

A constant relation with three tuples can be defined as follows:

[const rel(tuple([Name: string, Pop: int]))

value (("New York" 7322000) ("Paris" 2175000) ("Hagen" 212000))]

4.1.6 Value Expressions

Secondo is a database management system which allows one to calculate very complex
value expressions. Among others, the value expression can be an arithmetic expression or a
complex join over several relations.

The algebra modules of Secondo contain operators which can be used to perform complex
calculations. Operators can have different numbers of parameters. Therefore, no general
syntax for a value expression can be given. The syntax of the most important operators is
discussed in Section 5.

An example for a more complex value expression is the following:

StaedteTest feed filter [.SName contains "burg"] project [SName, Kennzeichen]

consume

The expression reads all tuples from the relation StaedteTest and removes all tuples whose
name does not contain "burg". Afterwards, the tuples are reduced to the attributes SName

and Kennzeichen and a new relation is created as the result of the expression.

Renaming When multiple tables are queried, the attributes of the tables can be renamed
to avoid name conflicts. In the following expression, the tables Orte and plz are used.
Both tables contain an attribute with the name Ort. To avoid name conflicts, the syntax
{<suffix>} can be used. It is a shortcut for the rename operator of the RelationAlgebra.
It renames all attributes of a tuple to <attr> <suffix>. In the expression, the attribute Ort

of the relation Orte is renamed to Ort r1 and the attribute of the relation plz is renamed to
Ort r2.

query Orte feed {r1} plz feed {r2} itHashJoin[Ort_r1, Ort_r2] consume

4.1.7 Parameter Functions

A useful feature of Secondo are anonymous parameter functions. For example, these
functions are used when a stream of tuples is processed and a filter operator has to decide
whether or not the tuple passes the filter. The filter operator calls the parameter function
with each tuple and the function can return true or false, depending on whether or not the
tuple fulfills the filter condition.

filter[fun (tuple1: TUPLE) attr(tuple1, No) > 5]

22 Secondo User Manual

In the above expression, an anonymous parameter function is passed to the filter operator.
The function takes one argument with the type TUPLE4. fun is the keyword for the function,
tuple1 is the name which is assigned to the current tuple of the stream. By using this name,
the tuple can be accessed. On each call, the function extracts the attribute with the name
No from the tuple and calls the > operator. True is returned when the No attribute of the
tuple is larger than 5. In this case, the tuple passes the filter operator. Otherwise, the tuple
is not forwarded to the result stream of the operator.

Short syntax The function in the example above is complex to write. Secondo allows
a shorter syntax for defining such functions. In the abbreviated form, the function can be
shortened to:

filter[attr(., No) > 5]

In this short notation, no type and name for the parameter are specified. The notation is
replaced by the notation above by the Secondo parser. The name of the input variable
is shortly referred to with the . symbol. In functions which accept two arguments (e.g., a
function that joins two tuple streams), the second input is referred to with the .. symbol.

Attribute access Accessing attributes is a very common functionality. The expression
attr(., attrname) can be shortly written as .attrname. The same is true for the second
parameter. The attributes of this parameter can be accessed by calling ..attrname. By
using this syntax, the anonymous parameter function from the example in this section can
now be written as:

filter[.No > 5]

4.1.8 Operator Memory

A query can consist of several operators and each of these operators can require some memory
for its work. Secondo controls how much memory each operator may consume. This ensures
that queries are executed without using more memory than available. Some operators can
complete their work faster if they have more memory available.

An example is given in the following: the operator itHashJoin performs a hash based join.
The operator builds a hash map from the first input stream and matches the tuples from
the second input stream against this hash map. The hash map is stored in memory and has
a limited size.

If the first tuple stream can not be inserted completely into the hash map, it is partitioned
into chunks. The chunks have a size so that they can be loaded completely into the hash
map. By using multiple chunks, the operator performs several iterations to perform the join.
The second stream needs to be read for each chunk and compared against the hash maps.
When the operator is allowed to use more memory, the hash map can become larger and the
number of needed iterations is reduced.

The maximum memory usage per operator is controlled by the parameter GlobalMemory in
the configuration file (see Section 7.2). This parameter describes how much main memory

4The TUPLE operator extracts automatically the type of the tuple from the input stream. Without
this keyword, the complete function has to be written as: filter[fun (tuple1: tuple([No: int]))

attr(tuple1, No) > 5].

Secondo User Manual 23

(in MB) all operators in a query can use together. The query processor splits this amount
of memory equally among operators registered as benefiting from large memory. Other
operators get a minimum amount of 16 MB.

However, Secondo allows one to overwrite this parameter dynamically in the query. The
keyword {memory memory in MB} after an operator allows one to determine the maximum
amount of memory in MB the operator can consume. In this case, only the remaining
memory is split equally among the remaining memory-using operators.

In the following query, the operator itHashJoin can consume up to 512 MB of memory:

Orte feed {r1} plz feed {r2} itHashJoin[Ort_r1, Ort_r2] {memory 512} consume

4.1.9 Commands

Basic commands In this section, the most basic commands are described. They can be
used to create objects and to execute queries.

• query <value expression> - Evaluates the given value expression and displays the
result object.

• let <identifier> = <value expression> - This command does almost the same
as the query command. In contrast, the result of the <value expression> is not
displayed on the screen. Instead, the result is stored in an object with the name
<identifier>. The command only runs successfully if the object does not exist yet
in the database; otherwise, an error message is displayed.

• derive <identifier> = <value expression> - This works basically in the same
way as the let command. The difference is the handling of the created objects during
creating and restoring a database dump. The derive command should be used for
objects that have no external representation, e.g., indexes.

• update <identifier> := <value expression> - Assigns the result of the value ex-
pression to an existing object in the database.

• delete <identifier> - Deletes the object with the name <identifier> from the
currently opened database.

• type <identifier> = <type expression> - Creates a named type in the database.
• delete type <identifier> - Deletes a named type from the database.
• create <identifier> : <type expression> - Creates an object of the given type

with undefined value.
• kill <identifier> - Removes the object with the name <identifier> from the

opened database catalog without removing its data structures. Generally, the delete

command should be used to remove database objects. The kill command should only
be used if the delete command crashes the database due to corrupted persistent data
structures for this object.

The first four commands are the most important ones. The next three are rarely used,
but available for special purposes. The last one is not needed in ordinary circumstances but
useful to remove a corrupt object from a database e.g. in program development (debugging).

24 Secondo User Manual

An <identifier> is defined by the following regular expression with a maximum length
of 48 characters: [a-z,A-Z]([a-z,A-Z]|[0-9]|)*. For example, lineitem, employee,
cities pop are valid identifiers, whereas x or 10times are not.

Combined commands Besides the basic commands described in the last section, Sec-

ondo offers the possibility to combine commands to more complex ones.

• if <value expr> then <command1> [else <command2>] endif - Runs the com-
mand <command1> only if the condition <value expr> evaluates to true. If the result
is false, nothing happens except the optional else part specifies <command2> that
is executed. If <value expr> does not represent a defined bool value, the command
fails. Otherwise, the result of the executed command is forwarded as the result of the
conditional command.

• while <value expression> do <command> endwhile - Executes <command> while
the condition <value expression> evaluates to true.

• { <command> [| <command>]∗ } - Executes a sequence of commands enclosed in
braces and separated by the pipe symbol (|). All commands are executed indepen-
dently of the fail of a single command. The success of the whole command sequence
corresponds to the success of the last command.

• {{ <command> [| <command>]∗ }} - Works very similarly to the previously de-
scribed command sequence, except that the execution stops after the first failed com-
mand.

Databases The commands in this section allow the management of databases. With these
commands databases can be created, opened, and deleted.

• create database <databasename> - Creates a new database with the name <data-

basename>.
• open database <databasename> - Opens the database with the name <database-

name>.
• close database - Closes the currently open database.
• delete database <databasename> - Deletes the database with the name <database-

name>. All databases need to be closed before a database can be deleted.

Transactions Transactions allow the user to control whether the result of one or more op-
erations should be persisted or not. The commands for controlling transactions are discussed
in this section.

• begin transaction - Starts a new transaction; all commands until the next commit
or abort command are managed as one common unit of work.

• commit transaction - Commits a running transaction; all changes are persisted in
the database.

• abort transaction - The current transaction is reverted and all changes are dis-
carded.

Import and Export In this section the commands are discussed that are needed for
importing or exporting data from and into Secondo. The commands are useful for creating
backups or to load an existing database. Further possibilities are presented in Section 5.

Secondo User Manual 25

• save database to <file> - Write the currently opened database in the nested list
format into the file <file>. If the file exists, it will be overwritten, otherwise it will
be created.

• restore database <identifier> from <file> - Imports the contents of the file
<file> into the database <identifier>. If the database already exists, it will be
overwritten. If the database is not yet present, it will be created.

• save <identifier> to <file> - Writes the object <identifier> into the file <file>.
If the file already exists, it will be overwritten.

• restore <identifier> from <file> - Creates a new object with the name <identi-

fier>. If another object with the same name already exists, the command fails. Type
and value of the object are read from file <file>.

Inquiries The commands in this section allow one to show information about the available
databases, the existing types and objects and the operators and algebras that are known by
Secondo.

• list databases - Displays a list of names for all known databases.
• list type constructors - Displays all names of type constructors together with their

specification and an example on the screen.
• list operators - Nearly the same as the command above, but information about the

known operators is shown.
• list algebras - Displays a list containing all names of active algebra modules.
• list algebra <identifier> - Displays type constructors and operators of the spec-

ified algebra.
• list types - Displays a list of named types present in the currently opened database.
• list objects - Displays a list of objects present in the currently opened database.

Named types are hardly used in practice. The commands list type constructors and
list operators have been useful in the early days of Secondo but are nowadays not
practical any more, because the number of available types and operators is overwhelming.
At the time of writing, the number of operators in the author’s system is 3419. To get
information about types and operators, it is still practical to list one particular algebra or
to use the queries described next.

4.1.10 Online Help

Secondo provides some virtual system tables; these tables are automatically present in
every database. The tables provide information about the known operators and statistical
information about the performed queries. The name of all these special tables starts with
SEC2. The most interesting tables for a user are SEC2OPERATORINFO and SEC2TYPE-

INFO.

SEC2OPERATORINFO The table SEC2OPERATORINFO contains information about
all known operators. To see all known operators, their signature and an example, the fol-
lowing command can be used:

query SEC2OPERATORINFO

The content of the tables can be queried and filtered like a regular table. To show only the
operators which work with a stream, the following command can be used:

26 Secondo User Manual

query SEC2OPERATORINFO feed filter[.Signature contains "stream"] consume

To show more information about the operator feed, the following command can be used:

query SEC2OPERATORINFO feed filter[.Name = "feed"] consume

To simplify this task, a parameter function can be created. In the following example, a
function with the name showop is defined. The function expects a string as parameter. The
operator for which the information is shown is determined by this parameter.

let showop = fun(arg: string) SEC2OPERATORINFO feed

filter[toLower(.Name) = toLower(arg)] consume

Now, the function can be used. In the following example, the function is used to show
information about the feed operator:

query showop("feed")

SEC2TYPEINFO Information about the types that are known by Secondo are con-
tained in the table SEC2TYPEINFO. To show all known types, the following command can
be used:

query SEC2TYPEINFO

The following command shows more information about the type interval:

query SEC2TYPEINFO feed filter [.Type = "interval"] consume

4.2 SQL-like Language

As a further query language, Secondo provides an SQL-like language. This language is
based on SQL and implements a subset of the SQL standard. The SQL-like language is
processed by the optimizer which is written in Prolog. The optimizer generates a query plan
in the executable language and the generated queries are passed to the Secondo kernel for
execution. During the generation of the query, the optimizer tries to find the cost-optimal
query (i.e., the query that calculates the result in the fastest way).

In the following examples, we assume that a user interface such as SecondoPLTTY or the
Javagui is used. These permit the so-called relaxed notation which is closer to the original
SQL. In contrast, if the user interfaces SecondoPL or SecondoPLCS are used, some restric-
tions apply, because these are direct Prolog interfaces. The differences between the two
notations are explained at the beginning of Section 5. These latter interfaces are mainly
used for optimizer development.

4.2.1 General Information

The SQL-like language has the following syntax:

select <attr-list>

from <rel-list>

where <pred-list>

Secondo User Manual 27

For example, the following query can be used to select all tuples from the table Staedte with
the condition Bev > 5000005.

select * from Staedte where Bev > 500000

After the query is executed, it takes some time and the following query plan in the executable
language is calculated:

Computing best Plan ...

