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Chapter 1

Overview

The spatio-temporal database community searches for data models that enable the user to save storage space
and speedup query execution on the stored data. One idea in this field is that many moving objects, for example
cars and trains, are restricted in their movement by existing networks, like streets and railway networks. Based
on this idea some network data models and implementations like [4[I0,16,[17] have been provided in the past.

Both discrete network data models implemented in SECONDO DBMS [2/[8|[I1] are based on the abstract
network data model presented in [I0]. The temporal element in this abstract network data model is a straight
forward development of the time sliced representation of spatio-temporal data types in two dimensional space
provided in [9] for network dependent objects.

The short introduction of the abstract network data model in Chapter 2] should help to understand the
commons and differences between both network implementations provided with the extensible SECONDO DBMS.
The description of the data types and operations of the first network implementation can be found in Chapter
and the data types and operations of the second network implementation in Chapter [l

In Chapter [l we present executable SECONDO script files which enable the user to compare the power of
both network implementations by the BerlinMOD Benchmark [I] and use most of the operators described in
the chapters before. In Chapter [0l we present scripts creating network objects from OSM-Data files, provided
by Open-Street-Map Foundation [7], and queries and operations that enable the user to create single moving
position network objects for the networks created of open street map data from data collected by GPS-Devices.

Some of the operators provided with the first and second network implementation are not used in the sample
scripts provided with this guide. They have been implemented to support a planned extension of the BerlinMOD
Benchmark to enable the user to compare different network data models respectively different network data
model implementations with respect to network data model specific challenges like: computation of shortest
and fastest paths; network distance computation; computation of network parts full filling given conditions; trip
planning and trip simulation; traffic estimation; and handling of dynamic changing network properties. The
extension of the second network implementation with these operators is still in progress. In this context we
also implemented some simple operations supporting traffic estimation within the first network implementation
and in a specialized SECONDO algebra module called TrafficAlgebra. We describe the operators for traffic
estimation in the first network implementation in Chapter



Chapter 2

Original Network Data Model

2.1 Introduction

As mentioned before the central idea of the network data model presented in [10] is that movements are restricted
to given networks. Cars use street networks and trains railway networks. It is natural for us to speak about the
position of a place relative to the street network, instead of giving its absolute position in coordinates. In the
abstract network data model provided in [I0] all positions are given relative to the routes of the network which
stores all the spatial information of the route curves and junctions. The temporal element is represented by a
time sliced representation of the spatio-temporal elements as described in [9L[10].

In the sequel we give a very short description of the data types in the abstract network data model. Interested
readers are referred to the original paper [10] for detailed information.

2.2 Data Types

The abstract network data model introduces the network (network) itself, single position in the network (gpoint),
and network parts (gline) as data types.

The type system of [9] is extended by a new kind GRAPH consisting of gpoint and gline. This new kind is
also defined as possible basic data type for the TEMPORAL type constructors moving and intime such that the
authors also have defined time-dependent moving data types called moving(gpoint), moving(gline), unit(gpoint),
unit(gline), intime(gpoint) and intime(gline). The time-dependent network data types are not described in detail
in [I0], but their definition is straightforward to the definition of the spatial and spatio-temporal data types
in [9].

In the sequel we present a short overview of the static network data types. Interested users are referred to
the original papers where complete formal definitions of all data types and operations are given.

2.2.1 Network

In the abstract network data model the data type network is defined by two sets describing the spatial structure
of the represented (street) network. The first set is called routes and describes, for example, the roads of a
street network (see Table 2I)). The second set is called junctions and describes, following our example, the
crossing point of two roads (see Table [Z2)).

Attribute Data Type Explanation

id int route identifier

length real length of the route

curve line spatial geometry of the route

kind {simple, dual} on some roads, for example motorways, we have to distinguish between the
two sides of the road these routes are marked to be dual.

start {smaller, bigger} | tells us if the spatial curve starts at the lexicographical smaller or bigger
endpoint

Table 2.1: Attributes of the Entries in the Set of Routes
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Attribute | Data Type | Explanation

routemeasl (int, real) pair identifying the first route of the junction and describing the position of the
junction on that rout

routemeas?2 (int, real) pair identifying the second route of the junction and describing the position of
the junction on that route

ce ant connectivity codd? telling which lanes of the roads are connected by this junc-
tion

Table 2.2: Attributes of the Entries in the Set of Junctions

In a more discrete network data model description in [I0] the sets of routes and junctions are represented
by two relations, and the attributes kind and start of the routes relation tuples are represented by two Boolean
flags. The flags are set to true if the route is dual respectively the curve starts at the smaller end point.

2.2.2 Single Network Position

The data type gpoint defines a single position in the network. It consists of a route identifier which must exist
in the set of routes of the network, the distance from the routes origin following the route curve, and a side
value. The distance d must hold 0 < d < length of route curve. The side value may be one of {up, down, none}.
Whereas none is always used for simple routes and means reachable from both sides of the route. According to
this up means reachable only driving the road upwards from the origin to the end of the route curve, and down
means reachable only driving the road downwards from the end to the origin of the route curve.

In a more discrete representation the authors of [I0] extend the data type gpoint by an integer value identi-
fying the network the gpoint is related to.

2.2.3 Part of the Network

Parts of routes are called route intervals. They are defined by two single network positions on the same
route at the same side and can be written as (rid, dy,ds, side), with 0 < dy < ds < length of route and
side € {up,down,none}, whereas the side value is defined almost analogous to Section 222

A network part is defined by a set of route intervals related to the same network. [I0] introduces the data
type gline as discrete representation of network parts which consists of an integer value which identifies the
network, and a set of route intervals describing the network part represented by this gline.

2.3 Operations

[10] defines syntax and semantics of different sets of operations most of them are defined straight forward to
the operations on spatial and spatio-temporal data types described in [5l[6]. Others are significant to network
objects, they enable the user to access the single attributes of the network data types, convert spatial data
types into network data types and vice verse, compute network parts and paths from one network position to
another, or simulate trips between network positions.

We omit the detailed description of the operations at this point, because we describe the existing network
implementations including the operations on the implemented network data types in detail in Chapter [B] and
Chapter [

1 Junctions are only defined between two different routes. The first route is always the route with the smaller identifier. The
position of a junction on a route is defined by the distance d of the junction from the routes origin following the route curve, which
must hold the equation 0 < d < length of route curve.

2See [10] for a detailed explanation of the connectivity code definition.



Chapter 3

Network Implementation

3.1 Introduction

In this chapter we describe our first implementation of the abstract network data model from [10] in SECONDO.
Parts of this network implementation have been done by one of our students as part of his final thesis [14].

This first implementation is parted into two SECONDO algebra modules. The first algebra module called
NetworkAlgebra contains the data type network and the network dependent static data types gpoint, gpoints,
and gline as far as the operations deal with these data types. The second algebra module called TemporalNet-
Algebra contains the network dependent temporal data types mgpoint, ugpoint and igpoint and the operations
dealing with these data types.

In Section we describe the implemented data types of both algebra modules and in Section the
implemented operations on these data types in SECONDO.

3.2 Implemented Data Types

All data types have an additional Boolean parameter, telling us if the object of the data type is well defined or
not. We will not mention this flag in every data type description.

3.2.1 The Network

Different from the data type description in the abstract network data model (see Chapter [2)) the implementation
of the data type network consists of:

e three different relations, containing the routes (see Table B3]), junctions (see Table [3.2)), and sections (see

Table Bj]ﬂ data

e one real value, describing the maximum allowed distance from a curve it should be mapped on in map-
matching operation

e four B-Trees, indexing the route identifier attributes in the four relations
e a two dimensional R-Tree, indexing the ROUTE_CURVE attribute of the routes relation
e a unique network identifier (z_nt)ﬁ

e two sets connecting pairs of section identifiers and directions (called directed sections) of adjacent directed
section

LA section describes the street part between two crossings, or an crossing and the dead end of a street.

2Each network object in a SECONDO database system must be labeled with a unique number to get a clear conjunction between
the network dependent objects and the network they belong to.

3Two directed sections are adjacent, if they are connected by a junction.
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Attribute Data Type Explanation

SECTION_SID nt unique section identifier

SECTION_RID int route identifier of the route the section be-
longs tdd

SECTION_MEAS1 real distance of the begin of the section from the
routes origin following the route curve

SECTION_MEAS2 real distance of the end of the section from the
routes origin following the route curve

SECTION_DUAL bool true tells that the lanes of the different direc-
tions in the section are separated

SECTION_CURVE sline spatial geometry of the section curve in the
two dimensional plane

SECTION_CURVE_STARTS_SMALLER bool true if the section curve starts at the lexico-
graphical smaller endpoint

SECTION_RRC Tupleldentifier® | identifies the tuple in the routes relation the
section is part of

Table 3.1: Attributes of Sections Relation in network

Attribute Data Type Explanation

JUNCTION_ROUTE1.ID int route identifier of the firsf route of the junction.

JUNCTION_ROUTE1_MEAS real distance of the junction from the origin of the first
route following the route curve

JUNCTION_ROUTE2_1ID nt route identifier of the second route of the junction

JUNCTION_ROUTE2_-MEAS real distance of the junction from the origin of the sec-
ond route following the route curve

JUNCTION_CC nt connectivity codd tells us for which lanes of the
routes are connected by this junction

JUNCTION_POS point spatial position of the junction in the two dimen-
sional plane

JUNCTION_ROUTE1_RC Tupleldenitfier | identifies the tuple of the first route in the routes
relation.

JUNCTION_ROUTE2_RC Tupleldenitfier | identifies the tuple of the second route in the
routes relation

JUNCTION_SECTION_AUP_RC Tupleldentifier | identifies the tuple of the section upwards of the
junction on the first route in the sections relation

JUNCTION_SECTION_ADOWN_RC | Tupleldentifier | identifies the tuple of the section downwards of the
junction on the first route in the sections relation

JUNCTION_SECTION_BUP_RC Tupleldentifier | identifies the tuple of the section upwards of the
junction on the second route in the sections rela-
tion

JUNCTION_SECTION_BDOWN_RC | Tupleldentifier | identifies the tuple of the section downwards of
the junction on the second route in the sections
relation

Table 3.2: Attributes of Junctions Relation in network

40One problem of this first network implementation is, that in real life a section may belong to more than one route. For example
the motorways Al and A61 in Germany share the sections between the motorway crossings Bliesheim and Blessem. This can not
be represented in this first network implementation. If a section belongs to more than one route we have to decide before network
creation to which route the section should be assigned to.

5A value of the data type Tupleldentifier identifies a single tuple in the relation it belongs to.
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Attribute Data Type | Explanation

ROUTE_ID nt unique route identifier

ROUTE_LENGTH real length of the route curve

ROUTE_CURVE slined spatial geometry of the route curve in the two dimensional
plane

ROUTE_DUAL bool true means that the lanes for the different directions of the
road are separated

ROUTE_STARTSSMALLER bool true means the route curve starts at the lexicographical
smaller endpoint

Table 3.3: Attributes of Routes Relation in network

3.2.2 Single Network Position

The data type gpoint describes a single position in a network. It consists of an int value which identifies the
network the route location belongs to, and the route location. The route location is given by the route identifier
(int), the distance (real) from the origin of the route, and a parameter side(side).

The three possible values of side are Down, Up, and None. Up(Down) means a position can only be reached
driving in up-(down-)wards the route curve. None means a position can be reached from both sides of the
route.

3.2.3 Set of Single Network Positions

The data type gpoints consists of a set of gpoint values. It can be used to describe a collection of different places,
for example all book shops in a town.

3.2.4 Network Parts

The data type gline describes a part of the network. The data type gline consists of a network identifier (int),
a set of route intervalsﬁ, the total length (real) of all route intervals in the set, and a Boolean flag telling if the
route intervals are stored sorted or not.

We call a set of route intervals sorted if it fulfills the following conditions:

e all route intervals are disjoint.
e all route intervals are sorted by ascending route identifiers.

e if two route intervals have the same route identifier the route interval with the smaller start position is
stored first.

e all start positions are less or equal to the end positions.

This form of sorting has been introduced, because the computation time of many algorithms dealing with gline
values can be reduced, if the set of route intervals is stored sorted. In fact, not for all gline values the set of
route intervals can be stored sorted. If we describe parts of the network, like districts of towns, we can store the
route intervals sorted, because it is regardless in which sequence we read the set of route intervals describing
the network part. But, if the gline value represents a path between two network positions a and b the route
intervals must be stored in the sequence they are used in the path, which is nearly never a sorted sequence of
route intervals.

Many algorithms can take profit from sorted gline values. As described in Section we can perform a
binary search on the sorted set of route intervals in O(logr) time, instead of performing a linear scan of the
not sorted set of route intervals in O(r) time. The algorithms check only the sorted flag to decide which sub
algorithm must be used for further evaluation.