Destination node 1 reached at iteration 1

Height of search tree for boundary is 0

Optimized plan is:

query Staedte feed filter[(.Bev > 500000)]

{0.20668965517241378, 0.6724137931034483} consume

Estimated Costs are:

0.41194000000000003

The output contains also the query plan in the executable language. The term {0.206689

65517241378, 0.6724137931034483} is an annotation about the cost of the predicate and
the estimated selectivity. These values are used by the Secondo kernel for progress estima-
tion.

When multiple tables are queried, the attributes of the tables can be renamed to avoid name
conflicts. In the following query, the tables Orte and plz are used. Both tables contain
an attribute with the name Ort. To avoid name conflicts, the keyword as <name> is used.
It renames all the attributes of the table to <name>.<attr>. In the following query, the
attribute Ort of the relation Orte is renamed to o.Ort and the attribute Ort of the relation
plz is renamed to p.Ort.

select *

from [Orte as o, plz as p]

where [o.Ort = p.Ort, o.Ort contains "dorf", (p.PLZ mod 13) = 0]

4.2.2 Syntax of the Language

Table 1 contains the syntax of the SQL-like language as a context free grammar. The table
contains only the basic elements of the language. Advanced topics such as aggregation or
ordering will be discussed later in this section. The update of relations is shown in Section 5.

We use the following conventions: words written in typewriter font are grammar symbols
(non-terminals), words in bold face are terminal symbols. The symbols ”->” and ”|” are
meta-symbols denoting derivation in the grammar and separation of alternatives. Other
characters like ”*” or ”:” are also terminals. ”id” is any valid Secondo identifier. ǫ denotes
the empty word.

The SQL-like language allows one to determine the ordering of the result. Besides, the
number of tuples in the result can be restricted. It is possible to restrict to the first or last
tuples in the result set or to take a random sample (using some). The additional grammar
of the language is shown in Table 2.

For example, the following query can be formulated with our SQL-like language:
5It is assumed that the database opt is opened already. Otherwise, the database has to be opened first

by executing open database opt

28 Secondo User Manual

query -> select distinct-clause sel-clause from
rel-clause where-clause

distinct-clause -> all | distinct | ǫ

sel-clause -> * | result | [result-list] |

count(distinct-clause *)
result -> attr | attr-expr as newname

result-list -> result | result, result-list

attr -> attrname | var:attrname

attr-list -> attr | attr, attr-list

attrname -> id
newname -> id
rel -> relname | relname as var

rel-clause -> [rel-list]
rel-list -> rel | rel, rel-list

relname -> id
var -> id
where-clause -> where [pred-list] | where pred | ǫ

pred -> attr-boolexpr

pred-list -> pred | pred, pred-list

Table 1: The main grammar of the SQL-like language.

query -> select distinct-clause sel-clause from
rel-clause where-clause orderby-clause

limit-clause

orderby-clause -> orderby [orderattr-list] | orderby
orderattr | ǫ

orderattr -> attrname | attrname asc | attrname desc
orderattr-list -> orderattr | orderattr, orderattr-list

limit-clause -> first int-constant | last int-constant | some
int-constant | ǫ

Table 2: The ordering and limiting part of the SQL-like language.

Secondo User Manual 29

select [o.Ort, p1.PLZ, p2.PLZ]

from [Orte as o, plz as p1, plz as p2]

where [o.Ort = p1.Ort, p2.PLZ = (p1.PLZ + 1), o.Ort contains "dorf"]

orderby [o.Ort asc, p2.PLZ desc]

first 10

As in SQL, aggregations or grouping can also be applied in our SQL-like language. The
corresponding grammar is shown in Table 3.

query -> select aggr-clause from rel-clause where-clause

groupby-clause orderby-clause first-clause

aggr-clause -> aggr2 | [aggr2, aggr-list]
aggr2 -> count(distinct-clause *) as newname | aggrop(ext-

attr-expr) as newname | arbitrary-aggr as newname

aggr -> groupattr | groupattr as newname | aggr2

aggr-list -> aggr | aggr, aggr-list

aggrop -> min | max | sum | avg | extract | count
aggr-fun -> (*) | (+) | union new | intersection new | any name fun

of a binary Secondo-operator or function object with syntax
fun: T x T -> T which should be associative and commuta-
tive. Infix-operators must be enclosed in round parentheses.

arbitrary-aggr -> aggregate(ext-attr-expr, aggrfun, datatype,

datatype-constant)
datatype -> any name of a Secondo datatype, e.g., int | real | bool

groupby-clause -> groupby groupattrs | groupby groupattrs having
preds

groupattrs -> groupattr | [groupattr-list]

groupattr-list -> groupattr | groupattr, groupattr-list

groupattr -> attr

preds -> pred | [pred-list]

Table 3: The grouping and aggregation part of the SQL-like language.

For example, a query with grouping and aggregation looks like:

select [Ort, min(PLZ) as Minplz, max(PLZ) as Maxplz, count(*) as Cntplz]

from plz where PLZ > 40000

groupby Ort

having Cntplz > 100

orderby Cntplz desc

The SQL-like language of Secondo also supports union, intersection, and minus oper-
ations. They can be used as binary operations or be applied to lists of simple queries. Of
course, all relations resulting from simple queries must have the same schema. The grammar
for using such operations is shown in Table 4.

query -> query union query | query intersection query | query

minus query

mquery -> union[query-list] | intersection [query-list]
query-list -> query | query, query-list

Table 4: The set operation part of the SQL-like language.

30 Secondo User Manual

This part of the language allows queries such as the following:

select * from plz

minus

select [PLZ, Ort] from [Orte as o, plz] where o.Ort = Ort

union [

select * from plz where Ort contains "dorf",

select * from plz where Ort contains "stadt",

select * from plz where Ort contains "burg"

]

4.2.3 Updating the Optimizer’s Knowledge

When a database is opened for the first time by an interface involving the optimizer (e.g.
SecondoPL, SecondoPLTTY, Javagui with optimizer server), the optimizer creates a catalog
on relations and indexes among others. It contains the existing indices, samples, and selec-
tivities of predicates. When a database is reopened, the optimizer compares the database
catalog with its own info and makes its info consistent when necessary.

When database objects are created or deleted through an interface involving the optimizer,
the optimizer info of this Secondo instance is automatically kept up to date.

However, in a client-server configuration it may be necessary to explicitly update the opti-
mizer of one client when another client creates or deletes database objects.

Also, if the stored data values have been significantly changed so that samples are not
accurate any more, the optimizer must be informed to adapt to these changes. This is the
purpose of the following predicates.

Updating one relation The following command causes the optimizer to delete all in-
formation it has about the relation Rel, including selectivities of predicates. An existing
sample of the data is also destroyed. A query afterwards involving this relation collects all
information from scratch. Existing or non-existing indexes are also discovered.

updateRel(Rel)

Updating the knowledge for database With the following command, the optimizer’s
knowledge about a complete database is updated. In particular, it will check whether any
relations and/or indexes have been added or removed and update its knowledge base accord-
ingly. Hence this can be used after creating or destroying an index by a third party, without
losing all the other information.

updateCatalog

Complete knowledge update The following command will retract all metadata on ob-
jects of a database. When the database is opened for the next time, the optimizer will need
to recollect metadata. Before the command can be executed, the database needs to be closed
first.

updateDB(DB)

Secondo User Manual 31

4.2.4 Optimizer Options

The optimizer is configurable, features can be enabled or disabled at runtime. When the
optimizer starts up, a list of all settings is displayed. This list can be re-displayed by using
the command:

showOptions

To activate a certain feature, the following command can be used:

setOption(OptionName)

To disable a certain feature, the following command can be used:

delOption(OptionName)

When the autosave feature is active, the option settings will be saved and restored on the
next start of the optimizer.

To display the online help of the optimizer, the following command can be called:

helpMe

32 Secondo User Manual

5 Examples

In this section, we will show some examples how to use Secondo. Even though Secondo

supports different data models, we will limit this section to the well-known relational data
model. As described in Section 4, Secondo provides two levels of querying, the executable
language and the SQL-like language. In this section, we will describe both variants.

In the case that both variants should be tested, a user interface supporting the executable
language and the SQL-like language must be started. The attentive reader knows that
SecondoPLTTY and the Javagui are possible options. If only one of the variants is in the
focus, one of the appropriate interfaces must be started (see Section 3).

As mentioned earlier, the SQL notation used differs slightly depending on the user interface.
In SecondoPL or SecondoPLCS which are direct interfaces to a Prolog interpreter, some
restrictions apply:

• Relation and attribute names must be written in lower case.
• A period cannot be used within a qualification (such as a.name); instead a colon has

to be used (a:name).
• An SQL statement or query needs to be prefixed with sql and terminated with a

period.
• Only some kernel commands such as open database <db>, delete <object> are

available directly; others have to be embedded into a secondo(’...’) command.

We call this notation the restricted form. These user interfaces are more useful for optimizer
development.

In contrast, in the Javagui or in SecondoPLTTY interfaces, a preprocessor transforms queries
into the form shown above. Hence the following is allowed:

• Relation and attribute names can be written in their normal notation as in executable
language.

• A period may be used within a qualification; hence writing a.Name is fine.
• An SQL statement or a query needs no prefix and can be terminated as in executable

language.
• All general commands are available.

We call this the relaxed form or notation. In the sequel we will show the relaxed form and
provide a few additional examples of queries in the restricted form.

5.1 Preparations

Before objects can be created, deleted, or manipulated, a database must be opened. For the
next examples, we use a database called exampleDB. The following commands create and
open this database.

create database exampleDB;

open database exampleDB;

In restricted form (SecondoPL) these commands are written as

create database exampleDB.

open database exampleDB.

Secondo User Manual 33

5.2 Creating an Empty Relation

5.2.1 Executable Language

In the executable language, there is a const construct allowing one to describe a value of
an object of an arbitrary supported type. For creating an empty relation, we have to enter
the type (schema) of this relation as well as its value. The value of an empty relation is just
an empty list written as a pair of brackets.

let myfirstrel = [const rel(tuple([Name : string, Age : int])) value ()];

Here, a new relation named myfirstrel having two columns Name and Age with the given
types is created. Up to now, this relation is empty, i.e., it contains no tuple. Note that all
attribute names have to start with an upper case.

The presence of this relation can be checked using the command:

list objects;

5.2.2 SQL-like Language

A relation with the same schema can be created in the SQL-like language using the command:

create table myfirstrel columns [Name : string, Age : int];

Restricted form:

sql create table myfirstrel columns [name : string, age : int].

The success of the creation of this table can be checked using the command:

showDatabaseSchema

5.3 Inserting Tuples into a Relation

5.3.1 Executable Language

Inserting Single Tuples

Secondo’s update command just replaces the whole object stored in the catalog by another value.
Thus, inserting tuples into a relation is realized as a side effect of a query. For the manipulation of
relations, operators of the UpdateRelationAlgebra are used. We insert two new tuples into the
relation myfirstrel:

query myfirstrel inserttuple["Anna", 27] count;

query myfirstrel inserttuple["Hans", 42] count;

The inserttuple operator gets as input the relation to be updated and a list of attribute values
that have to fit the relation’s schema. Note that Secondo does not support default values. The
operator produces a stream of tuples consisting of the freshly inserted tuple extended by a tuple
id. This is useful for updating indexes on this relation as described in Section 5.10. Here, we just
count the inserted tuples. The result will always be 1.

34 Secondo User Manual

Inserting A Stream of Tuples

A stream of tuples can be inserted into a relation provided the tuples in the stream and in the
relation have the same schema. This is done using the insert operator.

For example, suppose we have a relation mysecondrel with the same schema (type) as myfirstrel.
Then we can insert all tuples from myfirstrel having Age < 40 into mysecondrel as follows:

query myfirstel feed filter[.Age < 40] mysecondrel insert count;

The insert operator gets a stream of tuples and a relation of the same tuple type. It returns a
stream of inserted tuples extended by tuple id as motivated above.

We can check the success of the insertions by printing the relations:

query myfirstrel;

query mysecondrel;

5.3.2 SQL-like Language

Inserting Single Tuples

Using the SQL-like language, the tuples can be inserted by:

insert into myfirstrel values ["Anna", 27];

insert into myfirstrel values ["Hans", 42];

Inserting A Set of Tuples

insert into mysecondrel

select * from myfirstrel where Age < 40;

We can check the success by displaying the relations:

select * from myfirstrel;

select * from mysecondrel;

5.4 Removing Tuples from a Relation

5.4.1 Executable Language

If tuples in a relation become obsolete, these tuples should be removed from this relation. The
UpdateRelationAlgebra provides some operators for this purpose. In the example, we will use
the deletedirect operator. This operator uses a tuple stream and removes all tuples from the relation
that have the same tuple ids as the incoming tuples. The result is a stream of the removed tuples
extended by the tuple id. Because up to now there is no index created over this relation, we just
count the removed tuples.

query myfirstrel feed filter[.Name = "Hans"] myfirstrel deletedirect count;

5.4.2 SQL-like Language

In the SQL-like language tuples can be deleted from a relation by the delete command.

delete from myfirstrel where [Name = "Hans"];

Secondo User Manual 35

5.5 Changing Tuples in a Relation

5.5.1 Executable Language

For the manipulation of tuples, the UpdateRelationAlgebra provides some operators. In the
example, the updatedirect operator is used.

query myfirstrel feed filter[.Name = "Anna"]

myfirstrel updatedirect[Age : .Age + 1]

count;

This command works as described in the following. In the first part, the tuples for the update are
selected. This stream together with the relation to update itself are the first two arguments of the
updatedirect operator. The third argument is a list of functions that describe how to update a tuple
from the stream. Before the colon, the name of the attribute is given that should be changed. After
the colon, the description of the computation of the new value follows. For accessing the present
value in the tuple, the dot notation is used, e.g., here .Age corresponds to the present value of the
Age attribute.

5.5.2 SQL-like Language

In the SQL-like language, an update command is used:

update myfirstrel set [Age = Age + 1] where [Name = "Anna"];

Restricted form for SecondoPL:

sql update myfirstrel set [age = age + 1] where [name = "Anna"].

5.6 Importing Data from Files

In some cases, data are already present in files in a certain format. For several of these formats
Secondo provides import operators that can be used to store the contents of the file into a relation.

This functionality is only available in the executable language. In a pure optimizer environment
(SecondoPL, SecondoPLCS), it is possible to execute such commands by embedding them into the
secondo predicate:

secondo(’<command in executable language>’).

If single quotes are required in such an executable command, they must be masked with a backslash.

5.6.1 Comma Separated Values

A frequently used exchange format for the representation of tables in files are comma separated
values (csv). Here, each tuple is provided within a single line where the attributes are separated
by some character (mostly a comma). The operator used here is csvimport. This operator needs
at least four arguments. The first argument is a relation providing the schema of the table stored
in the file. The content of this relation is untouched. The second argument is the name of the
file containing the csv data. Some files provide additional information in the first lines. Such lines
should be ignored during the import. The third argument of csvimport corresponds to the number
of such header lines. If no such lines are present, just use 0 here. On the other hand, some lines
in the file may be commented out. This is done using a special character at the begin of a line,
given as the next argument to the operator. If no comments are present in the file, an empty

36 Secondo User Manual

string is used here. The operator has further optional arguments. For example, it is possible to
change the separator character to another than comma. Please read the online documentation of
this operator for more information. The operator produces a stream of tuples that can be collected
by the consume operator.

The bin directory of Secondo contains a file named Trk110731.csv that is used here to demon-
strate the import of csv files. It contains a recorded track of a vehicle. See the first lines in the file
for further information. The file can be imported by the following command:

let Trk110731 = [const rel(tuple([

Lat : real,

Long : real,

UTC : string,

Alt : int,

Dist : real,

Speed : int,

Date : string,

Name : int,

Sat : int]))

value ()]

csvimport[’Trk110731.csv’, 7, "#"] consume;

5.6.2 DBase Files

DBase is one of the first database management systems for home computers. It uses simple files
for storing data. This file format is used frequently as an interchange format. Secondo supports
importing DBase files in version 3 by using the dbimport2 operator. The only argument of this
operator is the file name. It returns a stream of the tuples stored in this file. Secondo’s bin

directory contains a file plz.db3. This file can be imported by:

let plz = dbimport2(’plz.db3’) consume;

5.6.3 Shape Files

Secondo supports spatial data types like point, multipoint, line, and region within the SpatialAl-
gebra. A common interchange format for this kind of data are ESRI Shapefiles. A table in this
format consists of three parts. One part is a file with extension .shp that contains the geometries.
A second file with extension .shx provides an index over this file. The last part is a DBase-III file
providing additional attributes of the tuples. The geometries are connected to the DBase tuples
by their position in the file, e.g, the third geometry in the shp file is connected to the third tuple
in the db3 file.

Secondo provides the operator importshp2 for importing the geometries of a shape file. This
operator provides a stream of attributes that can be converted into a tuple stream using the
namedtransformstream operator. The DBase file can be imported using the dbimport2 operator
known from the last section. The two tuple streams can be combined by the operator obojoin

joining two tuple streams one by one. The index file is ignored by Secondo. Within the directory
bin/testData some sample files are located. Here, we will import street data from Berlin.

let streets = dbimport2(’testData/streets.db3’)

shpimport2(’testData/streets.shp’) namedtransformstream[Geometry]

obojoin

consume;

Secondo User Manual 37

5.6.4 Other File Formats

Besides the aforementioned formats, Secondo supports also the import of other formats. Examples
include OpenStreetMap data, nmea6 data, gpx7 files, ais8 data, and some others. For further
information see the online help of the appropriate operators. Note that some of the import operators
are only available if some additional algebras have been included (see Section 7.1). For example
the import of OpenStreetMap data depends on the activation of the OSMAlgebra.

5.7 Finding Data

5.7.1 Executable Language

Once the data are stored in tables, Secondo provides mechanisms to find data with some specified
properties. The simplest mechanism is a full table scan followed by a selection. Assume we have
imported the street relation using the command above. If we want to find those streets having a
name starting with an A, we can use the following command:

query streets feed filter[.Name starts "A"] project[Name] consume;

The feed operator puts the tuples of the relation into a tuple stream. The filter operator removes
such tuples not fulfilling the given condition from this stream. Here, the condition is fulfilled if the
value of the attribute Name of the current tuple starts with an A. The project operator restricts
each tuple of the incoming stream to its Name attribute. The operator consume collects the tuples
into the result relation.

5.7.2 SQL-like Language

In the SQL-like language the same search can be done using:

select Name from streets where [Name starts "A"]

5.8 Creating Indexes

A full table scan is a simple mechanism for finding data that works for each search condition.
However, scanning all tuples of a relation is very expensive. Secondo provides a set of index
structures including B-trees, R-trees, M-trees, and hash tables to accelerate the search of data with
given properties. Further index structures are available but beyond the scope of this introductory
manual.

Note that for creating large indexes it is preferable to use a SecondoTTYNT interface, i.e., to switch
off transactions. Otherwise logging all changes to the index structure leads to considerable overhead
and slow execution.

5.8.1 Executable Language

It is possible to create several indexes over a single relation. Here, we build a B-tree and a hash
index over the PLZ attribute of the plz relation and an M-tree over the Ort attribute of this relation.
For indexing geo data, the R-tree is a commonly used index structure. We create such an index

6National Marine Electronics Association format
7GPS Exchange format
8Automatic Identification System

38 Secondo User Manual

over the geometries stored in the streets relation. For creating an R-tree, also a bulkload variant is
possible. This is faster for bigger relations. Since index structures have no external representation,
for the creation of indexes, the derive command should be used to be able to save and restore the
whole database.

Note that the naming convention used in these examples, namely <relation> <attribute> <in-

dextype> needs to be followed to let the index be recognized by the optimizer. Indexes created in
SQL automatically follow this convention.

derive plz_PLZ_btree = plz createbtree[PLZ];

derive plz_PLZ_hash = plz createhash[PLZ];

derive plz_Ort_mtree = plz createmtree[Ort];

derive streets_Geometry_rtree = streets creatertree[Geometry];

Alternatively we can create an R-tree index by a bulkload technique:

derive streets_Geometry_rtree =

streets feed addid sortby[Geometry] bulkloadrtree[Geometry];

The bulkload technique first sorts a stream of tuples by the spatial attribute to be indexed. What
does sorting by a spatial attribute mean? First of all, spatial values are reduced to a point, the
center point of the bounding box. These points are then sorted into z-order. This is a space-filling
curve that maps a 2d or higher-dimensional space into a 1d linear order, preserving proximity
[Ore86]. Geometries from this z-ordered stream of tuples are then packed sequentially into pages of
an R-tree, building the R-tree bottom-up. Because only complete pages are written, this is much
faster than a sequence of random insertions into an R-tree.

There is one issue that needs to be observed: Sorting into z-order is based on the x- and y-
coordinates of points. From these coordinates, only the integer part is used. This is no problem
for the streets relation used above, as it has coordinates in meters. However, when geographic
coordinates are used, the integer part just describes degrees of latitude or longitude and such
coordinates are by far not precise enough for indexing.

The solution is to just scale up geographic coordinates by a large factor so that the integer part
contains all useful information. For a rectangle value, this can be done by the scalerect operator
which multiplies all coordinates by a given factor in x and y.

Suppose we have a relation Buildings in geographic coordinates. We build an R-tree index by
bulkload as follows:

let Buildings_GeoData_rtree = Buildings feed addid

extend[Box: scalerect(bbox(.GeoData), 1000000.0, 1000000.0)]

sortby[Box] remove[Box] bulkloadrtree[GeoData]

Since the additional attribute Box is needed only for the sorting step, it can be removed directly
after this step. It also needs to be removed to let the R-tree have the correct tuple type.

5.8.2 SQL-like Language

In the SQL-like language, these indexes can be created by the commands:

create index on plz columns PLZ;

create index on plz columns PLZ indextype hash;

create index on plz columns Ort indextype mtree;

create index on streets columns Geometry indextype rtree;

Restricted form for SecondoPL:

Secondo User Manual 39

sql create index on plz columns plz.

sql create index on plz columns plz indextype hash.

sql create index on plz columns ort indextype mtree.

sql create index on streets columns geometry indextype rtree.

Unfortunately, the bulkload techniques are not yet available at the SQL level.

5.9 Using Indexes

If an index over an attribute of a relation is present, it can be used to accelerate selections on this
relation.

5.9.1 Executable Language

Different index structures support different kinds of selections. For example, a hash structure
supports only a selection by equality while a B-tree index additionally supports range queries.

The next query returns the city names having the zip code 58085.

query plz_PLZ_hash plz exactmatch[58085] project[Ort] consume;

Here, the exactmatch operator gets three arguments, the index, the indexed relation, and the value
to search for. It returns the tuples having exactly the given value within a stream. The operator
project reduces the tuples in this stream to the attribute Ort. Finally, the consume operator collects
this tuple stream into a relation.

The same query also works with a B-tree:

query plz_PLZ_btree plz exactmatch[58085] project[Ort] consume;

For finding the city names in a range of zip codes, the hash index is not usable. The B-tree index
supports this kind of query:

query plz_PLZ_btree plz range[58000, 59000] project[Ort] sort rdup consume;

The range operator uses the index, the relation, and an interval of attributes as input and returns
such tuples where the indexed value is enclosed in the given interval. Because some cities have
more than one zip code, the stream will have duplicates in the city names. The operator rdup

removes such duplicates. Since this operator requires a sorted stream, we sort the stream using the
operator sort.

The M-tree supports also range queries. In contrast to the previous query, the range is not defined
as an interval but by a value and a maximum distance to this value. Since the M-tree is built over
an attribute of type string, the well-known edit distance is used here. The next query returns the
names of the cities having a maximum edit distance of 1 to Hagen. As before, we remove duplicates
in the result.

query plz_Ort_mtree plz rangesearch["Hagen", 1.0]

project[Ort] sort rdup consume;

Besides range queries, an M-tree supports also nearest neighbor queries.

query plz_Ort_mtree plz nnsearch["Hagen", 5] consume;

The result consists of 5 tuples, each having the value Hagen in its Ort attribute.

Geometric range queries are supported by the R-tree created in the last section. The range is
described as a rectangle. In contrast to the previously used indexes, the index does not return

40 Secondo User Manual

exact results, but such tuples whose bounding box9 of its geometric attribute intersects the given
rectangle. Hence the created tuple stream contains candidates of the result and must be filtered to
get only those tuples having an intersection in the real geometry. The following query counts how
many streets intersect some rectangle.

let box1 = [const rect value (4751.26 15618.2 6537.32 16482.1)];

query streets_Geometry_rtree streets windowintersects[box1]

filter[.Geometry intersects1 box1 rect2region] count;

5.9.2 SQL-like Language

In the SQL-like language the optimizer decides on the usage of indexes. Of course, if no index
exists, a full table scan is the only option. In the presence of one or more indexes, the cheapest
plan is used.