6The first route identifier of a junction will always be the lower route identifier of the two routes which are connected by the
junction.

"See [I0] for detailed information about the meaning of the different connectivity code values.

8The data type sline consists of a set of HalfSegments representing the curve of the route in the two dimensional plane.

9The internal data type Routelnterval consists of an route identifier (int), and two distance values (real), defining the distance
of the start and end position of the route part from the origin of the route. Different from [I0] the both distances are not expected
to be sorted by value and the side value is missing in this first network implementation. This is another reason, why we provided
an second network implementation within SECONDO where these problems are omitted.
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Sorting and compressing the set of route intervals needs time. We pay for the advantage of reduced compu-
tation time for many algorithms taking profit from sorted gline values by a higher time complexity of algorithms
creating sorted gline values. We think this additional time is well invested, because it is needed once when we
create a gline value, and we save computation time in nearly all operations dealing with gline values.

3.2.5 Single Moving Network Positions

The temporal version of the data type gpoint is called mgpoint (short form of moving(gpoint)). It is implemented
in the TemporalNetAlgebra. The data type mgpoint represents the complete history of the movement of a single
network position; for example it may represent a car driving around in the related network. The main parameter
of an mgpoint value is a set of ugpoints with disjoint time intervals. The time intervals of the ugpoints in the
set must be disjoint, because nothing in our known world can be at two different places at the same time. The
ugpoints are stored in the mgpoint value sorted by ascending time intervals. This allows us to perform a binary
search on the units of the mgpoint value to find the ugpoint containing a given time instant within the definition
time of the mgpoint.

The data type ugpoint (short for unit(gpoint)) consists of a time interval, and two gpoint values with identical
network identifier, route identifier and side values. The first gpoint describe the start and the second gpoint the
end position of the mgpoint in the network within the given time interval. We assume that the mgpoint moves
from the start to the end position with constant speed in the given time interval. The time interval consists of
a start and a end time instant and two Boolean flags, one for each time instant. The Boolean flag tells us if
the time interval is open or closed at the corresponding time instant. With help of these parameters we could
compute the exact position of a ugpoint value at each time instant within the time interval. Assumed a ugpoint
value passes a query gpoint value within the time interval, we can compute the time instant when the ugpoint
reaches the given gpoint. The position of an mgpoint value at a given time instant is represented by an igpoint.

The data type igpoint (short for intime(gpoint)) consists of a time instant and a gpoint value representing
the position of the mgpoint value at the given time instant.

In our experiments we extended the mgpoint from [10] with some additional parameters to speed up query
execution:

e length (real): The length parameter stores the total distance driven by the mgpoint value.

e trajectory (Sorted set of route intervalsE: Represents the network part ever traversed by an mgpoint.
This reduces the time to decide if an mgpoint ever passed a given place in the network (gpoint or gline)
from O(m) to O(logr) with r < m, because we can perform a binary search on the much lower number 7 of
route intervals of the trajectory instead of a linear scan of the m units of the mgpoint. We do not maintain
the trajectory value by every operation, therefore we introduced the next parameter trajectory_defined.

e trajectory_defined (bool): Tells us if the trajectory parameter is well defined or must be recomputed before
we can use it.

e bbox (rect): The spatio-temporal bounding box of the mgpoint was introduced to save our computational
work, because it is very expensive to get exact spatial information in network environment. All spatial
information is only stored in the central network object. Although an mgpoint stays on the same route
with the same speed the mgpoint might move in different spatial directions within a single unit. For
example a car may drive downhill on a winding road. In this case it is not enough to get the spatial
position of the start and end position of the unit to compute the spatial part of the bounding box. The
complete route part passed in a unit must be inherited in the computation of the bounding box. The
bounding box of an mgpoint is the union of the bounding boxes of its units, such that the bounding box
computation is very expensive. For this reason the bboxr value is not maintained at every change of an
mgpoint value. It is only computed on demand and stored using the trajectory value of the mgpoint or
stored if we could get it for fred™.

3.3 Implemented Operations

In this section we describe the operations provided with the first network implementation in SECONDO. We give
for each operation its signature, an example call, the time complexity of the operation, and, if interesting, a
description of the algorithm. The letters used in the formulas describing the time complexity of the operations
have the meaning:

10The SEcoNDO DBMS does not allow us to use a gline value as parameter of an mgpoint. It is a way around to use a sorted set
of route intervals instead.

M Three dimensional rectangle with real coordinates.

2For example, we can get the bbox value by a copy in O(1) time if we translate an mpoint to an mgpoint value.
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Jnet 18 the number of entries in the junctions relation of a network value.

Tnet 18 the number of entries in the routes relation of a network value.

Snet 18 the number of entries in the sections relation of a network value.

e b is the number of bounding gpoints of a gline valudt.

¢ is the number of candidate routes resulting from a scan of the R-Tree of the routes relation of the network
object.

e /1 is the number of HalfSegments of a line or sline value.

e m is the number of units of a mgpoint value.

e p is the number of time intervals in a periods value.

e 7 is the number of route intervals of a gline value or the trajectory of a mgpoint value.
e 7 is the number of units of an mpoint value.

If more than one object of a data type takes part in an operation we will write meaningful indexes to the letters
to distinguish between the values of the different objects with the same data type.

Many operations are defined for more than one data type. We introduce another set of letters used in the
signatures of the operations:

o A := {gline, mgpoint}.
e B := {gline, mgpoint, ugpoint}.

o C := {mgpoint, ugpoint}.

D := {gpoint, gpoints, gline}

o T := {instant, periods}.
o X := {gpoint, gline}

o Y := {gpoint, mgpoint}.
o 7 := {gpoint, ugpoint;.

This enables us to write operator: A — bool instead of the itemization operator: gline — bool, operator:
mgpoint — bool.
At least we define Ty, to be the tuple type of the sections relation of a network value (see Table B.J]).

3.3.1 Network Construction

int X real x rel x rel — network thenetwork(n, factor, routes, junctions)

The operator thenetwork constructs the new network object with the given network identifier from the
two given relations by Algorithm [l The two input relations are expected to have the following content, which
corresponds to the routes and junction relations defined in the discrete network data model described in [10]:

e routes: route identifier (int), length of the route (real), geometry of the route curve (sline), and two
Boolean flags dual and startssmaller

e junctions: first route identifier (int), position on first route (real), second route identifier (int), position
on the second route (real), and the connectivity code (int)

The parameter factor is also stored in the resulting network object. It is used in map matching operations
to tell the system how big the allowed tolerance is if a point does not match exact the given route curvd4.

13See Section [3.3.4] for an explanation of bounding gpoints.

141f n is already used as network identifier in the database the next free integer value 4,7 > n is used as network identifier for the
new network instead of n.

15While implementing map matching algorithms it becomes clear, that we must allow some deviation from an exact hit on the
line representing the spatial curve of the road, because GPS-Signals almost do not hit exactly the relatively small line representing
the road. The accepted deviation may not be to big to prevent the algorithm from mapping the track to the wrong road respectively
to test too much candidate routes. Now we get network data from different sources one time the coordinates are given in geographic
coordinates, another time in UTM-System, such that we can not choose a fixed value of deviation for the map matching algorithms.
Because a deviation of 1.0 in UTM-System is a completely other value in meters than in geographic coordinates. To enable map
matching regardless of used spatial information system we introduced the scalefactor parameter to adjust the allowed deviation in
map mapping corresponding to the spatial system the network is defined with.
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Algorithm 1 thenetwork (n, factor, rout, junct)

Require: n > 0 (int), factor (real), two input relations as described before.

=
14

—
—

_ e = =
TR W

Create empty network object net with id := n and scale factor := scale.
Copy rout to routes relation of net
Construct B-Tree indexing route identifiers in routes relation of net
Construct R-Tree indexing route curves in routes relation of net
Copy junct to junctions relation of net and add route tuple identifiers from routes relation of net
Construct two B-Trees indexing the first / second route identifier in the junctions relation
for Each tuple r in routes relation do
for Each junction j; at this route do
Compute the Up and Down sections
Add the sections to the sections relation
Add the section identifiers to the junctions relation
end for

: end for
: Construct B-Tree indexing route identifiers in the sections relation of net
: for Each junction j of the junctions relation do

—= =
e

Find pairs of adjacent sections and fill adjacency lists of net

: end for

Let j; be the number of junctions on route r; from the routes relation. The number of entries in the sections

relation Spet of net is Spet := Tnet + 2221 ji, and the time complexities of the single steps of Algorithm [ are:

e line 1: O(1)

e line 2: O(rpe)

o lines 3 + 4: O(rpet log rner)
e line 5: O(jnet)

e line 6: O(Jnet 10g jnet)

e lines 7 - 13: O(spet)

o line 14: O(spet 10g Spet)

e lines 15 - 17: O(Jnet)

Such that we get a total time complexity of

O(Snet IOg Snet)7 because Tnet;jnet S Snet

3.3.2 Translation from 2D Space into Network Data Model

The Operations in Table 4] are used to translate spatial and spatio-temporal data types from the two dimen-
sional plane data model [Bl6,9] of the SECONDO DBMS into the network data model representation. In [I0] these
operations are all called in_network with different signatures. All translations will only be successful if the
values of the two dimensional data types are aligned to the given network otherwise the network representation
of the object is not defined.

Signature Example Call
network X point — gpoint point2gpoint(network, point)
network x line — gline line2gline(network, line)

network X mpoint — mgpoint | mpoint2mgpoint(network, mpoint)

mapmatching(network, mpoint)

Table 3.4: Operators Translating 2D Spatial to Network Objects

If possible the operation point2gpoint translates a point value into a gpoint value of the given network as

described in Algorithm 2l The algorithm has a worst case time complexity from O(logrye: + ¢+ h).
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Algorithm 2 point2gpoint(net, p)

Require: net (network), p (point)

1: Use R-Tree of routes relation to get a set of candidate routes cr
2: for each ¢ € ¢r do

3:  if Distance(p,c) =0 then

4 pos = 0.0

5: for each HalfSegment h of ¢ from origin to end of ¢ do
6 if p is allocated on h then

7 pos+ = Distance(h.start, p)

8 return gpoint(net.Id, c.Id, pos, None)

9 else

10: pos+ = length of h

11: end if

12: end for

13:  end if

14: end for

15: return gpoint(undefined)

The operation line2gline translates a line value into a sorted gline value. The algorithm takes every half
segment of the line value and tries to find the start and end of the half segment on the same route using a
variant of point2gpoint Algorithm The computed route intervals are sorted and merged with help of a
RITred before the resulting gline value is returned.

The time complexity of line2gline is

h h
O(hlog et + Z (ci) + (hj)), because h > rip A Tpet > Tout-
i=0 j=0

The first network implementation provides with mpoint2mgpoint and mapmatching two different op-
erators translating an mpoint value into a corresponding mgpoint value. Both operation have the signature
network X mpoint — mgpoint.

The main difference is that the operator mpoint2mgpoint expects the mpoint to move exactly in the
network and to start new units exactly at the junctions of the network. The operator mapmatching is tries
to interpolate network movement between correct detected network positions by trip simulation using shortest
path computation by A*-Algorithm between the detected correct network positions in the mpoint movement.

The later developed SECONDO algebra module MapMatchingAlgebra provides with the operator map-
matchmht a much more sophisticated MapMatching-Algorithm matching GPS-Tracks into the first network
representation. The usage is described in Section [5.41

The operation mpoint2mgpoint translates an mpoint which is constrained by the network into an mgpoint
value. The single steps of Algorithm [B] have the following time complexities:

e line 1 + 2: O(1)
e line 3: O(logryet + ¢+ h), because a variant of point2gpoint is used.
e line 4: The for-loop is executed u times and distinguishes three different cases:

1. line 7: O(1)

2. line 9 - 11: O(1)

3. line 14 - 17: O(max(adj;)) if adj; is the number of routes connected by the crossing j;.
e line 20 - 22: O(1)

We get a worst case time complexity of
O(log et +c+ Y _(hi) + Y _ adjy).
i=0 j=0

We will have a much smaller computation time in the average case, because the worst case takes only place if
the car changes the route at each unit.