Again, we want to find the city name having 58085 as its zip code.

select Ort from plz where PLZ = 58085

If looking at the output, one can see the usage of the B-tree for this query.

The zip code range query above can be formulated as:

select distinct Ort from plz where between(PLZ, 58000, 59000)

By reading the output we will see that the B-tree index is not used here. Instead, a full table scan
is preferred.

Spatial range queries can also be performed:

secondo(’let reg1 = [const rect value (4751.26 15618.2 6537.32 16482.1)]

rect2region’);

select count(*) from streets where Geometry intersects reg1

As displayed, the R-tree has been applied.

5.10 Updating Relations with Indexes

If the content of a relation changes, also the indexes related to it must be updated. When using
the optimizer, updates are forwarded automatically to all existing indexes. This means updates are
entered in the same way independently whether indexes exist or not. Hence, only the executable
language is described in this section.

When inserting a new tuple into a relation using the inserttuple operator, the result of this operator
is a tuple stream containing the inserted tuple extended by a tuple id. This tuple stream can be
used to inform indexes about this insertion.

The following command inserts a fictious city together with its zip code into the plz relation and
updates the indexes created before:

query plz inserttuple[1111, "Gotham City"]

plz_PLZ_btree insertbtree[PLZ]

plz_PLZ_hash inserthash[PLZ] count;

Unfortunately, the M-tree does not support any updates, thus this index is omitted in the update.
After the above update, the new tuple can be found using the B-tree index and the hash index.

9The minimum axis-parallel rectangle that encloses the whole geometry

Secondo User Manual 41

query plz_PLZ_btree plz exactmatch[1111] consume;

query plz_PLZ_hash plz exactmatch[1111] consume;

When removing a tuple, the indexes must be changed, too:

query plz feed filter[.Ort contains "Gotham"] plz deletedirect

plz_PLZ_btree deletebtree[PLZ]

plz_PLZ_hash deletehash[PLZ]

count;

Very similarly, updates on existing tuples can be forwarded to indexes using the operators updateb-

tree and updatehash. This task is left as an exercise to the reader.

5.11 Sorting

5.11.1 Executable Language

If result tuples are expected in a special order or if operators require a sorted tuple stream, unsorted
streams must be sorted. In Secondo there are two sorting possibilities, sorting by the whole tuple
and sorting by a selection of attributes. To sort a tuple stream, the operator sort10 is used. This
operator sorts firstly by the first attribute in the tuples; if the first attribute is equal the second
attribute is used as the next sorting criterion and so on.

The next command returns the zip codes and city names sorted by the whole tuple:

query plz feed sort consume;

For different priorities of the attributes or if a descending order is required, the operator sortby or
the operator sortbyh can be used. The following command sorts the plz relation firstly by the city
name and secondly descending by the zip code:

query plz feed sortbyh[Ort, PLZ desc] consume;

5.11.2 SQL-like Language

In SQL sorting of the result can be realized by using the orderby clause. Internal sorting, for
example when using operators requiring a special order is automatically embedded into the plan
by the optimizer.

The following command returns the plz relation sorted by plz and ort:

select * from plz orderby [PLZ, Ort]

The ordering can also be inverted for an attribute:

select * from plz orderby [Ort, PLZ desc]

5.12 Aggregations

5.12.1 Executable Language

For some evaluations, aggregations on relations are needed. Secondo provides some standard
aggregation functions like min, max, sum, and avg. While min and max can be applied to any

10or an alternative implementation sorth that does not support progress estimation but is a bit faster

42 Secondo User Manual

attribute, the operators sum and avg are only applicable to numeric values (int, real). Additionally
to these standard aggregations, Secondo has also general aggregation operators, namely aggregate

and aggregateB. Here, the aggregation function is freely choosable.

The following query returns the city name having the lexicographically largest value:

query plz feed max[Ort];

The following query sums up all zip codes of Hagen:

query plz feed filter[.Ort = "Hagen"] sum[PLZ];

Using the following command, the average age of our firstly created relation can be computed:

query myfirstrel feed avg[Age];

With the general version of the aggregation, we can for example build the union of all water areas
containing "see" in their names:

query WFlaechen feed filter[.Name contains "see"]

aggregateB[GeoData; fun(r1:region, r2:region) r1 union1 r2

; [const region value ()]];

The operator aggregateB gets a tuple stream, the name of the attribute that should be aggregated,
an aggregation function, and a value that is returned in case of an empty stream.

5.12.2 SQL-like Language

In the SQL-like language aggregations are possible only in combination with grouping described in
the next section.

5.13 Grouping

Aggregations on whole relations are unusual. Mostly aggregations are computed for some groups
(tuples having the same value in certain attributes) of a relation.

5.13.1 Executable Language

In the executable language, the groupby operator can be used for grouping. The arguments of
this operator are a tuple stream ordered by the grouping attributes, the names of the grouping
attributes, and a set of functions that are applied to each group. The result of each function must
be an attribute data type. The result of groupby is a tuple stream consisting of the grouping
attributes and the computed function values.

The next command determines the number of zip codes for each city name in the plz relation and
sorts the result by this number.

query plz feed sortby[Ort] groupby[Ort; Cnt : group count] sortby[Cnt]

consume;

5.13.2 SQL-like Language

Of course, grouping is also available in the SQL-like language.

select [Ort, count(*) as Cnt] from plz groupby Ort orderby Cnt

Secondo User Manual 43

5.14 Combining Several Relations (Joins)

In this section, we discuss join operations. Note that set operations for combining relations with
the same schema are also available as described in Section 4.2.

For the following examples, we will use the database berlintest containing more relations than
the example database created before. If the berlintest database is already present, use the
commands:

close database;

open database berlintest;

If the database berlintest does not exist, use the following commands for creating it:

close database;

restore database berlintest from berlintest;

In the Javagui or in SecondoPLTTY, the path to the berlintest database needs to be specified:

restore database berlintest from ’../bin/berlintest’;

5.14.1 Executable Language

For combining relations, Secondo provides a set of join operators. The most general join operation
in Secondo is the operator symmjoin. Here, the join condition has no limitations. Note that the
run time of this operator is proportional to the product of the stream cardinalities.

The following command retrieves city names that are properly contained in another city name. To
reduce the complexity of this query, we restrict the city names to those starting with an A.

query plz feed filter[.Ort starts "A"]

plz feed filter[.Ort starts "A"] {a}
symmjoin[(tolower(.Ort) contains tolower(..Ort_a))

and (not(.Ort = ..Ort_a))]

consume;

Note that join operators can be used only on tuple streams, whose attribute names are disjoint.
For renaming the attributes, Secondo provides a rename operator that is written as {suffix}

behind the tuple stream. Each attribute name will be extended by an underline followed by the
given suffix.

For less complex join conditions, indexes can be exploited to accelerate the computation of the
result. This can be done by using the loopjoin operator. This operator gets a stream of tuples as
its first argument. The second argument to this operator is a function that maps a single tuple
from the stream into a stream of other tuples. It connects a tuple from the first input stream with
all tuples created by the function. In the following example, the relation Orte (containing city
information) is used. This table has the following schema:

Orte(Kennzeichen : string, Ort : string, Vorwahl : string, BevT : int)

The first attribute describes the licence plate code for the city, the second attribute is the name of
the city followed by its STD code, and the population in units of thousand. The following command
extends this relation by the zip code coming from the plz relation:

query Orte feed

loopjoin[plz_Ort_btree plz exactmatch[.Ort] project[PLZ]]

consume;

44 Secondo User Manual

Index structures are only available on relations that are stored in the database. For derived streams,
Secondo provides further join mechanisms depending on the join conditions. For equality condi-
tions, the operator hashjoin or the alternative implementation itHashJoin can be used. The next
example computes the same result (disregarding the order) as before without using an existing
index:

query Orte feed plz feed {a} itHashJoin[Ort, Ort_a]

remove[Ort_a] renameAttr[PLZ : PLZ_a]

consume;

The operator itHashJoin combines all tuples from both streams that have the same value for the
specified attributes. In the result stream both attributes exist, so we remove one of them using the
remove operator. After that, we rename the attribute PLZ a back to PLZ.

Since Secondo has support for spatial data types, it also provides a spatial join operator. For
this operation, several variants are implemented, too. The following example uses the itSpatialJoin

operator. It gets two tuple streams each containing a spatial attribute (point, points, line, region).
It combines those tuples where the bounding boxes of the spatial attributes intersect. Note that
this join produces candidate pairs. A check for a real intersection of the attributes must be done
after the join. The next command finds all pairs of streets in Berlin that intersect each other:

query strassen feed

strassen feed {a}
itSpatialJoin[GeoData, GeoData_a]

filter[.Name < .Name_a]

filter[.GeoData intersects .GeoData_a]

project[Name, Name_a]

consume;

5.14.2 SQL-like Language

Secondo’s SQL dialect supports joins in the where clause, but no explicit joins in the from clause.
The join algorithm is chosen automatically by the optimizer.

Again, we search for city names contained in other city names restricted to names beginning with
an A.

select *

from [plz as p1, plz as p2]

where [p1.Ort starts "A", p2.Ort starts "A",

tolower(p1.Ort) contains tolower(p2.Ort), p1.Ort # p2.Ort]

The next example extends the tuples from the relation Orte by the zip code from the relation plz:

select [o.Ort as Ort, o.Kennzeichen as Kennzeichen, o.Vorwahl as Vorwahl,

o.BevT as BevT, p.PLZ as PLZ]

from [Orte as o, plz as p]

where o.Ort = p.Ort

Of course, the optimizer also supports spatial joins:

select [s1.Name, s2.Name]

from [strassen as s1, strassen as s2]

where [s1.Geodata intersects s2.Geodata, s1.Name < s2.Name]

The last query written in restricted form is:

sql

select [s1:name, s2:name]

from [strassen as s1, strassen as s2]

where [s1:geodata intersects s2:geodata, s1:name < s2:name].

Secondo User Manual 45

5.15 Exporting Data

To use Secondo’s computation results in other programs, there are some operators able to export
tuple streams into files. As for the import, several formats are supported. Here, the most important
ones are explained. Such specialized operators are only available in the executable language.

For exporting a table for spreadsheet programs like LibreOffice Calc, the operator csvexport can
be used. The export is limited to a small set of types. For showing the set of supported types, the
following command can be used:

query SEC2TYPEINFO feed

loopjoin[.Type kinds filter[. = "CSVEXPORTABLE"]

namedtransformstream[Kind]]

project[Type]

consume;

The operator csvexport requires at least three arguments. The first argument is the tuple stream
to be exported. The second argument has the type string or text and identifies the name of the file
the tuples should be exported into. The third argument of type boolean states whether an existing
file should be extended (TRUE) or overwritten (FALSE). An optional fourth argument can be used
to write the attribute names of the relation in the first line of the output. After that argument
another argument can be given changing the separator that is a comma by default.

The following command exports the plz relation into a file called plz.csv with a # as separator
character:

query plz feed csvexport[’plz.cvs’, FALSE, TRUE, "#"] count;

For exporting spatial attributes, the shape file format can be used. This is done by shpexport.
This operator gets a tuple stream, a file name, and a name of a spatial attribute in the stream.
Optionally, the name of the index file can be a further argument. Without this argument no index
file is created. This operator will export one spatial attribute only and not the standard attributes
contained in the stream. The result of this operator are the unchanged tuples from the input stream.
For exporting the standard attributes, the db3export operator can be used. It exports exactly such
attributes that can be represented within a DBase-III file. Other attributes are ignored. With this
knowledge, we can export our streets relation into a set of files.

query streets feed

shpexport[’streets.shp’, Geometry, ’streets.shx’]

db3export[’streets.dbf’]

count;

Of course, the operator db3export can also be used outside a spatial context.

5.16 Writing Scripts

Often, the same processing has to be performed on different data. It would be arduous to enter the
same set of commands again and again for each data set. Hence Secondo provides the possibility
to write commands into a text file and after that, this file can be executed by Secondo. Such a
file just contains the commands as they are entered directly into the user interface.

Within a TTY environment, the commands for executing such a script are:

• @<filename> runs a script ignoring errors
• @@<filename> runs a script and stops after the first failed command
• @%<filename> runs a script ignoring some special comments

46 Secondo User Manual

• @&<filename> runs a script ignoring special comments and stops at the first occurrence of
an error

In Secondo’s graphical interface, scripts can be executed via the menu entry Program → Execute

file. Also here it can be selected whether the script runs until the end or stops at the first error.

In the bin/Scripts directory, some example scripts can be found.

Secondo User Manual 47

6 The Javagui

6.1 Preface

Aside from the command line interfaces in Secondo there is a convenient graphical, window-
oriented user interface implemented in Java. Its main features include:

• The Javagui can be executed in any system in which a Java virtual machine (Ver. 1.5.0
or higher) is installed. Hence in contrast to other Secondo components it can run in a
Windows environment, connecting to a server running under Linux or MacOS.

• It provides a large set of viewers to display a lot of different types (e.g., spatial data types).
• Data of different formats can be imported.
• Query results can be saved into a file.
• New viewers can be added.
• Javagui supports the Secondo optimizer.

In the section “Javagui in General” we describe the basic functionality of Javagui, i.e., starting the
gui, appearance, handling and so on. The “Java configurations” section holds some information
about configuration possibilities of the gui. Finally the “Viewer” section sketches some important
viewers.

6.2 Javagui in General

Figure 8: Javagui-Layout (Hoese Viewer)

Introduction The easiest way to start Javagui is to call the sgui script. Remember to start
the Secondo Listener process before executing the script (see Section 3.3.1). For optimizer func-
tionality, ensure that the Optimizer Server is also running (see Section 3.3.4). After some license
information, a window will appear on the screen (Figure 8). This window has three main parts:

48 Secondo User Manual

the Object Manager (top right window), the Command Panel (top left window) and the current
viewer part bottom. When a long running query is executed, a progress bar will appear on the
right side of the gui window. On top of the gui, you find the menu bar. The first two parts will
be briefly introduced in the following sections. For a detailed description of the respective viewer
parts, please refer to suitable chapters concerning the different viewers (Section 6.4). You can load
a viewer via the Menu Bar (Viewers→AddViewer), by selecting the appropriate viewer class file
or you can insert the name of the viewer in the gui configuration file (Section 6.3). The standard
configuration file gui.cfg is located in the Javagui directory of your Secondo installation and is
loaded when you start the Javagui with the sgui script. You can specify other configuration files
and start the gui with their presettings without touching the gui.cfg file. We come back to that
in Section 6.3.

The Command Panel Using the Command Panel, the user can execute commands and queries.
After the prompt Sec>, commands terminated by return can be entered. The command is stored
in the history. A history entry can be selected by the cursor-up and cursor-down keys. Similar to
the TTY based interface, you can use shift+tab keys to extend the current input to known words.
All Secondo commands are available and you can use SQL syntax if the optimizer is activated.
You can paste commands by using CTRL-C and CTRL-V. Each non-empty query result requested
in the Command Panel is sent to the Object Manager and shown in a viewer according to the
viewer priority settings (Section 6.4.1). If no other viewer is found, which is capable to display the
requested object, the StandardViewer is used.

If the optimizer is enabled, queries and updates in SQL syntax are possible. All queries beginning
with select or sql are send to the Optimizer Server to get a query plan. Embedded SQL queries are
also possible. If the command starts with insert into, delete from, or update <identifier>

set, also the optimizer is used to get an executable plan for that statement. The received plan is
sent to the Secondo Server for execution.

Additionally, some commands exist to control the behavior of the Javagui, as shown in Table 5.

Command Description

gui exit Closes the connections to Secondo and the Optimizer
and quits Javagui.

gui clearAll Removes all objects from Javagui and clears the history.

gui addViewer <viewer name> Adds a new viewer at runtime. The current viewer is
replaced by this viewer.

gui selectViewer <viewer

name>

Replaces the current viewer by the viewer with the
given name.

gui clearHistory Removes all entries from the history

gui loadHistory [-r] Shows a file input dialog and reads the history from this
file. Used with the -r option this command replaces the
current history with the file content. Without the -r
option this command appends the file content to the
current history.

gui saveHistory Opens a file dialog to save the content of the current
history.

gui showObject <ObjectName> Shows an object from the Object Manager in a viewer.
The viewer is determined by the priority settings.

gui showAll Shows all objects listed in the Object Manager in the
current viewer whose types are supported by this
viewer.

Table 5: Gui Commands
.....

Secondo User Manual 49

Command Description

gui hideObject <ObjectName> Removes the object with the given name from the
current viewer.

gui hideAll Removes all objects from the current viewer.

gui removeObject <ObjectName> Removes the object with the given name from the
Object Manager and from all viewers.

gui clearObjectList Removes all objects from the Object Manager and all
viewers.

gui saveObject <ObjectName> Opens a file dialog to save the object with the given
object name.

gui loadObject Opens a file dialog to load an object.

gui setObjectDirectory

<directory>

Sets the object directory. This directory is initially
shown when a load or save command is executed.

gui loadObjectFrom <Filename> Loads the object with the specified filename. The file
must be located in the object directory.

gui storeObject <ObjectName> Stores an object into the currently open database. The
object name must not contain spaces.

gui connect Connects Javagui to Secondo.

gui disconnect Disconnects Javagui from Secondo.

gui serverSettings Opens the server setting dialog to change the (default)
settings for host name and port.

gui renameObject <old name> ->

<new name>

Renames an object.

gui onlyViewer Hides the Command Panel and the Object Manager. To
show the hidden components use the Viewers entry in
the Menu Bar (Viewers→Show all).

gui executeFile [-i]

<filename>

Batch processing of the file. If -i is set, file processing
continues even if an error occurs.

gui status Displays information about the connection to Secondo

as well as the name of currently open database.

gui set Can be used for changing the values of some Javagui
settings. The complete list of the variables can be
obtained by the help menu entry. The effect of the
variables is described in the configuration file of Javagui.

Table 5: Gui Commands

The Object Manager This panel manages all objects resulting from queries or file input
operations. The manager provides a set of buttons described in Table 6.

Button Description

show Shows the selected object in the viewer depending on priority settings.

hide Removes the selected object from the current viewer.

remove Removes the selected object from all viewers and from the Object Manager.

clear Removes all objects from all viewers and also from the Object Manager.

Table 6: Features of the Object Manager
.....

50 Secondo User Manual

Button Description

save Opens a file dialog to save the selected object to a file. If the selected object is a valid
Secondo object and the chosen filename has the suffix obj, then the object is saved
in a format (see Figure 21 for an example) that can be restored using the restore

command (Section 4.1.9) in the Command Panel. Otherwise only the value
description and the type is stored. In both cases one can use the Load button for
importing. Note that the object is not restored automatically in the current
database. For this you first have to rename the object name File: filename to a
valid object name and then use store as a second step.

load Opens a file dialog to load an object. Supported file formats are nested list files, shape
files or dbase3 files. In the current version, restrictions for shape and dbf files exist.
The generated object name in the Object Manager has the format File: filename.

store Stores the selected object into the currently open database. The object name must be
a valid identifier.

rename Replaces the Object Manager by a dialog to rename the selected object.

Table 6: Features of the Object Manager

The Menu Bar The Javagui Menu Bar consists of two parts: one depending on the current
viewer and another one which is independent from it. The description in Table 7 includes only
viewer-independent parts.

Menu Submenu/Menu Item Description

Program New Clears the history and removes all objects
from Javagui. The state of Secondo (opened
databases etc.) is not changed.

Fontsize Here, the fontsize of the Command Panel and
Object Manager can be changed.

Execute File Opens a file input dialog to choose a file.
Then the batch mode is started to process the
content of the selected file. It can be chosen
how errors are handled. Note, there exist two
different script styles which are described and
can be selected in the configuration file.

History In this menu the current history can be
manipulated.

Favoured Queries Here you can manage frequently used queries
for easy access.

Snapshot Stores a Picture of the Javagui window into a
file as png image. The key combination <alt

C> can also be used to create a snapshot.

Snapshot as eps Stores a picture of the Javagui window into a
file as eps image. The key combination <alt

shift C> can also be used to create an eps
snapshot.

Screen snapshot Works similar to the Snapshot menu entry
but creates a snapshot of the whole screen
instead of only the Javagui window.

Exit Closes the connection to Secondo and quits
Javagui.

Server Connect Connects Javagui to Secondo.

Table 7: The Menu Bar
.....

Secondo User Manual 51

Menu Submenu/Menu Item Description

Settings Shows a dialog to change the address and port
used for communication with Secondo.
Permanent changes of these values can be
performed with the configuration file.

User settings If authorization is enabled (off by default), the
username and the password can be entered
here.

Optimizer Enable Connects Javagui to the Optimizer Server.

Disable Closes the connection to the Optimizer Server.

Command In this menu, the update functions of the
optimizer for relations and indexes can be
called.

Settings Opens a dialog to change the settings of host
name and port number of the Optimizer
Server.

Command This menu contains all available Secondo

commands. Menu entries beginning with a ∼

require additional information. If such an
entry is selected, a template of the command
is printed out to the Command Panel. Other
commands are processed directly without
further user input.

Help Show gui commands Opens a new window containing all gui
commands (see Table 5).

Show secondo commands Shows a list of all known input commands
supported by Javagui.

Show support input formats Shows a list of all known Secondo input
formats.

Viewers <name list> All known (loaded) viewers are listed here. By
choosing a new viewer the current viewer is
replaced by the selected one.

Set priorities Opens a dialog to define priorities for the
loaded viewers (see Figure 11).

Add Viewer Opens a file input dialog for adding a new
viewer at runtime.

Show only viewer Hides the Command Panel and the Object
Manager to have more space to display
objects. The menu entry is replaced by show

all, which displays all hidden components.

Show in own window The current viewer is shown in an own
window.

Table 7: The Menu Bar

The Menu Bar - MMDB In the last paragraph we omitted a feature of the Javagui, the Main
Memory Database application (MMDB). It allows one to process objects loaded into the Javagui
by further queries. Note that these objects reside in memory allocated to the Javagui, not in kernel
memory. Hence the somewhat expensive transfer of these objects from the kernel to the GUI does
not need to be repeated for MMDB queries.

To realize this functionality, data types and operations had to be reimplemented in Java. Therefore
only a small part of the types and operations available in the Secondo kernel is available here.

52 Secondo User Manual

You can select the MMDB module in the Menu Bar. Two styles of querying are supported: (i)
You can make simple requests via gui (see Figure 10) or (ii) you can write textual queries in the
Command Panel just as for the kernel using the prefix mmdb.

The MMDB module supports a special MM-Object Representation. Objects in main memory are
represented in the Object Manager by an additional symbol:

”[+]” The object exists exclusively as a main memory relation.
”[++]” The object also has a usual Secondo object (nested list) representation.

For an object to be displayed in the Javagui, it must have a nested list representation. So a
conversion from MMDB object to a nested list representation must be performed. Non-MMDB
objects shown in the Object Manager already have such representation. An example is presented
later. First we give an overview of the Menu Bar items in Table 8.

Menu Description

Load Object from Query Queries formulated in the Command Panel are sent to the
Secondo kernel. If the command is executed successfully and the
received result is an object whose (attribute) types are supported,
a main memory object is generated and the result is displayed in
the Object Manager.

Load Object from

Explorer

When an object is already listed in the Object Manager, a main
memory object is generated for the object if the object is selected.

Load Objects from

Database

This feature allows all objects in the open database to be loaded
in the MMDB with only one command.

Convert selected

Object to NL

Converts an (MM) object selected in the Object Manager into
nested list representation, if no such representation already exists.

Convert all Objects to

NL

All selected (MM) objects are converted into nested list
representation. After this operation has finished, a window listing
the failures (objects that could not be converted) is displayed.

Autoconvert query

results to NL format

The option can be used to decide whether Command Panel query
results are directly converted to the nested list format and
displayed or only saved as in MMDB representation.

Export MM-Object(s) You can select MM objects from the object list of the Object
Manager and export them into a file.

Import MM-Object(s) You can import MM objects stored in MM files (*.secmm).

Supported Operators Shows a list of supported operators.

Programmer’s

Guide(PDF)

Opens the Programmers’ Guide for creating new MMDB
operators.

Generate Index It is possible to create indices on certain attributes. These will be
used automatically during query executing in order to accelerate
processing time. In the index creation dialog, first select a
relation, afterwards an attribute to be used for indexing and
finally the type of index you would like to create. Only indexable
attributes are displayed. The current implementation does not
allow one to create several indices on one attribute.

Table 8: The MMDB module
.....