16The internal data type RITree is a binary search tree for route intervals. It is implemented in the NetworkAlgebra of SECONDO.
It sorts and merges a set of route intervals in O(riy, log rout) time, if 74, is the number of inserted route intervals and 7oyt is the
number of resulting route intervals and r;y, > Tout-
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Algorithm 3 mpoint2mgpoint(net, mpoint)

Require: net(network) and mpoint (mpoint)
1: Initialize empty result value mgpoint with net.Id
2: upoint = first unit mpoint
3: Initialize ugpoint with net value of upoint
4. for Each upoint u in mpoint do

5 if Endpoint of u is on same route than ugpoint then
6 if Direction and speed stay the same then

7 Extend ugpoint to include value of u

8 else

9 Add ugpoint to mgpoint
10: Add routeinterval of ugpoint to trajectory
11: ugpoint is net value of u
12: end if
13:  else
14: Add ugpoint to mgpoint
15: Add routeinterval of ugpoint to trajectory
16: Search u on adjacent sections
17: ugpoint is net value of upoint
18:  end if
19: end for

20: Add ugpoint to mgpoint
21: Copy bounding box of mpoint to mgpoint
22: return mgpoint

Algorithm 4 mapmatching(net, mpoint)

Require: net(network) and mpoin (mpoint)
1: Initialize empty result value mgpoint with net.Id

2: start == L
3: end := L
4: while Jupoint € mpoint do

5 while start =1 do

6 start := point2gpoint(net, upoint.start)
7. end while

8:  while end =1 do

9: end := point2gpoint(net, upoint.end)
10:  end while

11:  if start #1 and end #1 then

12: if start is on same route as end then

13: Write ugpoint to result route interval of ugpoint to trajectory
14: else

15: sp := shortest_pathastar(start, end)

16: for Each route interval of sp do

17: Write ugpoint to result route interval of ugpoint to trajectory
18: end for

19: end if

20:  end if

21:  start := end

22:  end:= L

23: end while

24: Copy bounding box of mpoint to mgpoint
25: return mgpoint

The operation mapmatching (see Algorithm M) uses for the end computation a variant of point2gpoint
which first tries to map the new point to the same route as the last point was matched. If this is successful
the time complexity for this step is O(h;) instead of O(log ryet + ¢; + h;). The shortest path computation with
help of the A*-Variant stops immediately if the path is found. In most cases the distance between the two
network positions on different routes is very small, such that this operation is not so expensive and does not
dominate the time costs of searching start and end point in the network. But it may become very expensive if
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both network positions are far away from each other. But in nearly all cases the worst case time complexity of
mapmatching is limited by

O(ulogrper + Z c; + Z hj)
i=0 §=0

3.3.3 Translation from Network Data Model into 2D Space

The operations in Table translate network data types into spatial data types. In [I0] these operations are
called in_space.

Signature Example Call

gpoint — point gpoint2point(gpoint)

gline — line gline2line(gline)

mgpoint — mpoint | mgpoint2mpoint(mgpoint)

Table 3.5: Operators Tranlsating Network into 2D Spatial Objects

The operation gpoint2point translates a gpoint value into the corresponding point value. The algorithm
uses the B-Tree of the routes relation of the network object, the gpoint belongs to, to get the route curve of the
gpoint. This takes O(logr,) time. The spatial position of the gpoint on this route is computed by searching
the HalfSegments of this route curve for the position of the gpoint in worst case O(h) time. Together we get a
worst case time complexity of O(h + logrpet).

The operation gline2line translates a gline value into a spatial line value. The algorithm uses the B-Tree
index on the routes relation to get the corresponding route curve for every route interval of the gline value.
For each route interval r; the corresponding h; segments of the route curve are computed and merged into the
resulting line value.

We need O(log ) time to get the route curve and O(h;) time to get the segments of the route interval.
The time complexity of the complete operation is O(rlogrner + > iy hi)

Algorithm 5 mgpoint2mpoint(mgpoint)

Require: mgpoint (mgpoint)

1: for Each ugpoint of mgpoint do

2 if ugpoint stays on the same route as last ugpoint then

3 use variant of gpoint2point to compute the position of end point
4 if start and end point are not on the same HalfSegment then

5: splitugpoint(ugpoint, routecurve, mpoint)

6 else

7 Add upoint to mpoint

8 end if

9 else
10: Use B-Tree Index to get new route curve for the ugpoint
11: Use variant of gpoint2point to compute the start and end point
12: if start and end are not on the same HalfSegment then
13: splitugpoint(ugpoint, routecurve, mpoint)
14: else
15: Add upoint to mpoint
16: end if
17:  end if
18: end for

19: return mpoint
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Algorithm 6 splitugpoint(ugpoint, curve, mpoint)

Require: ugpoint (ugpoint), curve (sline) passed within ugpoint. resulting mpoint (mpoint)
1: if Moving Direction = Up then

2 compute the time instant the ugpoint reaches the end of the segment

3: else

4 compute the time instant the ugpoint reaches the start of the segment
5. end if

6: Add upoint to mpoint

7. for Each segment of curve passed completely by ugpoint do

8 if Moving Direction = Up then

9: compute the time instant the ugpoint reaches the end of the segment
10: else

11: compute the time instant the ugpoint reaches the start of the segment
12 end if

13:  Add corresponding upoint to mpoint

14: end for

15: if Moving Direction = Up then

16:  Add last upoint from section start to the end of ugpoint to mpoint
17: else

18:  Add last upoint from section end to the end of ugpoint to mpoint
19: end if

The operation mgpoint2mpoint translates an mgpoint value into the corresponding mpoint value. See
Algorithms [l and [@ for detailed description. The time complexity of Algorithm [6] depends on the number of

half segments of the route curve passed by the ugpoint. It needs O(h) time.
The single steps of Algorithm [l need the following times:

e line 1: The FOR-Loop is called m times and needs
— in case of line 3: O(h + logrpet) plus

* in case of line 5: O(h)
* in case of line 7: O(1)

— in case of line 10-11: O(h + log Tpet) plus
* in case of line 13: O(h)
* in case of line 15: O(1)

We get a worst case time complexity of

O(mlogrpet + Z h;)

i=1

3.3.4 Extract Attributes

The operators of Table B return the attributes from the different data types in O(1) time, whereas the time

complexity of the operators in Table depends on the complexity of the return value.

Signature Example Call

network — rel routes(network)
Jjunctions(network)
sections(network)

network x int x bool — stream(tuple(sid int, dir bool)) | getAdjacentSections(network, sid, up)

getReverseAdjacentSections(network, sid, up)

mgpoint — gline trajectory(mgpoint)
C — periods deftime(mgpoint)
mgpoint — stream(ugpoint) units(mgpoint)
gline — gpoints getBGP (gline)

Table 3.6: Operators Extracting Complex Attributes of Data Types
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Signature Operator Explanation
A — int no_components | Returns the number of route intervals respectively units of the ar-
gument.
A — bool isempty Returns true if the argument is not defined or has no components.
B — real length Returns the length of the gline respectively driven distance of the
mgpoint or ugpoint
mgpoint—igpoint | initial Returns the first position and start time of the mgpoint value.
initial Returns the last position and end time of the mgpoint value.
ugpoint — real unitrid Returns the route identifier of the ugpoint value.
unitstartpos Returns the start position of the ugpoint value.
unitendpos Returns the end position of the ugpoint value.
unitstarttime Returns the start time instant of the ugpoint value as real value.
unitendtime Returns the end time instant on the ugpoint value as real value.
ugpoint — instant | startunitinst Returns the start time instant of the ugpoint value.
endunitinst Returns the end time instant on the ugpoint value.
igpoint — gpoint val Returns the gpoint of the igpoint value
igpoint — instant | inst Returns the time instant of the igpoint value

Table 3.7: Operators Extracting Attributes of Data Types in O(1) Time

The operators routes (O(rpet)), junctions (O(jpet)), and sections (O(spet)) get a network object as
parameter and return the values of the internal relations of the given network. The time complexity of the
operators is given in brackets.

The operators getAdjacentSections and getReverseAdjacentSections get as parameters a network
value, an identifier (int) which identifies the query section, and a Boolean value telling if we want to search
in Up(true) or Down(false) direction of the section. The tuples in the return stream identify the (reverse)
adjacent sectiond'] of the query section by identifier and direction. The query section is searched by a binary
search in the (reverse) adjacency list and the x result sections are returned. The time complexity of the
operations is O(z 4 log Spet)-

The operation trajectory returns the trajectory of the mgpoint as sorted gline value representing all the
places ever traversed by the mgpoint. If the trajectory attribute of the mgpoint is defined the route intervals
are returned as gline value in O(r) time. Otherwise the trajectory attribute is computed and returned as gline
value by a linear scan of the units of the mgpoint value in O(ryyut +mlogrey,:) time. The latter time complexity
value could be reduced to O(m) if we store the computed route intervals immediately to the resulting gline
value without sorting and merging. As mentioned in Section .24l we think that the overhead in computation
time for sorting and merging is well invested.

The operation deftime is defined for mgpoint and ugpoint. It returns the periods representing the definition
time of the the mgpoint value respectively the ugpoint value. This takes O(1) time for ugpoint values and O(m)
time for mgpoint values.

The operation units returns the units of the mgpoint value as stream of ugpoint values in O(m) time.

The operation getBGP returns the bounding gpoints@ of the given gline value as gpoints value. The time
complexity of the operation is O(r).

3.3.5 Bounding Boxes

In network environment we know two different types of bounding boxes. On the one hand the spatial and
spatio-temporal bounding boxes (see Table B.8) as they are known from the data model of [6] for spatial and
spatio-temporal data types. And on the other hand network and network-temporal bounding boxes (see Table
B3), which abuse the route identifiers and positions on the routes as x- and y-coordinates of the “network
bounding rectangle”.

17The adjacent sections are the directed sections which can be reached from the query section passing it in Up respectively Down
direction. The reverse adjacent sections are the directed sections which must be passed to reach the query section.

18 Bounding gpoints define the network positions, which must be passed by everyone who wants to reach the inside of the gline
from the outside of the gline and vice versa. We are interested in these points, because they can be used to reduce the complexity
of shortest path and Network Distance computing between gline values.
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3.3.5.1 Spatial and Spatio-Temporal Bounding Boxes

Signature Example Call

network — rect?2 | netbbox(network)

ugpoint — rectd | unitboundingbox(ugpoint)

mgpoint — rects | mgpbbox(mgpoint)

Table 3.8: Operators Generating Spatial- and Spatio-Temporal Bounding Boxes

The operation netbbox returns the spatial bounding box of the network value. This is the same as the bounding
box of the R-Tree of the routes relation of network and can be returned in O(1) time.

The operations unitboundingbox and mgpbbox return the spatio-temporal bounding boxes of ugpoint
respectively mgpoint values as three dimensional rectangles with coordinates:

e x; = min(x-coordinate of the bounding box)
e xo = max(x-coordinate of the bounding box)
e y; = min(y-coordinate of the bounding box)
e y> = max(y-coordinate of the bounding box)
e z; =start time instant as real

e 23 =end time instant as real

The spatial part of the unit bounding box is defined as the spatial bounding box of the route interval passed
by the ugpoint value. The temporal part (z-coordinates) of the unit bounding box is given by the real values
representing the start and the end time instant of the time interval of the ugpoint value.

To compute the spatio-temporal bounding box of a ugpoint the operation unitboundingbox needs access
to the half segments of the corresponding route curve. It uses the B-Tree index of the routes relation of the
network the ugpoint belongs to, to get the route curve in O(logr,;) time. The worst case time complexity for
unitboundingbox is O(h + log et ).

The spatio-temporal bounding box of a mgpoint value is defined by the union of the spatio-temporal bounding
boxes of its ugpoints. The simple computation would take O(m logrner+ Y v, h;) time, which is very expensive.
As mentioned before in Section we introduced the parameter bbox to the mgpoint to store the spatio-
temporal bounding box of an mgpoint value, if it has been computed once, until the mgpoint value changes.
Otherwise we use the trajectory parameter of the mgpoint value to get the spatial part of the bounding box in
much less time.

Algorithm 7 mgpbbox(mgpoint)

Require: mgpoint(mgpoint)
1: if bbox exists then

2 return bbox

3: else

4. if trajectory is not defined then

5 trajectory(mpoint)

6: end if

7 Compute union of bounding boxes of route intervals in trajectory

8 Extend the resulting box by start and end time of the mgpoint

9:  return bbox

10: end if

The single steps of mgpbbox (see Algorithm [7]) have a time complexity of:
e line 1: O(1)
e line 2: O(1)
e line 4: O(1)
(

e line 5: O(mlogrout + Tout)
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e line 7: O30 hy,)

e line 8: O(1)

e line 9: O(1)
In the worst case we get a time complexity of O(mlogre,u: + Z;;“f hr;), which is still better than the simple
version, because 7oyt K M A Tout K Tnet-
3.3.5.2 Network and Network-Temporal Bounding Boxes

A network(-temporal) bounding box is a two (three) dimensional rectangle with coordinates (x1,z2,y1,y2)
respectively (x1,22,y1,Y2, 21, 22), where the both x-coordinates are defined by the route identifier and are
always identical, the y-coordinates are given by the positions on the route, and the z-coordinates are defined as
real values representing the start (z1) respectively the end (z2) time instant of the time interval of the ugpoint.