Secondo User Manual 53

Menu Description

Execute Query Six top level query operations are available: SELECTION: Select
a tuple subset depending on a condition. PROJECTION: Select
an attribute subset from the relation’s tuples. EXTENSION: Add
new attributes to the relation’s tuples via an operation. UNION:
Merge the tuples of two relations. Attribute sets must be
identical. JOIN: Merge attributes of two different relations
depending on a condition. AGGREGATION: Calculate
aggregations of a certain attribute for all tuples of a relation.

Manage Memory Since all relations are stored in main memory it might occur that
the JVM runs out of memory which means that the application
crashes. To prevent these OutOfMemoryErrors, memory is
permanently monitored. If there is an impending overflow you
will be given the chance to remove objects that are not needed
anymore to free memory. This can be done any time by selecting
this menu item. Besides the dialog runs an asynchronous thread
which performs garbage collection once at startup and at specified
time intervals (default = 60 sec).

Supported Types Shows a list of supported data types.

Help Shows the MMDB help text

Table 8: The MMDB module

MMDB - Example For the example we use the database opt. Open the database with the
command

open database opt

or restore it if it is not present by executing

restore database opt from ’../bin/opt’

in the Javagui Command Panel. We switch to MMDB→Load Objects from database and import all
the objects into the MMDB. After executing and confirming the import, we can see that 7 objects
have been imported in main memory (see Figure 9). They are named R1-R7 in this example.
Notice as well that not all of the objects in the opt database have been imported due to some
incompatibilities.

The “[++]” on the right side of the object names in the Object Manager indicates that the objects
already have a nested list representation, so you can visualize a relation by double clicking on
the object or selecting the show button in the Object Manager. Next we choose MMDB→Execute

query and the window that can be seen in Figure 10 pops up. Choose SELECTION and select the
object R1:query Orte[++], the OPERATOR GREATER, the ATTRIBUTE BevT(int), the int value FROM

TEXT and type in 1000 in the input field. Choose CONVERT RESULT RELATION AUTOMATICALLY TO

NESTED LIST if you like. Otherwise you have to convert the result later for visualization pur-
poses. Press EXECUTE. Another MM object appears in the Object List of the Object Manager

(R8:SELECTION ON query Orte; [++]). The result of this query comprises 4 tuples with 4 at-
tributes including cities with more than 1,000,000 inhabitants.

Via gui you can choose only one operation at each step. For example a projection on the selected
tuples above cannot be done in one step. So if you want to know only the city names that have
more than 1,000,000 inhabitants, you have to execute the projection on the object R8 as a second
step manually.

Fortunately you can use the Command Panel with the mmdb query prefix to execute more complex
queries utilizing more than one operation:

54 Secondo User Manual

Figure 9: MMDB - Import from database

mmdb query R1 feed filter [.BevT > 1000] project[Ort] consume

It is important to notice at this point that we do not use Orte here, because in main memory the
same relation is bound to the name R1.

6.3 Javagui Configurations

As already mentioned above, Javagui can be started by executing the script sgui. In this pro-
cess, the specifications that are defined in the gui.cfg configuration file are considered. For other
purposes you can create other configuration files and execute them using the -config option. For
example, with the command sgui -config myconfig.cfg Javagui is started with the configura-
tions defined in the file myconfig.cfg. So the gui.cfg does not have to be changed, if you want
to start Javagui with other parameters.

In Table 9 we list the most common configuration options. Feel free to look at the default config-
uration file for more configurable parameters.

Parameter Description/Settings

SERVERNAME Hostname or IP of the SecondoServer. Default is local host:
127.0.0.1

SERVERPORT TCP port of the Secondo Server. The default value is 1234.

KNOWN VIEWERS A list of automatically loaded viewer classes (must exist in
Javagui/viewer/). With the standard configuration
StandardViewer, RelViewer, FormattedViewer, HoeseViewer,
UpdateViewer and UpdateViewer2 are included with ascending
priority order.

SECONDO HOME DIR The Secondo directory can be specified. The default is the
directory above Javagui if no other value is set.

START CONNECTION If set to true, automatically connects to the Secondo Server on
startup. The default value is true.

Table 9: Javagui configuration file options (excerpt)

Secondo User Manual 55

Parameter Description/Settings

OBJECT DIRECTORY You can set the directory for loading/saving objects. The default
is Secondo Home Dir/Data/GuiData/objects.

HISTORY DIRECTORY Set directory for loading/saving histories. The default is
Secondo Home Dir/Data/GuiData/histories.

STARTSCRIPT <file> [−i] You can execute a file at start, for example, a saved history. The
parameter −i ignores errors.

COMMAND FONTSIZE The font size in the Command Panel can be set. Default value is
14.

LIST FONTSIZE Set font size for the Object List in the Object Manager. Default
value is 12.

OPTIMIZER HOST Specify the host-name or the IP adress of the OptimizerServer.
The default is localhost.

OPTIMIZER PORT The port number of the Optimizer Server can be set. The default
port number is 1235.

ENABLE OPTIMIZER Enable optimizer at start (true (default) or false).

SHOW COMMAND If this variable is set to true, each command is printed out before
it is sent to the Secondo server.

ENCODING Specify the encoding. Standard value is ISO-8859-1. For
example, you can use UTF8 instead.

KEEP CURRENT VIEWER If this is set to true (default), the current viewer is kept if it is
possible to display the current object with it, even if another
viewer exists that can represent this object in a better way.

OBJECT DEPENDING VIE-

WER SELECTION

Set it to true if you want to use the object-depending selection of
the viewer. Default value is true.

EXTENSIONS You can specify a set of useful extensions (use shift + tab to
extend a word). You can add words in the default list as given in
the config file.

Table 9: Javagui configuration file options (excerpt)

6.4 Viewers

6.4.1 Introduction

As we mentioned in previous sections, there are three ways to load a viewer in Javagui. You can
do it via a gui command in the Command Panel, via the Menu Bar or you can insert the viewer’s
name into the gui configuration file. Keep in mind that only the third approach will add the
specified viewer permanently to Javagui. There are different viewers which can display the same
data type(s). To select one of these viewers, priorities are used.

The initial order of priorities after the Javagui start is determined by the sequence of viewers in
the configuration file. The last viewer of that list has the highest default priority.

In the priority dialog of the Menu Bar (Viewers → Set priorities) you can change the priori-
ties of the loaded viewers depending on your personal preferences (Figure 11). The viewer at the
top has the highest priority. In order to change the position of a viewer, select it and use the
up or down button. If depending from object is selected, Javagui asks the viewers about their
display capabilities for a specific object and uses this information to select the right viewer. In
the case of equal display capabilities, the priorities of the viewers are making the difference and
the viewer with the highest priority is chosen. If the box try to keep the current viewer is
selected, the current viewer is only replaced by another one if it cannot display the object. It
is important to repeat that the gui.cfg configuration file parameters KEEP CURRENT VIEWER and

56 Secondo User Manual

Figure 10: MMDB - queries via gui

OBJECT DEPENDING VIEWER SELECTION are both set to true by default (Section 6.3). Further-
more, depending from object and try to keep the current viewer initially are set or not set
depending on these configuration file parameter values. Consequently by default they are both
enabled at Javagui start.

Keep in mind that changes via the Set priorities menu are discarded and the default state
(depends on the configuration file entries) is restored after a Javagui restart. In this section we
present the most important viewers and their basic functionalities. You can check out other viewers
in the viewers directory of Secondo (/secondo/Javagui/viewer).

6.4.2 HoeseViewer

The HoeseViewer (Figure 12) is very powerful as it is able to display a lot of different Secondo

object types. The viewer consists of several different parts to display textual, graphical, and
temporal data.

On the left, you find a text panel and on the right the graphical panel is located. Above the text
panel you can see a combo box, some buttons and to the right of these there is a time line. If
an object in the textual part is selected, then the corresponding graphical representation is also
selected (if it exists) and vice versa.

In the Menu Bar there are four more menu entries: File, Settings, Object Creation and Object.

The Textual Representation of an Object Using the combo box at the top of the text
panel you can choose another object (query result) to display. A string in the text representation
of the selected object can be searched by entering the search string in the field at the bottom of
the text panel and clicking on the go button. If the end of the list is reached, the search continues
at the beginning.

Secondo User Manual 57

Figure 11: Viewer priorities

The Graphical Representation of Objects The graphic panel contains geometric and/or
spatial objects. Press the right mouse button and drag the mouse holding the right mouse button
for zooming in. Stepwise zoom in and zoom out is available in the Settings menu (Zoom + /

Zoom -) or by pressing Alt + / Alt -. To get an overview of all objects click on Zoom out in the
Settings menu or press Alt z.

Each query result is displayed in a single layer. Using layers, the order in which the objects are
displayed can be changed. To hide/show a layer use the green/gray buttons on the left of the graphic
panel. The order of the layers can be set in the Layer management located in the Settings menu.
A selected object can be moved to another layer using the Object menu. Here, the user can also
change the display settings for a single selected object.

The menu Settings→Projections offers the possibility to enable one of a set of projections. This
is helpful for displaying data containing geographical coordinates (longitude, latitude). The usual
view of such data is obtained using the Mercator or the Gauss-Krueger projection.

The Object menu allows to manipulate the appearance of an object: You can choose Hide, Show,
Change category or Label attributes. Furthermore the objects layer position can be changed.

Sessions A session is a snapshot of the viewer’s state. It contains all objects and the display
settings. You can save, load or start an empty session from the File menu.

Categories A category contains information about how an object is to be displayed. Such
information contains color or texture of the interior, color and thickness of the borderline, or size
and shape of a point. Categories can be loaded and saved via the File menu. To edit an existing
category, the category editor (see Figure 13) available via the Settings menu has to be invoked.
There are several possibilities to assign a category to an object or to attributes of a relation. The
method can be chosen in the Settings menu. If Category: manual is chosen, a selection window
pops up for each object (or for each graphical attribute of a relation). Category: auto creates a new
random category for each graphical object. If Category: name is used, two cases are distinguished.
First, if the name of the object (attribute) is equal to the name of a category, this category is

58 Secondo User Manual

Figure 12: HoeseViewer in action

chosen automatically. Otherwise, the user is asked for a category.

Figure 13: Category Editor

Query Representation In this window the user can alter settings for displaying a query result
with graphical content (see Figure 14), i.e., a single graphical object or a relation with one or more
graphical attributes. At the top the user can choose an existing category for all graphical objects
of this query with the same (attribute) name. The button labeled with “...” invokes the category

editor to create or change categories. A graphical object may have a label. whose content can be
entered as Label Text. If the object is part of a relation, the value of another or even the same
attribute can be used as label. This feature is available in the Labelattribute combo box. In this
case, the user can also customize graphical settings for objects contained in the relation. If Single

Tuple is selected, an own category can be chosen for each single tuple in the relation.

Secondo User Manual 59

Another possibility is to choose the category depending on an attribute in the relation. Thus,
the point size, the line width or the color can be chosen to be dependent on the value of another
attribute. The possible values for these features are distributed in a linear way over the values of
the selected attribute. For a non-linear distribution or for attribute values which do not support
this function, a manual link between value and category can be created.

Figure 14: Query Representation

Animating Temporal Objects If a spatio-temporal object is loaded, you can start an anima-
tion by clicking on the play button left of the time line. The speed can be adjusted in the Settings

menu. The speed can also be halved (doubled) by clicking on the [<<]speed[>>] buttons. The
other buttons are play, play backwards, go start, go end and stop. You can also use the time
scrollbar to select a desired point in time.

Displaying Special Objects Some objects can be displayed in a separate window. These
objects are marked by a special color in the textual representation. By double clicking on the
object, an additional window is opened displaying the selected object.

Managing Backgrounds The background of the graphic window can be changed by the user.
The color can be chosen by invoking the Settings→Background→ Color: Choose menu. This color
is used if no background image is given and for all areas not covered by the background image. A
background image can be used to show the context of other objects (. . . → Image: Import). For
positioning the image, its bounding box must be defined together with the image. For simplifying
the positioning, so-called tfw files can be used. Such files are also used in geographic information
systems. Another possibility to set the background is to capture the current display as background
(. . . → Image: Capture All, . . . → Image: Capture Visible). This may be useful if many non-
moving objects are displayed and additional moving objects are animated. After capturing the
static objects as background, they can be removed from the display to reduce the computation
effort during the animation.