Signature Example Call
gpoint — rect gpoint2rect(gpoint)
gline — stream(rect) | routeintervals(gline)
ugpoint — rect3 unitbox(ugpoint)
ugpoint — rect unitbox2(ugpoint)

Table 3.9: Operators Generating Network- and Network-Temporal Bounding Boxes

The operation gpoint2rect computes the network bounding box of a gpoint value in O(1) time. The y-
coordinates are defined as y; = position —0.000001 respectively yo = position + 0.000001. The small real value
is added to avoid problems with the computational inaccuracy of real values especially at route start and end
points.

The operation routeintervals returns a stream of network bounding boxes, one for each route interval of
the gline value. The y-coordinates are defined to be y; = min(start position, end position) and y, = max(start
position, end position). The operation needs O(r) time.

The operation unitbox2 returns the network bounding box of the ugpoint value in O(1) time. The y-
coordinates are given by y; = min(start position, end position) and yo = max(start position, end position).

The operation unitbox returns the network-temporal bounding box of the ugpoint value in O(1) time. The
operation extends the two dimensional rectangle of unitbox2 with the z-coordinates defined by the real values
of the start and end time instants of the ugpoint.

3.3.6 Property Tests

The operations in this section (see Table B:IIE) check if the arguments fulfill given conditions and return true
if this is the case. A special case is the operation inside for mgpoint, because the argument and the return
value are moving data types.

Signature Example Call

X x X — bool a=1»

Y xY — bool intersects(a, b)
mgpoint x X — bool mgpoint passes b
gpoint x gline — bool a inside gline
mgpoint X gline — mbool | mgpoint inside gline
mgpoint xT — bool mgpoint present b

Table 3.10: Operators Checking Properties

The operation = compares the arguments and returns true if they are equal, false otherwise. For two
gpoint values the check is done in O(1) time. For two gline values we have to compare all route intervals of
both gline values in the positiv case, in the negativ case false is returned immediately if a difference between

19The data type of the first parameter must be equal to the data type of the second parameter if X or Y occur twice in a
signature.
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the two gline values is detected to save computation time. If both gline are sorted the comparison of the two
sets of route intervals needs O(r) time. If only one gline value is sorted we need O(rlogr) time. If none of the
gline values is sorted we need O(r?) time.

The operation intersects checks if the two arguments intersect respectively meet at least at one position in
the network.

For two gline values the algorithm checks if there is a pair of route intervals (one from gline! and one from
gline2) that intersects. Because sorted gline values can reduce computation time the algorithm distinguishes
three cases:

1. If both gline values are sorted, a parallel scan through the route intervals of both gline values is performed
in O(ry + r2) time.

2. If only one gline value is sorted, a linear scan of the unsorted gline is performed. For each route interval
of the unsorted gline a binary search for an overlapping route interval is performed on the route intervals
of the sorted gline value. This takes O(r;logr;) time, with 4,5 € {1,2},7 # j.

3. If both gline values are not sorted, a linear scan of the first gline value is performed, and for each route
interval a linear scan for overlapping route intervals on the second gline value is performed in O(r172).

In all three cases true is returned and computation stops immediately if a intersecting pair of route intervals
has been found.

For two mgpoint values the algorithm works almost analogous to intersection (see B3I1]) but if two
intersecting units are found true is returned immediately. In the worst case that no intersection is found the
time complexity is equal to the time complexity of intersection.

The operation passes checks if the mgpoint ever passes the given network position (gpoint) or part (gline).
The algorithm uses the trajectory parameter of the mgpoint. If the trajectory is not defined the trajectory is
first computed using trajectory(mgpoint). In this case we must add the time complexity trajectory to the
time complexity of passes. In the sequel we assume that the trajectory is already defined.

If the second argument is a gpoint a binary search for a route interval that contains the gpoint is performed
on the trajectory parameter. This will take O(logr) time.

If the second argument is a gline the algorithm distinguishes two cases:

1. If the gline is sorted a parallel scan of the route intervals of the gline value and the trajectory of the
mgpoint is performed to detect an intersecting pair of route intervals one from gline and one from mgpoint.
The time complexity is O(Fmgpoint + T'gline)

2. If the gline is not sorted a linear scan of the route intervals of the gline value is performed. And for
every route interval a binary search for an intersecting route interval is performed on the trajectory of
the mgpoint. The time complexity is O(7giine 10g Fimgpoint)-

In both cases true is returned immediately if a pair of intersecting route intervals is detected.
The operation inside checks if the gpoint respectively mgpoint value is inside the gline value.
If the second argument is a gpoint the algorithm distinguishes two cases:

1. If the gline is sorted a binary search for a route interval containing the gpoint is performed in O(logr)
time.

2. If the gline is not sorted a linear scan of the route intervals of the gline is performed to find a route
interval containing the gpoint in O(r) time.

If the second argument is an mgpoint the result of inside gline is an mboold is returned. The mbool is true
every time interval the mgpoint moves inside the gline and false for the other time intervals of the definition
time of the mgpoint. The algorithm checks for every unit of the mgpoint if there is any intersection with the
route intervals of the gline. Based on these values the resulting mbool is computed. Again we distinguish
between sorted and unsorted gline

e If the gline is sorted a binary search on the route intervals is performed and the operation takes O(mlogr)
time.

e If the gline is not sorted a linear scan on the route intervals is performed and the operation takes O(mr)
time.

20(Short form of moving(bool)). An mbool value changes its value within time. See [6] for more details.
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The operation present checks the time intervals of the mgpoint value and returns true if the mgpoint value
is defined at the given time instant or at least a part of the given period of time.

If the second argument is a instant value the algorithm performs a binary search on the units of the mgpoint
for the given time instant in O(logm) time.

If the second argument is a periods value the algorithm performs a parallel scan of the units of the mgpoint
value and the units of the periods value and returns true if an intersecting time interval is found. The worst
case time complexity is O(m + p).

3.3.7 Merging Data Objects

AxA— A o union b

The operation union merges two argument objects into one result object of the same data type in the same
network.

Algorithm [§ describes the operation for two gline values. The time complexity is O(ry + r2) if both gline
values are sorted and O((r; + r2)10g royt) in all other cases.

Algorithm 8 union(glinel, gline2)

Require: glinel, gline2 of data type gline
1: if Both gline are sorted then
2:  Perform parallel scan of the route intervals of both gline
3 if current pair of route intervals intersect then
4 merge route intervals into one
5: if upcoming route intervals intersect the resulting route interval then
6 extend merged route interval
7 end if
8 Add merged route interval to result and continue scan
9 else
10: Add smaller route interval to resulting gline and continue scan
11:  end if
12: else
13:  Fill the route intervals of both gline in a common RITree to compute resulting gline
14: end if
15: return resulting gline

If we do not want to store the resulting gline sorted we could simply add every route interval of both gline
values into the new gline in O(ry + r2) time. As mentioned before in Section B2:4] we think that the additional
time for merging and sorting is well invested at this point.

For two mgpoint the algorithm performs a parallel scan through the units of both mgpoint and writes the
units of the mgpoints in ascending order of their time intervals to the resulting mgpoint. If there are overlapping
time intervals the algorithm checks, if both ugpoint values define the same places for the same times. If this is
the case one of them is written to the result and the other one is ignored. If the ugpoint values are different
the computation stops immediately and the result is marked to be undefined. The worst case time complexity
of this operation is O(my + ma2).

3.3.8 Path Computing

X x X — gline shortest_path(a, b)
D x D — gline shortest_pathastar(a, b)

The operation shortest_path computes the shortest path between the arguments using Dijkstras Algorithm of
shortest paths [3], whereas the operation shortest_pathastar uses the A*-Algorithm [I2] for the computation.
Because of the bad performance of Dijkstras Algorithm shortest_path is only implemented for pairs of gpoint
and gline, whereas shortest_pathastar supports all possible combinations of static network data types.

For two gpoint values the worst case time complexity of shortest_path is O(spet + Jnet 108 Jnet) see [3].

For two gline values the operation shortest_path computes first the bounding gpoint values of both gline
values using getBGP (see Section B34) followed by the computation of the shortest paths for each possible
pair of bounding gpoint values one from glinel and one from gline2 using Dijkstras Algorithm of shortest
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paths. The shortest detected path is returned as result value. The time complexity for this operation is
O(Tl +re + ble(Snet + jnet 1Ogjnet))-

Different from operation shortest_path the operation shortest_pathastar uses the A*-Variant of Dijkstras
Algorithm. The A*-Algorithm is known to have better run times in almost all cases than Dijkstras Algorithm,
because it touches fewer sections than Dijkstras Algorithm. This can be checked in SECONDO comparing the
results of the operation spsearchvisited (described below) for both algorithms.

All possible combinations of static network data types are reduced to compute the shortest path with A*-
Algorithm between two sets of gpoints. This is done in O(1) for gpoint and gpoints values. In case of a gline
value the bounding gpoints are computed using the operation getBGP before the shortest path A*-Algorithm
for two gpoints values is used.

Our variant of the A*-Algorithm for two sets of gpoints does not compute the shortest path for all pairs
of gpoint one from gpoints! and one from gpoints2. It initializes the priority queue for A* with all gpoint
of gpoints1 and uses this single priority queue to compute the shortest path to the destination set gpoints2.
The computation stops, if the first time a gpoint from gpoints?2 is the minimum of the priority queue. A few
additional operations ensure that the path we found first is really the shortest path between the two position
sets. In our experiments we compared the brute force attempt of shortest_path with our shortest_pathastar
variant. The speed up for two sets of network positions is enormous. We measured a run time of 0.17 seconds
for shortest_pathastar computation, while the brute force attempt took 4.199 seconds in the middle for the
same input and result.

As mentioned before we introduced an operation spsearchvisited to enable the user to compare the different
shortest path algorithms. The operation has the signature: D x Dx bool — stream(tuple(Tsec)). The result is
a stream with the tuples of the internal section table, which have been visited within the shortest path search.
If both arguments are of data type gpoint respectively gline the Boolean value can be used to select if Dijkstras
Algorithm (true) or the A*-Algorithm (false) should be performed for shortest path search. For all other
combinations of argument data types only the A*-Algorithm is implemented, such that only false is possible
as Boolean input value. The time complexity of spsearchvisited is analogous to the used Algorithm for path
computation.

The operation shortestpathtree was introduced to support network distance computation between a static
gpoint and an mgpoint value. The signature of the operation is gpoint x network — stream(tuple(sid int, distance
real, direction bool)). The operation computes the shortest path from one source gpoint to all other places in
the network using Dijkstras-Algorithm in O(Spet 4+ Jnet 10g jnet) time. It returns a stream of tuples. Each
tuple represents a network section in the shortest path tree of the network with origin gpoint. The sections
are represented by their identifier, their distance from the source gpoint value and a Boolean flag telling, if the
section is passed in Up or Down direction within the shortest path tree.

3.3.9 Distance Computing

There is a big difference between the Euclidean Distance and the Network Distance of two places a and b. The
Euclidean Distance is given by the length of the beeline between the two places regardless from existing paths
in the network between the two locations and it is the same equal if we estimate the distance from a to b or
form b to a. On the contrary the Network Distance is given by the length of the shortest path between a and b
in the network. According to this, and contrary to the Euclidean Distance, the Network Distance from a to b
might be another than the Network Distance from b to a. Because there might be one way routes in the shortest
path from a to b, which cannot be used in the shortest path from b to a or vice verse.

3.3.9.1 Euclidean Distances

X x X — real distance(aq, b)
mgpoint X mgpoint — mreal] distance(mgpoint1, mgpoint2)

Although Euclidean Distances do not make much sense in a network environment, we implemented the
distance operation which computes the Euclidean Distance between two gpoint, gline, or mgpoint values for
network objects for convenience.

All following algorithms for Euclidean Distance computing do first a translation of the network data types
into equivalent two dimensional data types using the operators of Section before they use the existing
distance operation of this equivalent two dimensional data types to compute the Euclidean Distance between
the network data types. Therefore the time complexity is always given by the sum of the translation time
and the time for the distance computation. In all cases the translation time dominates the time for distance

21'We have moving data types as arguments such that the result is also a moving data type. See [6] for detailed explanation of
mreal.
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computing, such that the time complexity for the distance computation between two network objects is the
same than for the translation of the network objects.

3.3.9.2 Network Distances

As mentioned before the Network Distance is given by the length of the shortest path between the two arguments,
whereas the first argument is the source and the second argument the target of the shortest path. This definition
is necessary, because the shortest path from the first to the second argument may differ from the shortest path
from the second to the first argument.

We distinguish between two cases. The first simpler case computes Network Distances only between static
network positions. The result is, in this case, always a single real value. In the second case we estimate Network
Distances where at least one of the data objects is an mgpoint. In this cases the result is an mreal.

For the static case analogous to the shortest path computation we know to different operators netdistance
and netdistancenew.

3.3.9.2.1 Static Network Positions

X x X — real netdistance(a, b)
D x D — gline  netdistancenew(a, b)

The operator netdistance uses the Dijkstras Algorithm implemented in operation shortest_path, whereas
the operator netdistancenew uses the A*-Algorithm version as described in Section [3.3.8] for operation short-
est_pathastar. The time complexity of the operations is dominated by the shortest path computation, such
that the time complexity of the operation is given by the shortest path algorithm used. Algorithm [ computes
the minimum Network distance between two gline values.

Algorithm 9 netdistance(glinel,gline2)

: BGP1 = getBGP(glinel)

: BGP2 = getBGP(gline2)

minDist = oo

: for Each pair of pl € BGP1 and p2 € BGP2 do

if pl inside gline2 V p2 inside glinel then
return 0.0

else
actDist = length(shortestpath(pl,p2))
if actDist < minDist then

10: minDist = actDist

11: end if

12:  end if

13: end for

14: return minDist

© PN DT

3.3.9.2.2 Moving Network Positions

Z X Z — ureal netdistance(a, b)
Y XY — mreal netdistance or netdistancenew(a, b)

The computation of moving Network Distances is not exact yet. Exact computation would take much more
computation time and very complex operations, because the shortest path from object a to object b may change
more than one time within one unit completely such that we would get more than one shortest path and resulting
unit per unit.

The operation netdistance uses the A*-Algorithm to estimate the Network Distance. The initial distance
value for the resulting ureal value of the netdistance operation between a gpoint and a ugpoint is defined by
the Network Distance between the gpoint and the start position of the ugpoint respectively vice verse. The end
distance value of the result is computed by addition respectively subtraction of the distance between start and
end position of ugpoint to start distance valud?d. The start and end values are used to compute the parameters
of a ureal value representing the development of the distance value in the time interval defined by the ugpoint.

221f the length of the ugpoint values is added or subtracted depends on the direction of the movement of the ugpoint value relative
to the shortest path.
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For the Network Distance between two wugpoint values the start distance value is the Network Distance
between the two start positions of the both ugpoint values. The end value is estimated by adding/subtracting
the lengths of both ugpoint values almost analogous to the gpoint to ugpoint case.

To compute the Network Distance between a gpoint and a mgpoint or vice verse we compute first the (reverse)
shortest path tree of the gpoint. After that we do a linear scan of the units of the mgpoint and compute the
sections passed by this unit. We get the length of the shortest path from/to the start and end of this unit
to the gpoint by a look up of the results of the shortest path tree computation. These length values are used
to compute corresponding ureal values for the resulting mreal value representing the moving network distance
between the moving and the static network position.

In all cases the time complexity is dominated by the time complexity of shortest path respectively shortest
path tree computation.

The operation netdistancenew tries to save computation time by first estimating the set of sections ever
passed by the mgpoint and then stopping the (reverse) shortest path tree computation when all passed sections
have been reached. The rest of the algorithm is analogous to netdistance for mgpoint and gpoint values.
The main difference is the time complexity of the (reverse) shortest path tree computation. Depending on the
movement and the distance of the movement of the mgpoint relatively to the gpoint the average computation
time is much better than in case of netdistance for the same query objects.

3.3.10 Network Part Around a Single Network Position

The three operations circlen, in_circlen and out_circlen with signature gpoint x real — gline and syntax
op(gpoint, dist) return a gline value. In case of out_circlen the gline represents the parts of the network
around the given gpoint which can be reached within the Network Distance given by dist from the gpoint. In
case of in_circlen the gline represents the parts of the network from which the gpoint can be reached within
dist. And circlen returns the union of the results of out_circlen and in_circlen.

The values are computed by building the (reverse) shortest path tree of gpoint until the given distance is
smaller than the next distance coming from the priority queue.

3.3.11 Restricting Single Moving Network Positions

Signature Example Call

mgpoint X instant — igpoint mgpoint atinstant periods

mgpoint X periods — mgpoint | mgpoint atperiods periods

mgpoint X X — mgpoint mgpoint at a

mgpoint X mgpoint — mgpoint | intersection(mgpointl, mgpoint2)

mgpoint X real — mgpoint simplify (mgpoint, real)

Table 3.11: Operators Restricting Single Moving Network Positions

The operations in this section (see Table BIT) restrict mgpoint values to given times or places or reduce the
number of units of the mgpoint.

The operation atinstant restricts the mgpoint to the given time instant. It performs a binary search on
the units of the mgpoint to find the unit containing the given time instant. If a corresponding unit is found the
result is computed and returned, otherwise an undefined igpoint value is returned. The time complexity of the
operation is O(logm).

The operation atperiods restricts the mgpoint to the given periods of time. It performs a parallel scan of
the periods and the mgpoint value. The (parts) of units which are inside the periods value are written to the
resulting mgpoint. The time complexity is O(m + p).

The operation at restricts the mgpoint to the times and places given as gpoint or gline value.

For a gpoint value the operation at performs a linear scan on the units of the mgpoint and checks for every
unit if the mgpoint passes the gpoint. If this is the case a ugpoint for the time the mgpoint was at the gpoint is
computed and added to the resulting mgpoint. The computation takes O(m) time.

For a gline value the operation at performs a linear scan on the units of the mgpoint. For each unit of the
mgpoint we check if it passes any route interval of the gline. For sorted gline values a binary search on the route
intervals and for unsorted gline values a linear scan of the route intervals is performed. If the route interval
and the unit of the mgpoint intersect the times and places of the intersection are computed as ugpoint value
and added to the resulting mgpoint. The time complexity of the operation is O(mlogr) for sorted and O(mr)
for unsorted gline values.
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The operation intersection returns the times and places where both argument mgpoints have been at the
same time. The algorithm first computes the refinement partition of the both mgpoint. Then it performs a
parallel scan through the refinement partitions of both mgpoint and checks for every pair of units if there is an
intersection. If this is the case a ugpoint with the intersection value is computed and written to the resulting
mgpoint. Let s be the number of units of the refinement partitions. The time complexity of the algorithm is
O(my +ma + s).

The operation simplify reduces the number of units of the mgpoint, by merging the units, where the mgpoint
moves on the same route, in the same direction, and the speed difference between two units is smaller as defined
by the given real value. The operation performs a linear scan on the units of the mgpoint and checks the
condition for every unit. This takes O(m) time. Detailed information about the simplification can be found

in [14].

3.3.12 Create Moving Value From Single Unit
ugpoint — mgpoint ugpoint2mgpoint(ugpoint)

The operation ugpoint2mgpoint constructs a mgpoint value from an single ugpoint value in O(1) time.

3.3.13 Static Network Position Values of Junctions
gpoint — stream(gpoint) polygpoints(gpoint)

A problem of the network dat/a model is that junctions belong to more than one route. That means, different
from the spatial case, one junction has more than one network representation. Operators like passes or inside
do not check if the query gpoint is a junction and probably has more than one representation, because the
interpretation of passing a network junction in [I0] is slightly different from passing a point in the two dimensional
space. So if, for example, an mgpoint passes a junction on the one route and the gpoint representing the junction
is given related to another route we get false as result. This is correct in the network data model but does not
fit to the passes interpretation of the data model of free movement in two dimensional space.

We introduced the operation polygpoints to bypass this problem in the BerlinMOD Benchmark [I]. This
operation returns for every given gpoint a stream of gpoint. This stream contains only the gpoint itself if the
gpoint is not a junction, and the gpoint itself and all aliases for this gpoint representing the same place in space
if the gpoint is a junction.

The algorithm polygpoints first copies the argument gpoint to the output stream in O(1) time. Then it
checks if the gpoint represents a junction by selecting all junctions from the junctions relation which are on the
route with the route identifier of the gpoint with help of the junctions relation B-Tree in O(log jnet + k) time.
This k junctions are checked if they are identified by the gpoint. In the worst case this takes O(k) time. If
this is the case all other gpoint values identifying the same junction on other routes are returned in the output
stream. The complete algorithm has a worst case complexity of O(log jnet + k).

23Refinement partition means that the units of both mgpoint are parted, such that in the end the units of both mgpoint have
the same time intervals for the times they both exist.



Chapter 4

JNetwork Implementation

4.1 Introduction

As mentioned before we provide two implementations of the network data model of [10] in SEcoNDO DBMS.
The second implementation was developed because the tests with the first implementation of the network data
model (see Chapter [3]) in SECONDO showed that our expectations are fulfilled. The network data model needs
less storage space than the spatial data model implemented in SECONDO; and the query run times compared
with the BerlinMOD Benchmark are also much better for the network data model. But within the same tests
we detected several problems of the first network implementation:

e The number of available sections is limited by the main memory at network creation time, such that we
could not import bigger amounts of street data as single network object.

e The side value in Routelnterval was not implemented and could not be added easily because the imple-
mentation is not really well object oriented, such that the maintenance of the code becomes very expensive
and difficult. For the extension of the Routelnterval we would have to change thousand lines of code at
every place the Routelnterval occurs.

e Some data information is stored twice for example in the network relations the spatial route curve is stored
once in the routes and once in the sections relation, this could be reduced to save storage space without
loss of information.

e The idea to use the implemented generic mapping functions directly does not work for moving network
data types, such that we could save data space by using one route interval for the spatial part of each
moving unit instead of two network positions which consists except of the position value of the same data
content.

Based on these experiences we implemented the network data model a second time in an improved version
which supports the missing functionality, saves more storage space and has at least the same or better query
run times (see Figure i) than the first network implementation described in Chapter Bl Different from the
first implementation the static and the temporal data types and the operations on this data types are provided
in one single SECONDO algebra module called JNetAlgebra.

Analogous to the description of the first implementation we describe the data types of the second imple-
mentation in Section and the operations on these data types in Section

4.2 Implemented Data Types

Beside the central jnetwork object (see Section£.2.2)) and the jnetwork depending data types (see Section [1.2.3))
we introduced some helpful other SECONDO attribute data types (see Section EL2)). These additional data
types are used as part of network data types and as input to create jnetworks and jnetwork dependent objects.

All data types described in the sequel have an additional Boolean flag telling if the current data type value
is well defined or not. We will not mention this flag again at every data type.

4.2.1 Basic Data Types

The data type jdirection encapsulates the enumeration of side values Up, Down and BotHl to be useable as
attribute data type into relations. It is used in the other data types to realize the side value as described in [10].

1We found it more logical to say a position is reachable from both sides of a road than to use none for the same sense, like it is
done in the original abstract data model and in the first implementation.

25
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The definition of the data type rloc (short form of route location) is based on the definition of the abstract
data type RLoc in [I0]. It consists of a route identifier (int), the distance of the location from the origin of the
route curve (real) following the route curve, and a side value (jdirection) describing from which side of the road
the location can be reached on the route.

The data type jrint (short form of route interval in this second network data model implementation) is based
on the abstract route interval definition of [I0]. It consists of a route identifier (int), two distance values (real),
and a side value (jdirection). The two distance values describe the route part covered by the jrint. The first
distance value is always smaller or equal to the second distance value. This is possible because the side value
tells, depending on the usage in which direction the route part is used respectively, at which side of the road
the route part is allocated.

The data type ndg (short for net distance group) consists of four int values and one real value. The four
integer values identify the source junction, the target junction, the next junction, and the next section on the
path from the source to the target junction by their identifiers. The real value describes the Network Distance
(length of the shortest path) from the source junction to the target junction in the network.

The data type junit consists of a time intervald and a Jrint value. Telling on which route the car drives in
which direction from which position to which position in the given time interval at the same speed. It is used
within the data types mjpoint and ujpoint to describe the movement in a single time interval. We can use this
information to compute the exact position of the car at any time instant within the time interval. If the car
passes a given route location within this junit the exact time the car reaches the given route location can be
computed.

The next data types listint, listrloc, listjrint, and listndg organize sets of int, rloc, jrint, and ndg as sorted
main memory independent lists. These sorted lists enable us to perform binary searches for values in the set
that is not limited by the available main memory.

4.2.2 JNetwork

The central network data type of the JNet Implementation is the data type jnet which consists of:
e The database name of the network object as string valudi
e A real value storing the allowed deviation for map matching algorithmsﬁ
e Relation with junctions data (see Table 1))
e Relation with routes data (see Table [3)
e Relation with sections data (see Table [L2))
e Ordered Relation with network distance data (see Table [£.4])
e R-Tree for the section relation indexing the Curve attribute
e R-Tree for the junctions relation indexing the Pos attribute

e Three B-Trees indexing the identifiers of the junctions, routes and sections in the corresponding relations.