When objects having geographic coordinates (longitude/latitude) are displayed, it is also possible
to use maps from OpenStreetMap or Google as a background. This requires an internet connec-
tion. Although this kind of background works with many projections, it is recommended to choose
the Mercator (or even better the OSM-Mercator) projection from the Settings→Projections

menu to avoid distortions of the maps. After choosing Settings→Backgrounds→TiledMap(OSM,

60 Secondo User Manual

GoogleMaps) a new frame appears. Here, one of several predefined map backgrounds can be se-
lected. Because the Google servers limit access to theirs map tiles, we recommend to use one of
the OpenStreetMap backgrounds (Figure 15).

You can edit the map server properties (e.g. to use a different map style) and some display settings
(see Figure 15).

Figure 15: Setting properties for the TileMap background

Create Objects The HoeseViewer offers the possibility to create simple graphical objects. An
object type can be chosen in the Object Creation menu. After pressing the unlabeled button
(right of the time line) the object creation starts. A rectangle can be drawn by holding the left
mouse button pressed and dragging the mouse. A point is created just by clicking on its location.
For creating other objects, a sequence of points has to be defined by left mouse button clicks. To
finish the creation of such more complex objects, the object creation button has to be pressed again.
If an object is defined, it is stored into the currently open database and inserted into the Object

Manager.

Instead of creating a lot of single objects, it is also possible to write a set of objects having the
same type into a single relation. To use this feature, as a first step, a relation with schema

rel((tuple[Name:string, T : type]))

must be defined in the currently opened database. The type is the same that is to be created. It is
also possible to let the gui create this relation (choose this from the Object Creation menu). To
automatically insert newly created objects into this relation, the corresponding check box Store

in relation must be activated within the Object Creation menu.

Online This feature enables Javagui to process and visualize realtime position data sent from
an Android application, for example. To get this show on the road, there are more configurations
and further applications needed that are beyond the scope of this manual.

Secondo User Manual 61

6.4.3 UpdateViewer/UpdateViewer2

This section describes how to use the UpdateViewer and the UpdateViewer2. The UpdateViewer2
supports all the display and editing options offered by the UpdateViewer: displaying relations,
editing attribute values, deleting and inserting new tuples. UpdateViewer2 also supports formatting
and viewing structured text documents.

UpdateViewer With this viewer you can manipulate the contents of relations. It is possible to
insert and delete tuples and to modify attribute values. When you have started the UpdateViewer
you will see eight buttons on the top of the viewer panel (Figure 16).

Figure 16: UpdateViewer

Button Description

Load Relation Press that button to load a relation from an open database. A window pops
up where you can type in the name of the relation. Additionally you can
add a filter. In the example relation of Figure 16 you can filter the relation
with: filter[.Note < 2.0]. Press Commit to execute your selections.

Clear Clear the whole viewer window.

Insert You can insert a tuple (see Figure 16) by selecting this button. An empty
tuple appears. Click in the corresponding location to enter a suitable
attribute value (otherwise a type error will be prompted). Press the Commit

button to make your entries persistent. The new tuple is appended to the
relation.

Delete Use this feature to delete tuple(s). After selecting Delete you are able to
mark tuples. Use CTRL and the left mouse button to select more than one
tuple, or use the pressed left mouse button to select consecutive tuples.
Press Commit after your selection.

Update With Update it is possible to change single attribute values. Press the
Update button and then click on the value you want to modify. You can
insert a suitable value directly or you can use Popup to do this in a new
window. Click on Commit to commit your changes.

Table 10: Features of Update Viewer
.....

62 Secondo User Manual

Button Description

Reset You can cancel an insert, delete or update operation as long as you have
not yet committed it.

Popup see Update

Table 10: Features of the Update Viewer

UpdateViewer2 - Introduction The idea of the UpdateViewer2 is to support the editing and
formatting of text documents that are generated from the information stored in several relations.
A motivating example would be the handbook of modules of a university curriculum combining
information from several tables. Therefore this viewer provides features to define so-called document
profiles based on several relations and to search and edit text fields across relations. It also offers
a comfortable presentation and editing of large text fields.

In the UpdateViewer2 several relations can be displayed at the same time. Each of them is presented
individually in a separate tab. The tuples are displayed sequentially in blocks of arranged pairs.
The tuple id and attribute names are displayed on the left. The respective attribute values are
shown on the right and are editable (Figure 18 or 19).

As mentioned above, the UpdateViewer2 supports all the features from the UpdateViewer. The
Clear, Insert, Delete (see Figure 19), Update, Reset and Commit features work in a similar way
as described in Table 10. Notice that there is no Popup button anymore (see Figure 19). With the
new Undo option you are able to incrementally unmark selected tuples or to take back attribute
changes unless you have executed a Commit.

There are also two new buttons: Load and Format. With Load one can load relations analogously
to the Load relation feature of the UpdateViewer. To do this, hit the Load button. If no profile
has been created yet, you will be asked to do so. The name assignment is mandatory here, but
you do not have to specify the other profile parameters to use Load directly. Click on Load

directly and choose your relation. Only the relations of the types rel, mrel and orel are offered
for selection. Press OK to load the specified relation (see Figure 17). But there is more to say about
Load. We discuss Load and Format later in this section.

Direct query results from the command panel of the type rel, arel, mrel orel, nrel and trel

can be displayed in the viewer, too. Loaded relations in this way can only be viewed and searched,
but not edited.

UpdateViewer2 - Search, update and replace At the bottom of the UpdateViewer2
panel, you can find the search and replace features. They work across the displayed relations. With
the arrow keys previous search hit, next search hit, first search hit and last search

hit one can navigate through the search results. The selection case sensitive will pay attention
to upper and lower case letters.

After entering a search key and pressing the Search button, the number of hits is displayed. The
hits are highlighted in the display area and the cursor jumps to the first hit. If there is no hit in
any of the loaded relations, the search field is deleted.

To activate the Replace and Replace all options you must bring the viewer into update mode.
Then the user can replace the search key with the string in the replace field by pressing the Replace

button and jump to the next hit. An automatic substitution can be initiated, or the user can jump
from hit to hit to decide on a case-by-case basis whether or not to replace at that position. Use
Commit to save your changes.

The attribute values can also be changed directly in the update mode in the display area. You just
have to select the value you want to edit and enter your changes. Changed attribute values are
highlighted in blue. By pressing the Undo button, changes can be undone incrementally starting

Secondo User Manual 63

Figure 17: UpdateViewer2 - Loading a relation directly

from the last change.

With Commit the changes to all relations are executed. If this is successful, the update mode will
be terminated, otherwise an error will occur.

Reset discards all changes and exits the mode.

UpdateViewer2 - Insert and Delete A new tuple is inserted in a separate area, which is
displayed with the button Insert. Here a tuple block with empty (attributes value) text fields is
shown, where you can enter the corresponding attribute values. The button Commit saves the new
tuple persistently. If entered values have a wrong format, the user will be notified. Normally a new
tuple is appended at the end of the relation unless a sorting criterion is used.

To delete a tuple, the viewer must be switched to delete mode by pressing Delete. Now tuples can
be marked for deletion by clicking in the table areas. The block(s) will be highlighted (Figure 19).
The respective last mark can be undone with Undo.

Reset discards the new tuple or the markings and exits the respective mode.

UpdateViewer2 - Formatting text documents (example 1) As noted above, the load-
ing dialog has more features than Load Direct. Several relations can be loaded at the same time.
For this a (document) profile and one or more relations must be selected. Use Load from Profile

to proceed (see Figure 17). Use Add relation to select another relation (only the types rel, mrel

and orel are supported) and Remove relation to remove a relation from the dialog. With Edit

relation restriction it is possible to modify and define some relation restriction parameters.
Profiles can also be edited, removed and of course created (Figure 17). In the dialog in Figure 17,
existing document profiles are displayed. A profile contains the relations belonging to the docu-
ment, the document structure and the formatting settings and it has to have a unique name. In
the editor window, a window with a help text and an example is available for each parameter. The
help window is displayed by right-clicking on the corresponding value area (Figure 22).

The name assignment is mandatory to create a profile, while the other parameters must be set
for formatting purposes. If only FormatType, FormatAliases, FormatQuery and OutputDir are

64 Secondo User Manual

Figure 18: UpdateViewer2 - Searching and replace

Figure 19: UpdateViewer2 - Delete

Secondo User Manual 65

specified, a default format is used. Table 11 gives an explanation of all parameters. We will come
back to format issues later, when we discuss a little example. For now we just outline the meaning
of the parameters offered in the edit load profile (respectively create profile) window. Use
the help function to get more details.

Parameter Description

ProfileName Name of the profile. It is freely assigned by the user.

FormatType Type of the desired format.

FormatAliases List of names of the relations involved in the document and the
respective aliases (renames) used in Format Query.

FormatQuery A Secondo query that delivers the data for the document in form of a
relation with attribute names that match the placeholders used in
FormatTemplateBody.

FormatScript If a document is to be reworked with the help of external tools, the
path to a script is given here. To apply the script select apply script

in the Format Document window.

OutputDir Absolute or relative path to the directory where the formatted
document is stored.

FormatTemplateHead Markup template for the beginning of the top level of the document.

FormatTemplateBody Markup template for the body of the document with placeholders for
relation fields, e.g. attribute values to be inserted.
(<<placeholder>>).

FormatTemplateTail Markup template for the end of the top level of the document.

Table 11: Parameters of a document profile

After creating a profile, it is possible to add related relations and to set different relation settings.
For example you can define filters and specify projections and orders. These relation profiles can
be created or modified with Edit relation restrictions. Figure 20 shows the configuration
possibilities.

Figure 20: Relation restrictions

If you want to load only certain tuples of a relation, one or more filters can be specified. These
filters have the same syntax as the filter operator and are separated by semicolons. For projecting
on some attributes, a ProjectExpr has to be specified, consisting of the attribute names separated

66 Secondo User Manual

by commas. Normally, the tuples are unordered, respectively in the order in which they are supplied
by Secondo. So with SortExpr a sort criterion can be defined. The syntax corresponds to the
expression to be passed to the operator sortby.

Introducing a small example, we now demonstrate the format feature of the UpdateViewer2 using
a relation listed in Figure 21.

(OBJECT reltest

()

(rel

(tuple

(

(Name string)

(Studium string)

(Matrn int)

(Note real)

(Promotion bool))))

(

("Meier" "Informatik" 6785 1.0 TRUE)

("Müller" "Philosophie" 4242 1.3 TRUE)

("Käfer" "Robotik" 1001 2.0 FALSE)

("Messner" "Jura" 1282 1.7 TRUE)

("Dörfler" "Medizin" 2311 1.3 TRUE)

("Schick" "Design" 6472 1.0 TRUE)

("Klugler" "Germanistik" 8878 2.3 FALSE)

("Schlau" "Mathematik" 7772 1.9 FALSE)

("Kolben" "Agrarwissenschaften" 8151 2.4 FALSE)

("Hai" "Meeresbiologie" 6575 3.0 FALSE)

("Raum" "Astrophysik" 3412 1.0 TRUE)

("String" "Physik" 8888 2.6 FALSE)

("Tausend" "Volkswirtschaft" 8767 3.0 FALSE)

("Müller" "Pharmazie" 7 1.7 FALSE)))

Figure 21: Secondo Object (example 1)

The profile is named testreltable and the other format parameter values are given in Figure 22.
Currently only the html format is supported. After saving the html specifications we add the
relation reltest in the load dialog (see Figure 17). We do not use relation restrictions. After
clicking on Load from profile we hit the Format button in the main window of the viewer. A
Format document window appears. Select Separate pages if you like, or use Apply script, if a
path is specified in the FormatScript parameter of the document profile. We select none of these
and hit Format. The result is shown in Figure 23. The corresponding html file will be found in the
path that was set in OutputDir.

An example of a relation restriction configuration is shown in Figure 20. In our little example
relation the restrictions

.Name contains "Müller"

Name, Studium, Note

Note desc

will restrict the relation to

"Müller" "Philosophie" 1.3

"Müller" "Pharmazie" 1.7

after executing Load from Profile.

Secondo User Manual 67

Figure 22: Edit load profile

Figure 23: Formatting example 1

68 Secondo User Manual

UpdateViewer2 - Formatting text documents (example 2) In the second example,
we format a document using a nested relation. A nested relation (type nrel) is a relation that may
contain subrelations (type arel) with further attributes. Figure 24 shows an example of a nested
relation with one subrelation. The top level attributes are Course and Id. The third relation field
contains the subrelation with the three second level attributes Semester, Grade and Number.