Attribute Data Type | Explanation

Id nt unique junction identifier

Pos point spatial position of junction in two dimensional space
ListJuncPos listrloc list of network positions of this junctiorﬁ

ListInSections listint list of section identifiers from which the junction can be reached
ListOutSections listint list of section identifiers over which the junction can be leaved

Table 4.1: Junctions Relation of Data Type JNetwork

2See Section for detailed information about time interval definition in SECONDO.

3We use the database name of the network object as string value instead of the 4nt identifier used in the first implementation to
enable a faster access to the jnet object for the network dependent objects.

4The sense of this value is manly the same than explained for the scalefactor attribute of network in the first implementation
see Footnote on Page [0}

50ne spatial position has different network locations if the position is at a junction. See Section for detailed problem
description.




CHAPTER 4. JNETWORK IMPLEMENTATION 27

Attribute Data Type | Explanation

Id int unique section identifier

Curve sline spatial curve representing the section curve in two dimensional
space

StartJunctionld nt junction identifier of the junction at the start point of the section
route curve

EndJunctionld nt junction identifier of the junction at the end point of the section
route curve

Direction jdirection | tells in which direction(s) the section can be used

VMax real maximum allowed speed on this section

Length real length of the section curve

ListSectRoutelntervals listyrint list of route intervals represented by this sectiond

List AdjSectionsUp listint list of adjacent sections driving section up

ListAdjSectionsDown listint list of adjacent sections driving section down

ListRevAdjSectionsUp listint list of reverse adjacent sections for driving section in up direction.

ListRevAdjSectionsDown listint list of reverse adjacent sections for driving section in down direc-
tion.

Table 4.2: Sections Relation of Data Type JNetwork

Attribute Data Type | Explanation
Id nt unique route identifier
ListJunctions listint list of identifiers of junctions belonging to this route
ListSections listint list of identifiers of sections belonging to this route
Length real total length of route curve

Table 4.3: Routes Relation of Data Type JNetwork
Attribute Data Type | Explanation
Source nt junction identifier of source junction
Target int identifier of target junction
NextJunction nt identifier of next junction in path from source to target
NextSection nt identifier of next section on path from source to target
NetworkDistance real Network Distance from source to target junction

Table 4.4: Network Distance Relation of Data Type JNetwork

4.2.3 JNetwork Dependent Data Types

The most jnetwork dependent data types extend just one of the basic data types with a jnetwork identifier
(string) connecting the described value with an existing jnet object in the database. For jnetwork dependent
objects we check at creation if the jnetwork object the data type should be related to exists and if the given
location exists in the connected jnetwork object.

We use the string with the database name of the jnetwork object as connection instead of an int value like it
is done in the first implementation, because this speeds up the access to the jnet object in the operations that
need access to information stored in the jnetwork object. We pay for this advantage with little additional time
needed to compare two string values compared with the time needed to compare two int values. We think that
this time is well invested.

The data type jpoint describes a single static position in the jnetwork by connecting a route location (rloc)
to a jnetwork identifier.

60ne section curve may be part of different roads. See Footnote @ on Page [ for explanation.
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The data type jpoints connects the jnetwork identifier with a sorted set of rloc values. The route locations
are sorted by route identifier, side value and the distance from the origin of the route. This enables us to
perform a binary search on the set to find a given position in the set. An value of this data type may be used
to represent the addresses of all butchers in the town.

Different from the first network implementation we provide two different data types (jline and jpath) repre-
senting network parts in the second network implementation. Both data types consist of the jnetwork identifier
and a set of route intervals (jrint). The difference is the sequence the set of route intervals is stored. The data
type jpath describes a path in the jnetwork and the route intervals are stored sorted by their usage in the path
from the first point to the last point of the path. The data type jline describes arbitrary parts of the jnetwork
and the route intervals are stored sorted by route identifier, side value and shorter distance from the origin of
the route curve. The data type jline corresponds to the sorted gline of the first implementation, whereas the
Jpath is more like the unsorted gline. Using two different data types at this place frees us from handling different
cases for sorted and unsorted values in each operation dealing with network parts. If needed jpath values can
be easily translated into jline values using tojline operation as described in Section

The data type mjpoint represents the history of movement of a single position (for example one car) in the
jnetwork. It consists of the jnetwork identifier, a set of JUnit values with not overlapping time intervals, a set of
Jrint describing the network part ever visited by an mgpoint value, and the total length of the driven distances
(real). The set of junit values is stored sorted by ascending time intervaldd.

The data type wujpoint consists of a jnetwork identifier and a single junit value. It describes the movement
in this time interval.

The data type ijpoint consists of a time instant and a jpoint. It describes the position of a moving jnetwork
position at the given time instant.

4.3 Implemented Operations

In the sequel we describe the implemented operations in the second implementation of the network data model.
Analogous to the chapter before we present for each operator its signature, an example call and information
about the used algorithms and if interesting the time complexity of the algorithms.

As before we define some abbreviations for the signatures and time complexity descriptions:

® jinet is the number of junctions in the junctions relation of a jnet value

Tjnet is the number of routes in routes relation of a jnet value

Sjnet is the number of sections in sections relation of a jnet value

e a is the number of sections of the route, and a; the number of route intervals of section j

¢ is the number of candidate sections a point value may be mapped to.

e e is the number of elements in a stream, and e; is the number of list elements of the j-th stream element
if the stream element is a list data type

e / is the number of HalfSegments in a line or sline value

e [ is the number of list elements in a list data type

m is the number of units of a mgpoint value

e p is number of time intervals in a periods value

r is the number of route intervals of a jline value

t is the number of jrint values in the trajectory of a mjpoint
e vy is the number of units of a mpoint value

e B := {int, rloc, jrint, ndg}

ListB := {listint, listrloc, listjrint, listndg}

o M := {myjpoint, ujpoint}

"This implementation does not fit the generic model of moving in [5]. In the generic system of moving the data part should
consist of two jpoint values instead of a jrint. The first network implementation showed that we can not use the implemented
generic operators for network data types directly such that we have to do specific network implementation for all operators even if
we use the generic data model for moving. We decided to use our implementation to save storage space without loss of information.
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N := {ujpoint, jpoint, jrint}

P := {jpoint, jpoints, jline}

S := {jpoint, jline}

o T := {instant, periods}

X := {jdirection, rloc, jrint, ndg, jpoint, jline, ListB}

Y := {mgpoint, jline}

4.3.1 Network Creation

The operator createjnet creates a single jnetwork object from these five arguments, which are almost analogous
to the corresponding attributes in the resulting jnet value:

1. object name for the new jnetwork in the database (string)

2. tolerance value for map matching (real)

3. relation (rel) with the junctions data (see Table ET)
4. relation (rel) with the sections data (see Table [2)
5. relation (rel) with the routes data (see Table 3)

The operation checks if the network identifier is available as object name for the current database. If this is the
case, the given network object is created and stored in the database with the given object name and true is
returned, otherwise the object is not created and false is returned.

The check of the network object name and the insertion of the result object in the database is done in O(1)
time. The three relations are copied in O(7jner + Sjnet + Jjner) time. The network distance relation of the
resulting jnet value is initialized in O(jer 10g jner) time. The three B-Trees and the two R-Trees of the jnet
value are created in O(jjnet 108 jjnet), O(Sjnet 10g Sjnet), respectively O(rjpet 10g 7jnet) time. The whole jnetwork
creation is done in O(jnet 10g jnet) time, because 1 < Tjnet < Sjinet < Jinet < Jnet 108 Jinet-

4.3.2 Creation Of Data Types

The operators in Table are used to create objects of the given data types from attribute values.

Signature Example Call

int X real X jdirection — rloc createrloc(routeid, distance, side)

int x real X real x jdirection — jrint createrint(routeid, start, end, side)

nt X int X int X int X real — ndg createndg(source, target, nextjunc, mnextsect,
distance)

stream(B) — ListB stream (a) createlist

stream(ListB) — ListB stream (a) createlist

jnet x rloc — jpoint createjpoint(jnet, rloc)

gnet x listrloc — jpoints createjpoints(jnet, listrloc)

jnet x listjrint — jline createjline(jnet, listjrint)

jpoint X instant — 1jpoint createijpoint(jpoint, instant)

Jnet x jrint x instant X instant x bool x bool — ugpoint | createujpoint(jnet, jrint, starttime, endtime.
le, rc)

wjpoint — mgpoint createmjpoint(ujpoint)

Table 4.5: Operators Creating Data Types

All basic data types are created in O(1) time from given attribute values.
The list data types are created from a stream of input data types respectively a stream of lists of input data
types. The time complexity for list creation is O(eloge), if the stream elements are simple basic data types and
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O((e + 325, €j) log(e + 375, e;)), if the stream elements are lists of basic data types, because the lists store
the elements sorted.

The result of the operators creating network dependent data types is only defined, if the network positions
described by the arguments exist in the given network, otherwise the result of the creation process is undefined.

For each rloc value and each jrint value the operators search the B-Tree of the routes relation if the route
identifier is valid and the given distance values are between zero and the route length. The operations creatj-
point and createujpoint need O(logr) time. The operations createjpoints and createjline need O(llogr)
time. Only the operations createijpoint and createmjpoint need O(1) time, because their arguments have
already been checked to exist in the jnetwork.

4.3.3 Translation of 2D Data Types into JNetwork Data Types

The operator tonetwork translates spatial and spatio-temporal data types into corresponding jnetwork data
types if possible. If there is no corresponding jnetwork position the return value is undefined.

Signature Example Call

jnet x point — jpoint tonetwork (jnet, point)
jnet x line — jline tonetwork(jnet, line)
jnet x mpoint — mjpoint | tonetwork(jnet, mpoint)

Table 4.6: Signatures and Example Calls for Operator tonetwork

The algorithm of the operation tonetwork for a point value works almost analogous to the operation
point2gpoint described in Algorithm 2l The main difference is that now the R-Tree of the sections relation of
the jnet is used instead of the R-Tree of the routes relation of the network. The operation needs O(log s jnet+c+h)
time.

The operation tonetwork for spatial line values computes for both end points of each HalfSegment of
the line value the corresponding route interval using the operation tonetwork for point values. The time
complexity of the operation is O(hlog sjnet + Z?:o c+ Z?:o he;).

The operation tonetwork for mpoint is described in Algorithm [[0 and sub algorithms. The operation has
a worst case time complexity of

O(ulog Sjnet + Z c+ Z he; + Z zk)),
=0 j=0 k=0

whereas zj, is the time needed for trip simulation k. If the units of the mpoint can be well matched to jnet z
will be in O(1) in the most cases. If the units of the mpoint can not be well matched to jnet z; might become
up t0 O(Sjnet + Jjnet 10g jjnet) In worst case because of the A*-Algorithm of shortest path computing.

Algorithm 10 tonetwork(jnet, mp)

Require: A jnetwork object jnet and a mpoint value mp
1: Linear Scan of mp units v until first point related to network is found by tonetwork(jnet, u.startpoint)
remember jpoint value of position as a and starttime
2: for Each remaining unit v of mpoint do
3:  Continue scan with w.endpoint until second point related to network is found by tonetwork(jnet,
w.endpoint) remember jpoint value of position as b and endtime
result+ = simulateTrip(jnet, a, b, starttime, endtime)
a = b und starttime = endtime
end for
return result

4.3.4 Translation of JNetwork Data Types into 2D Data Types

The operator fromnetwork translates jnetwork and jnetwork-temporal data types into corresponding spatial
and spatio-temporal data types.
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Algorithm 11 simulateTrip(jnet, a,b, starttime, endtime)

Require: jnet (jnetwork), a, b (rloc), starttime, endtime (instant)
1: sp = shortestPath(a,b)
2: for Each route interval i € sp do
3:  Compute relative length compared with length sp
4:  Compute corresponding time interval
5:  Write unit to result
6: end for
7. return result

Algorithm 12 shortestPath(jnet,a,b)

Require: jnet (jent), a, b(rloc)
1: if a and b are on the same route and a direct connection exists in jnet then
2:  return jrint(a,b) as path
3: else

4:  if Section of a and section of b have a common crossing ¢ then

5 return jrint(a,c), jrint (c,b) as path

6: else

7

8

9

return Result of A*-Algorithm for shortest path (a, b)
end if
: end if

Signature Example Call
Jpoint — point fromnetwork(point)
jline — line fromnetwork(jline)
mygpoint — mpoint | fromnetwork(jpoint)

Table 4.7: Signatures and Example Calls for Operator fromnetwork

The operation fromnetwork for jpoint is described in Algorithm The operation has a time complexity
of O(logr + ¢+ h).

Algorithm 13 fromnetwork(jp)

Require: jp (jpoint)
1: Search B-Tree of routes relation for route r of jp
2: for Each section s of the sectionlist of r do
3:  if s contains jp then
4: return Spatial position of jp on section curve
5 end if
6: end for

The operation fromnetwork for jline values is described in Algorithm[I4l The time complexity is O(nlogr+
Z?:O c+ Z;’I:O h(ij))'

The operation fromnetwork for mjpoint is described in Algorithm The FOR-Loop will be called u
times. If line 2 is evaluated to true line 3-6 have a time complexity of O(logr + ¢ + h). The operation in line
9 has a time complexity of O(1). Line 11412 have a worst case time complexity of O(h). We get a total time
complexity of O(nlogr + 37" e+ 327 he;)) for the worst case, but computation will be faster in most cases
because the route is not changed every unit and the most units are very short such that the most units must
not be divided up into pieces.

4.3.5 Extract Attributes

The operators of Table return the simple attributes from the different data types in O(1) time, whereas the
operators of Table return the more complex attributes.
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Algorithm 14 fromnetwork(jline)

Require: jline (jline)

1: for Each route interval i of jline do
Search B-Tree routes for route r of i
for Each section s of the sectionlist of » do

if s intersects ¢ then

Add half segments belonging to the intersection to the result

end if
end for
8: end for
9: return result

Algorithm 15 fromnetwork(mjpoint)

Require: mjpoint (mjpoint)
1: for Each unit u of mjpoint do
2 if w is on another route than unit before then
3 Search B-Tree routes for route r of u
4 Compute route curve ¢ from section curves of r
5: Compute spatial pos of u.startpos on c
6 Remember position detection values on ¢
7 end if
8 if u.endpos is on the same HalfSegment of ¢ than u.startpos then
9 Add simple corresponding unit to result
10:  else
11: Split uw at the points the passed HalfSegment of ¢ changes.
12: add resulting split units to result
13:  end if
14: end for
15: return result

Operator | Signature Explanation

isempty Y — bool Returns true if argument is defined and the set of units respectively route
intervals is empty.

initial mgpoint—ijpoint | Returns start position and time of the mjpoint value.

length mgpoint — real Returns the total driven length of an mjpoint value.

val point — jpoint Returns the network position of the ijpoint value.

inst ijpoint — instant | Returns the time instant of the ijpoint value.

Table 4.8: Operators Returning Data Type Attributes in O(1)



CHAPTER 4. JNETWORK IMPLEMENTATION 33

Signature Example Call

jnet — rel routes(jnet)
junctions(jnet)
sections(jnet)
distances(jnet)

jnet x int x jdirection — jlistint | getAdjacentSections(jnet, sectid, direction)

getReverseAdjacentSections(jnet, sectid, direction)

mjpoint — jline trajectory(mjpoint)
ListB — stream(B) createstream(a)
mgpoint — stream(ujpoint) units(mgpoint)

jline — stream(jrint) units(jline)

jline — jpoints getBGP (jline)

Table 4.9: Operators Returning Complex Attributes of Data Types

The operations junctions (O(jjnet)), sections (O(Sjnet)), routes (O(rjnet)), and distances (O(j?net))ﬁ
return the content of the internal relations of the jnet value. The time complexity of the operations depends
on the number of entries in the relations.

The operations get AdjancentSections and getReverseAdjacentSections return the list with the iden-
tifiers of the sections which are (reverse) adjacent] to the given section in the given direction in O(l +10g s net)
time.

The operation trajectory returns the trajectory of the mjpoint value as jline value in O(r) time.

The operator createstream returns the elements of a list data type as stream in O(l) time.

The operation units returns the units of a mjpoint respectively the route intervals of an jline as stream of
ugpoint respectively jrint in O(m) respectively O(r) time.

The operation getBGP returns the bounding jpoint of the given jline like described in Algorithm [T6

Algorithm 16 getBGP(jline)
Require: jline
: for Each route interval ri of jline do
Get list of covered sections from jnet of jline for ri
for Each Covered section cs do
if End of ri is inside cs then
Write jpoint for ri end to resulting jpoints
else
Get adjacent sections as at c¢s end points
if Jas : as & jline then
Write jpoint for end point of cs to resulting jpoints
10: end if
11: end if
12:  end for
13: end for
14: return jpoints

Algorithm [[6] has a worst case time complexity of

T T

O(rlogrjnet + (I +10g sjnet + Llogr) Z ci) = O(rlog rjnet + (Llogr + 10g Sjnet) Zci),

1=1 =1
because the steps have the following time complexities:

e line 1: The for-loop will be called r times. The operations inside take:

— line 2: O(c+1og7jnet)

8The worst case time complexity is O(jjznet)7 but this holds only if all Network Distances have already been computed, which
will nearly never be the case.

9See FootnotdIT] at Page for description of (reverse) adjacent sections.

10See Footnote on Page [Tf] for the explanation of bounding points of a network part.
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— line 3: The for-loop will be called for each candidate c received by line 2. The operations inside take:
line 4-6: O(1)

line 7: O(l + log sjnet)

line 8: O(llogr)

line 9: O(1)

EEE S S 3

e line 14: O(1)

4.3.6 Bounding Boxes

Almost analogous to the first network implementation we distinguish between spatio-temporal bounding boxes
(bbox) and network (netbox) and network-temporal (tempnetbox) bounding boxes (see SectionB:3.0). Again
the network bounding boxes use the route identifier as x-coordinates and the route position(s) as y-coordinates.
For all temporal data types the z-coordinates are defined by the start and end time instant. All coordinates are
given as real values.

Signature Example Call

M — rect3 bbox(a)

N — rect2 netbox(a)

ugpoint — rectd | tempnetbox(ujpoint)

Table 4.10: Operators Returning Bounding Boxes

The time complexity of the operations netbox and tempnetbox, which compute the jnetwork respectively
jnetwork-temporal bounding box of the argument is O(1).

The operation bbox computes the spatio-temporal bounding box of the argument.

For wjpoint values the algorithm for bbox searches the B-Tree of the routes relation of the jnet in O(logr)
time to get the routes section list. Then it uses the sections in the section list to compute the spatial simple line
value for the route interval given in the ujpoint in O(Z?Z1 a;). At last the bounding box of this line value is
extended by the temporal values of the wjpoint and returned in O(1) time. The total worst case time complexity
for computing the bbox of an wjpoint is O(logr + 2?21 a;).

For myjpoint values we compute the union of the spatial bounding boxes of the route intervals in the trajectory
of the mypoint to compute the spatial bounding box of the mjpoint. For each route interval we need O(logr +
sumf_,a;) as explained above at bbox(ujpoint), such that we get a total time complexity of O(i(logr +
sumf_a;)) for the computation of the spatio-temporal bounding box of an mjpoint value.

4.3.7 Merge Data Types

Y xY—=Y a union b

The operation union expects two values of the same data type belonging to the same jnetwork object, and
computes an single value of this data type from the two argument data types if this is possible.

For two jline values the operation union is always defined. The route intervals of both jline values are
added to the resulting jline value in a parallel scan of both sets of route intervals. If overlapping route intervals
are detected within the scan they are merged into one. The operation has a time complexity of O(n; + ns).

For two mjpoint values the result of the operation union is undefined if both mjpoint values have overlapping
junit values describing different positions for the same time instant. In all other cases the result is defined and
a parallel scan of the two sets of junits is performed to copy the junits of both myjpoint in correct sequence to
the resulting mjpoint in O(m; + ms) time.

4.3.8 Restrict Data Types

The data types of Table 1T restrict the data types by times or places or remove elements from lists.
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Signature Example Call

mjpoint X instant — ijpoint mgjpoint atinstant instant

mgpoint X periods — mgpoint | mjpoint atperiods periods

mgpoint X S — mjpoint mgjpoint at a
ListB x B U ListB — ListB | a-b

restrict(a,b)

Table 4.11: Restrict Data Types

The operation atinstant performs a binary search after the unit of the mjpoint containing the given time
instant. If a corresponding unit can be found, the corresponding #jpoint is returned, otherwise the return value
is undefined. The time complexity of the operation is O(logm).

The operation atperiods performs a parallel linear scan of both arguments. It restricts the units of the
mgpoint to the time intervals defined by periods. The time complexity is O(m + p).

The operation at restricts the myjpoint to the times it was at the described jnetwork position(s). For both
second argument types a linear scan of the units of the mjpoint is performed to find the times it passes the
given places.

In case of a single network position jpoint the time complexity is O(m).

For a network part (jline) for each unit of the mgjpoint a binary search for an intersecting route interval within
the set of route intervals of the jline is performed, therefore the time complexity in this case is O(mlogr).

The operation - returns the values of the input list without the values of the second argument, and the
operation restrict returns only the elements of the input list that are also in the values of the second argument.
If the second argument is a single value this can be done in O(log!l) time, because we perform a binary search
on the list values. If the second argument is even a list the time complexity is O(l; + l2), because a parallel
scan of both lists is performed to compute the result value.

4.3.9 Comparison Operators

For all data types X the comparison operations =, <, >, <, >, and #* are defined. For the simple data
types jdirection, rloc, jrint, and jpoint the need O(1) time. For the list data types (ListB) the worst case time
complexity of the operations is O(l) and for the data type jline O(r), we do not need to distinguish between the
first and second argument of ListB or jline values, because if the list length or the number of route intervals is
different the values are different.

4.3.10 Property Tests

The operations of Table [4.12] check if the first argument fulfills properties defined by the operation and the
second argument.

Signature Example Call
jpoint X jline — bool jpoint inside jline
mgpoint X S — bool mgpoint passes a

mgpoint X mgjpoint — bool | mjpointl intersects myjpoint2

mgjpoint X T — bool mgpointl present a

Table 4.12: Restrict Data Types

The operation inside performs a binary search in the set of route intervals of the jline to decide if the given
jpoint is inside the network part described by the jline. The binary search needs O(logr) time.

The operation passes performs a binary search on the set of route intervals of the trajectory for the given
mgpoint in O(logr) or a parallel scan of the route intervals in the trajectory of the mgpoint and the route
intervals of the jline in O(ry + 72) time to decide, if the mjpoint passes the given network position(s) at least
once or not.

The operation intersects checks if the two mjpoint are at least once at the same place at the same time. The
algorithm first performs a parallel scan of the units of the two mjpoint to compute the refinement partition

1 Building the refinement partitions means splitting up the units of both mjpoint such that the refinement partitions of both
mgjpoint have the same number of units and the units of both refined mjpoint have the same time intervals.
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of both mjpoint in O(mq + ms) time. After that we check for each pair of units of the refinement partitions
if the positions of both myjpoint within this time interval intersect or not. If an intersecting unit is found the
computation is stopped immediately and true is returned. If no intersecting pair of units is found the time
complexity of the whole algorithm is O(my + ma + m,.).

The operation present checks if the mjpoint is defined at the given time. In case of a single time instant as
time argument a binary search for a defined unit including this time instant is performed in O(logm) time. In
case of a periods value as time argument a parallel scan through both arguments is performed. The scan stops
immediately if an intersecting pair of time intervals is found and true is returned. In the worst case that no
intersection is found this needs O(m + p) time.

4.3.11 Path Computing
P x P — jpath shortest_path(a, b)

The operation shortest_path computes the shortest path in the jnetwork from the first argument to the second
argument using A*-Variant of Dijkstras Algorithm. The two arguments must not be of the same data type,
but the result is only defined if both arguments belong to the same jnetwork. We omitted to implement a pure
Dijkstra Version of the shortest path operation because the run times of A*-Variant are better than of Dijkstras
Algorithm (see Section B3.8]). We always try to find out if the shortest path has been computed before by an
look up of the network distance table of the jnetwork. If the network distance is already known, the computation
is done by following the path from a to b in the network distance table.

4.3.12 Network Distances

P x P — real netdistance(a, b)
jpoint — stream(tuple(jid int, dist real))  shortestpathtree(jpoint)
reverseshortestpathtree(jpoint)

The operation netdistance computes the length of the shortest path in the jnetwork from the first to the
second argumen. The two arguments must not be of the same data type, but the result is only defined if
both arguments belong to the same jnetwork. If the network distance has been computed before, we do not
need to compute the complete path, we can just get the network distance by a look up of the network distance
table.

The operation shortestpathtree computes the network distances from the given jpoint to all junctions of the
corresponding jnetwork using Dijkstras-Algorithm of shortest paths. The operations reverseshortestpathtree
computes the distances from all junctions of the corresponding jnetwork to the given jpoint using Dijkstras-
Algorithm of shortest paths. The result of both operations is a stream of tuples. Each tuple consisting of a
junction identifier and the network distance of this junction. The results of both operations differ if their are
oneways in the jnetwork otherwise the results should be the same.