As we already know, FormatTemplateBody may contain placeholders for relation fields. If a place-
holder names an attribute of type arel (Rating in our example), there must be template files
(<ATTRIBUTENAME>.head, <ATTRIBUTENAME>.body, <ATTRIBUTENAME>.tail) for this in the folder
<outputDir>/templates. These additional files (Figure 27) define format specifications similar to
the top level formatting (Figure 25). The result is shown in Figure 26.

(OBJECT nestedrel

()

(nrel

(tuple

(

(Course string)

(Id int)

(Rating

(arel

(tuple

(

(Semester string)

(Grade real)

(Number int))))))))

(

("Metaphysics" 12345

(0

("WS17/18" 1.7 20)

("WS16/15" 2.0 11)

("SS14" 2.3 42)))

("Ethics" 10815

(0

("SS18" 1.3 22)

("SS17" 1.7 21)

("SS09" 2.0 12)))

("Philosophy of the mind" 47110

(0

("WS17/18" 1.0 21)

("WS16/17" 1.3 11)

("WS15/16" 1.3 13)))))

Figure 24: Another Secondo Object (example 2)

6.4.4 RelationViewer

The RelationViewer is a convenient way to import and export csv files without using any Sec-

ondo operators directly. This viewer displays Secondo relations as tables. It is not suitable for
displaying relations with many attributes or relations containing large objects. It is possible to
print out a specified relation. Refer to Figure 28 for an overview of the RelationViewer.

Secondo User Manual 69

Figure 25: Example 2 Profile

Figure 26: Formatting example 2

Rating.head Rating.body Rating.tail

<table BORDER="1">

<tr>

<th>Semester</th>

<th>Grade</th>

<th>Number</th>

</tr>

<tr>

<td><<Semester>></td>

<td><<Grade>></td>

<td><<Number>></td>

</tr>

</table>

Figure 27: Code of the additional files (example 2)

70 Secondo User Manual

Visualization of a relation A relation that is a result of a query executed in the Command

Panel will automatically be displayed. When you want to visualize a relation that is already stored
in your database, you just have to use the command:

query <relationname>

You can use the Object Manager to switch between different query results by selecting the object
you want to display.

Import: Introduction To import data from a csv file, a matching relation (dummy) must be
available in the database. If this is not the case, you have to create it before importing. The data
types must match those in the csv file. For example, the code

let reltest = [const rel(tuple

([Name: string, Studium: string,

Matrn: int, Note: real, Promotion: bool]))

value ()]

creates an empty relation reltest, the first two attributes have the type string, the third is an int,
the fourth attribute has a real value and attribute Promotion expects the type bool. There are
three buttons: Export, Import and Print. Before selecting Import to import, you must select the
relation into which you want to insert data. You can do that with:

query reltest

The result of that query is the empty relation reltest.

Figure 28: Relation Viewer

Figure 29: Update Insert Selection

Secondo User Manual 71

Import: Update and Insert After pressing the Import button you will be prompted to select
the file. If the file has been selected and Open was pressed, another window appears (Figure 29).
The selection update means that the selected relation is overwritten with the data from the file,
so all possible entries in the relation are replaced by the new data. Insert, however, appends the
new data to existing data in the relation. The old data will be extended with the new data. In our
example we choose Update first. A request appears to enter the delimiter (see Figure 30). Here,
you have to put in exactly the separator, which is used in the csv file, otherwise the import will
not work.

Figure 30: Delimiter Input Request

Next, you can choose to skip lines at the beginning of your import file (Figure 31). The selection
OK, or the entry 0 followed by OK does not skip a line. Otherwise, of course, only as many lines
can be skipped as there are in the file. Comment lines at the beginning, initiated with #, are
automatically skipped because they do not contain data for the relation.

Now the name of the relation into which data is to be imported has to be confirmed again. In our
case reltest has to be entered (see Figure 33).

Figure 31: Skip lines

Figure 32: Confirmation

After the execution the added data are shown. To check the data in the relation itself, you can
enter query reltest again. The relation now contains the data from the file (Figure 21). Next,
an Insert is executed with the relation reltest and a file that contains three more data tuples:

Rudolph, Pädagogik, 4243, 1.3, TRUE

Klein, Biologie, 1001, 2.0, FALSE

Meer, Jura, 1282, 1.7, FALSE

After entering query reltest, you can see that the new data now has been added to the existing
data at the end of the relation (see Figure 34).

72 Secondo User Manual

Figure 33: Imported data (update)

Figure 34: Relation with inserted data

Secondo User Manual 73

Import: Error messages Finally, we list some common error messages:

“no table selected”:

This error message is generated if you are trying to import without having previously selected a
relation (see above).

“Table mismatch or delimiter mismatch”;

Here, either the entered delimiter does not match that delimiter in the file, or the schema of the
table into which you want to insert data does not match the structure of the data in the file.

“Insert or update failure-Secondo error”:

For example, this error occurs, if the name of the selected relation does not match the name of the
confirmed relation. In particular, this may occur if someone tries to insert data into a relation that
does not exist.

Export Select the relation you want to export with query relname. After that press the export

button (see Figure 28). Finally choose a location and a file name and enter a delimiter when you
are asked for it.

Printing Just select a relation by querying it and press the print button (see Figure 28). Then
a print window will appear. Set the printer parameters according to your wishes and choose a
printing device or print to a ps file if available in your system.

6.4.5 Other Viewers

Standard Viewer The StandardViewer simply shows a Secondo object as a string represent-
ing the nested list of this object (Figure 35). In the viewer area only one object is displayed at the
same time. To show another object in this viewer it must be selected in the Object Manager at
the top right of this viewer. You can remove the current (or all) object(s) in the extension of the
Menu Bar. Make sure to load the StandardViewer by default to be able to display any Secondo

object.

FormattedViewer The FormattedViewer shows the results of inquiries sent to Secondo in a
similar way as SecondoTTY does (see Figure 36).

InquiryViewer The InquiryViewer shows objects of the same types as a colorized table (Figure
37). In the default configuration file, this viewer is not included. It can be loaded by using by
the gui addViewer command, for example. Other ways to get this viewer are to insert it into the
gui.cfg configuration file or to use the Menu Bar.

74 Secondo User Manual

Figure 35: StandardViewer

Figure 36: FormattedViewer

Secondo User Manual 75

Figure 37: InquiryViewer

There are, in fact, many more viewers for special purposes available; too many to explain them in
this introductory user manual. They can be found by selecting the menu item (Viewers→AddViewer)
which will start a dialog to browse through the directory secondo/Javagui/viewer containing all
the viewer implementations. Some interesting viewers are the following:

• PictureViewer Presents jpeg images based on the PictureAlgebra.
• mp3V Plays mp3 audio data.
• PDFRelCreator Allows one to create relations from directories containg pdf documents or

jpeg images.
• Optics Presents a diagram resulting from the OPTICS clustering algorithm.
• SpaceTimeCube Shows trajectories of moving objects in a 3d representation called the

space-time-cube.
• RTree Allows one to visualize R-trees.
• Chess Visualizes chess games in connection with a chess algebra.
• V3D Visualizes moving regions or their units as 3d objects.

76 Secondo User Manual

7 Customization

Secondo can be customized in several ways. Most of the preferences affect the extent of function-
ality and/or the performance of the system. Many other parameters can be adjusted, too.

7.1 Changing the Set of Algebra Modules

As mentioned in Section 1, a running Secondo system consists of the kernel extended by several
algebra modules. Currently, more than 100 different modules are available. They can (almost)
arbitrarily be included or excluded when compiling and linking the system by running the make

utility.

The file makefile.algebras, located in the main directory of the Secondo installation, contains
(at least) two lines for every algebra module. The first line references the name of the directory in
which the algebra module is present, and the second line defines the name of the algebra module,
such as in the excerpt below:

ALGEBRA_DIRS += Polygon

ALGEBRAS += PolygonAlgebra

A new algebra module can be activated by inserting the two corresponding lines into the file
makefile.algebras. If desired, a module can be deactivated by removing or commenting out
both lines. However, some of the modules depend on others, so that after the deactivation of an
algebra module, another one may not be able to work anymore. In this case, the user will be
provided with an error message by the compiler mentioning the unavailable module.

There are modules that require certain libraries to be installed in the underlying operating system.
One of them is as follows:

ALGEBRA_DIRS += MapMatching

ALGEBRAS += MapMatchingAlgebra

ALGEBRA_DEPS += xml2

Finally, for some algebra modules it is necessary to add a flag in case of deactivation, for example:

#ALGEBRA_DIRS += ImageSimilarity

#ALGEBRAS += ImageSimilarityAlgebra

CCFLAGS += -DNO_IMAGESIMILARITY

In order to activate such a module, uncomment the first two lines and comment out the third line
instead.

There are further specifications that are relevant for certain algebras. Linker options that are ex-
ecuted with every linking process can be added with COMMON LD FLAGS. If the respective option is
desired only if algebras are processed (e.g., for building only SecondoTTYCS, no algebra is linked),
it can be specified with the help of ALGEBRA LINK FLAGS. Finally, directories containing required
header files can be added via ALGEBRA INCLUDE DIRS. The file makefile.algebras.sample pro-
vides application examples for these definitons.

After any changes in the makefile.algebras file, the Secondo system has to be recompiled by
invoking the make command.

7.2 Configuration of Parameters

General parameters affecting the Secondo system configuration can be altered by editing the file
SecondoConfig.ini located in the bin subdirectory of the Secondo directory. All application

Secondo User Manual 77

variants (i.e., SecondoTTYBDB, SecondoPL, SecondoTTYCS, SecondoMonitor, and SecondoPLTTY,
for details please refer to Section 3) read the configuration settings from this file. Optionally, the
user may redefine the SECONDO CONFIG environment variable to another file name.

Most of the parameters are described briefly in the file itself, hence we only provide explanations
for the most important ones. The first configuration option has the default value

SecondoHome=$(HOME)/secondo-databases

and defines the location where Secondo stores its databases. If the specified path does not exist,
Secondo tries to create it. The program execution is aborted if the directory creation cannot
be accomplished. In any case, the user should make sure that the storage space available at the
database storage path is large enough for the desired data to be processed.

The parameter

#RTFlags += SI:UsePasswd

is deactivated by default, which means that the Secondo installation can be started without any
authorization procedure. If the user desires to restrict the access to Secondo, this line has to be
uncommented, and a file containing password information has to be specified.

The use of transactions is essential for recovering data that was lost due to a system crash or
other unexpected program termination. Consequently, transactions are activated by default. How-
ever, particularly for large-scale operations, e.g., importing OpenStreetMap data of Germany or
California, the processing times may become unpleasant because large logfiles are written to disk.
Transactions can be deactivated by uncommenting the line

#RTFlags += SMI:NoTransactions

clearly accelerating most operations. Existing logfiles that will not be used anymore are automa-
tocally removed if BerkeleyDB version 4.8 (or later) is applied and the line

RTFlags += SMI:AutoRemoveLogs

is active. Otherwise, the logfiles can be deleted by executing a script named rmlogs located in the
bin subdirectory of the Secondo installation.

The global amount of memory available for all Secondo operations amounts to 512 MBytes by
default. The corresponding parameter

GlobalMemory=512

may be adjusted to any desired value that does not exceed the machine’s memory capacity.

7.3 Command Line Parameters

Some of the parameters defined in the SecondoConfig.ini file can be overwritten if command line
parameters are applied. For example, host and port of a running Secondo server to be accessed
by the current Secondo client can be altered by invoking the following command in the bin

subdirectory:

SecondoTTYCS -h [IP address] -p [port number]

Please execute

SecondoTTYBDB --help

for a comprehensive list of the supported command line parameters.

78 Secondo User Manual

References

[DBG09] C. Düntgen, T. Behr, and R. H. Güting. Berlinmod: A benchmark for moving object
databases. VLDB Journal, 18(6):1335–1368, 2009.

[Güt88] Ralf Hartmut Güting. Geo-relational algebra: A model and query language for geometric
database systems. In Joachim W. Schmidt, Stefano Ceri, and Michele Missikoff, editors,
Advances in Database Technology - EDBT’88, Proceedings of the International Confer-

ence on Extending Database Technology, Venice, Italy, March 14-18, 1988, volume 303
of Lecture Notes in Computer Science, pages 506–527. Springer, 1988.

[Ore86] Jack A. Orenstein. Spatial query processing in an object-oriented database system. In
Carlo Zaniolo, editor, Proceedings of the 1986 ACM SIGMOD International Conference

on Management of Data, Washington, DC, USA, May 28-30, 1986., pages 326–336. ACM
Press, 1986.