4.3.13 Network Parts Around a Single Network Position

The three operations circle, incircle and outcircle with signature jpoint x real — jline and syntax op(gpoint,
dist) return a jline value. In case of outcircle the jline represents the parts of the network around the given
jpoint which can be reached within the Network Distance given by dist from the jpoint. In case of incircle the
jline represents the parts of the network from which the jpoint can be reached within dist. And circle returns
the union of the results of outcircle and incircle.

The values are computed almost analogous to the building the (reverse) shortest path tree of jpoint. The
difference is the result format and the stop of the computation if the given distance is smaller than the next
distances coming from the priority queue.

4.3.14 Alternative Route Locations for Junctions

Jpoint — stream(jpoint) altrlocs(jpoint)

12For detailed explanation of Network Distance see Section [3.3.9.2]
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Algorithm 17 altrlocs(jpoint)

Require: jpoint
1: get section list sl of route tuple for rid of jpoint
2: for each section s € sl do
3:  get route interval list ril of section s

4:  for each route interval ri € ril do

5: if rloc of jpoint inside ri then

6: if rloc is junction then

7 return all jpoint values describing this junction
8: else

9: return jpoint

10: end if

11: end if

12:  end for

13: end for

The operation altrlocs (see Algorithm [I7)) corresponds to the operation polygpoints from the first imple-
mentation (see Section B313). The time complexity is O(logr) for line 1 of the algorithm. The search for the
correct route interval containing the route location in lines 2 - 6 has a worst case complexity of 0(2?21 a;). In
case of line 9 the stream creation takes O(1) time. In case of line 7 all ¢ junction descriptions are returned in
O(c) time to the stream. We get a worst case complexity of O(c +logr + 3>_7_, a;) for the altrlocs operation.

4.3.15 Transformation of Paths into Network Parts

jpath — jline tojline(jpath)

The operation tojline resorts the route intervals of the jpath and stores the result as jline value in O(rlogr)
time. —



Chapter 5

Scripts Using Network
Implementations

5.1 Introduction

In this chapter we give some examples for the usage of the operations of both network implementations described
in the sections before.

In Section we provide scripts in SECONDO executable language translating the data generated by the
BerlinMOD Benchmark [I] data generator into the network representations. We also provide scripts with the
queries of the BerlinMOD Benchmark for both network implementations.

In Section we provide scripts which generate network representations from the information about street
networks included in the OSM-Datafiles provided in the web by [7]. At last in Section 4] we present some
example queries using the operators provided by the MapMatchingAlgebra to translate GPS-Tracks into moving
network data types on networks generated from open street map data files.

5.2 BerlinMOD Benchmark

Before we can start to translate the BerlinMOD Benchmark data into network representation and run our
network queries we have to generate the data provided with the BerlinMOD Benchmark presented in ﬂIﬂEI We
have to run the data generation script (BerlinMOD DataGenerator.SEC), which needs the three source data
files (streets.data, homeRegions.data, and workRegions.data).

The file names and storage position of the data files relative to the secondo/bin-Directory on your computer
has to be inserted into line 69-71 in the file Ber1inM0OD DataGenerator.SEC. In line 83 of this file you can set
the parameter SCALEFACTOR to control the amount of generated data generated by the script. As described
in [1J.

The script can be started by calling

SecondoTTYBDB -i BerlinMOD DataGenerator.SEC

from the command line in the secondo/bin-Directory, or by starting SecondoTTYBDB first and then
entering:

@BerlinMOD _DataGenerator.SEC

at the SECONDO prompt.

The script generates a new database called berlinmod and fills it with the data described in [I].

After this preparation step we can start to translate the generated data using the executable scripts described
in this document, and run our network BerlinMOD Benchmark queries on the translated data later on.

5.2.1 Translation of Source Data

Both network implementations provide different network representations and network creation operators, such
that we have to provide own scripts for each of the network implementations to translate the BerlinMOD
Benchmark data into the corresponding network representation.

In Section B.2.1.1] we comment the operations for the translation into the data types of the first network
implementation and in Section we do the same for the second network implementation.

'The scripts and data files of the BerlinMOD  Benchmark are published in  the web at
http://dna.fernuni-hagen.de/secondo/Ber1inM0D.
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5.2.1.1 Network

The script in the file Network_CreateObjects.SEC translates the data set of the BerlinMOD Benchmark into
the data types of the first network implementation.

This file performs translates the spatial and spatio—temporal data objects
of the BerlinMOD benchmark in the Secondo DBMS into their network data
model representation and builds the according indexes.

It is assumed that there is a database berlinmod with the data objects
created by the BerlinMOD_DataGenerator.SEC script .

RS S R

Open Database Berlinmod
open database berlinmod;
# Build a Network From Streets Data.

# Because BerlinMOD streets data lacks on informations about street crossings
# we use default values for the connectivity codes enabling all connections in
# a crossing

let B_Routes =
streets feed
proj ectextendstream[; GeoData: .GeoData polylines [TRUE]]
addcounter [Id,1]
projectextend [Id; Lengt : size(.GeoData),
Geometry: fromine(.GeoData),
Dual: TRUE,
StartSmaller: TRUE]
consunme ;

let B_Junctions =
B_Routes feed {rl}
B_Routes feed {r2}
symmoin [(.Id-rl < ..Id-r2) and (.Geometry.rl intersects ..Geometry.r2)]
proj ectextendstream/Id.r1, Geometry.rl, Id_r2,
Geometry.r2; CROSSING.POINT: conponents (crossings (. Geometry_rl,
.Geometry.-r2))]
projectextend [; R1Id: .Id-rl,
Rlmeas: atpoint (. Geometry_rl, .CROSSING.POINT, TRUE),
R2Id: .Id-r2,
R2meas: atpoint (. Geometry_r2, .CROSSING.POINT, TRUE),
CC: 65535]
consume ;

let BNETWORK =
thenetwork (1,

1.0,

B_Routes,

B_Junctions );

# Translate Trips into Network Representation

let dataSNcar =
dataScar feed
projectextend [Licence, Model, Type; Trip: mpoint2mgpoi nt (BNETWORK, .Trip)]
consume ;

let dataMNtrip =
dataMtrip feed
projectextend [Moid; Trip: mpoint2mgpoi nt (BNETWORK, .Trip)]
consunme ;

# Translate QueryPoint Set into Newtork Representation

let QueryPointsNet =
QueryPoints feed
projectextend [Id; Pos: point2gpoint (BNETWORK, .Pos)]
proj ectextendstream[Id; Pos: polygpoints (.Pos, BNETWORK) |
consume ;

let QueryPoints1Net =
QueryPoints feed head[10]
projectextend [Id; Pos: point2gpoint (BNETWORK, .Pos)]
proj ectextendstream{Id; Pos: polygpoints (.Pos, BNETWORK) |
consunme ;

# Translate QueryRegions into Network Representation

let routesline =
conmponents (rout es (BNETWORK) feed
projectextend [; Curve: toline(.Curve)]
aggregateB[Curve; fun(L1l: line, L2: line) union.new(Ll, L2); [const |ine value()]])
transformstream
extend [NoSeg: no.segments (.Elem)]
sortby [NoSeg desc]
extract [Elem];
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let QRlines =

QueryRegions feed

projectextend [Id; Lr: intersection.new(.Region, routesline)]
consune ;

let QueryRegionsNet =
QRlines feed

projectextend [Id; Region: |ine2gline(BNETWORK, .Lr)]
consunme ;
# Build Indexes on Network Representation
#
# B—Tree indexes for licences in dataScar, and dataMtrip, and for molds in

# dataMcar and dataMNtrip.

derive dataSNcar_Licence_btree = dataSNcar createbtree[Licence];
derive dataMcar_Licence_-btree = dataMcar createbtree[Licence];
derive dataMcar_-Moid_btree = dataMcar createbtree [Moid];

derive dataMNtrip_-Moid_btree = dataMNtrip createbtree [Moid];

# Temporal Network Position Indexes (TNPI) and Network Position Indexes (NPI)
# for dataMNtrip and dataSNcar

derive dataSNcar_-BoxNet_timespace =
dataSNcar feed
extend [TID: tupleid(.)]
proj ectextendstream[TID; UTrip: units (.Trip)]
extend [Box: unitbox (.UTrip)]
sortby [Box asc]
bul kl oadrtree [Box];

derive dataMNtrip-BoxNet_timespace =
dataMNtrip feed
extend [TID: tupleid(.)]
projectextendstreamTID; UTrip: units (. Trip)]
extend [Box: unitbox (.UTrip)]
sortby [Box asc]
bul kl oadrtree [Box];

derive dataSNcar_TrajBoxNet =
dataSNcar feed
extend [TID: tupleid(.)]
projectextendstreamTID; Box: routeintervals(trajectory (.Trip))]
sortby [Box asc]
bul kl oadrtree [Box];

derive dataMNtrip-TrajBoxNet =
dataMNtrip feed
extend [TID: tupleid(.)]
proj ectextendstreamTID; Box: routeintervals(trajectory (.Trip))]
sortby [Box asc]
bul kl oadrtree [Box];
# Spatio—Temporal Index for dataMNtrip
derive dataMNtrip_SpatioTemp =
dataMNtrip feed
extend [TID: tupleid(.)]
projectextend [TID; Box: mgpbbox (. Trip )]
sortby [Box asc]
bul kl oadrtree [Box];
# Often used Query Object Relations
let QueryLicencesl = QueryLicences feed head[10] consune;
let QueryLicences2 = QueryLicences feed head[20] filter [.Id > 10] consume;
let QueryPeriodsl = QueryPeriods feed head[10] consune;
let QuerylInstantl = QueryInstants feed head[10] consume;
let QueryRegionslNet = QueryRegionsNet feed head[10] consume;

# Creation Finished Close Database

close database;

5.2.1.2 JNetwork

The script in the file JNetwork CreateBMODObjects.SEC translates the data set of the BerlinMOD Benchmark
into the data types of the second network implementation.

# This file performs translates the spatial and spatio—temporal data objects
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of the BerlinMOD benchmark in the Secondo DBMS into their network data
model representation and builds the according indexes.

#
#
#
# It is assumed that there is a database berlinmod with the data objects
# created by the BerlinMOD_DataGenerator.SEC script .

#

#

Open Database Berlinmod
open database berlinmod;

# Build a JNetwork From Streets Data
#

# collect roads data

let RoadsTmp =
streets feed
proj ectextend [GeoData; VMax: ifthenelse (.Vmax > 0.0, .Vmax, 0.01)]
proj ectextendstreamVMax; RoadCurve: .GeoData polylines |[FALSE]]
proj ectextend [VMax; RoadC: fromline (.RoadCurve)]
proj ectextend [VMax; Lenth: size(.RoadC), RoadCurve: .RoadC]
sortby [Lenth desc, VMax asc, RoadCurve asc]
addcounter [Rid, 1]
project [Rid, RoadCurve, VMax, Lenth]
consune ;

# Compute jnetwork junctions based on roads data

let RoadEndPoints =
RoadsTmp feed
proj ectextend [Rid, RoadCurve; StartPoint: getstartpoint (.RoadCurve),
EndPoint: getendpoint (.RoadCurve)]
consume ;

let RoadCrossings =
RoadsTmp feed
project [Rid, RoadCurve] {rl}
RoadsTmp feed
project [Rid, RoadCurve] {r2}
itSpatialJoin[RoadCurve_rl, RoadCurve_r2, 4,8]
filter [.Rid_-rl < .Rid-r2]
filter [.RoadCurve_rl intersects .RoadCurve_r2]
proj ectextendstream Rid-r1, Rid_-r2, RoadCurve.rl,
RoadCurve_r2; CROSSING: conmponents (crossings (.RoadCurve_rl,
.RoadCurve_r2))]
projectextend [; Rlid: .Rid-rl,
R1Pos: atpoint (.RoadCurve_rl, .CROSSING),
R2id: .Rid_r2,
R2Pos: atpoint (.RoadCurve_r2, .CROSSING),
SpatialPos: .CROSSING]
consune ;

let JunctionsTmp =
( ( RoadEndPoints feed
projectextend [; Pos: .StartPoint])
( RoadEndPoints feed
projectextend [; Pos: .EndPoint])
concat )
( RoadCrossings feed
projectextend [; Pos: .SpatialPos])
concat
sort by [Pos]
rdup
addcounter [Jid, 1]
project [Jid, Pos]
consune ;

# connect roads with the junctions on the road

let RoadsTmp2 =
RoadsTmp feed
JunctionsTmp feed
it Spatial Join[RoadCurve, Pos, 4,8]
filter [.Pos inside .RoadCurve]
proj ectextend [Rid, VMax, Lenth, RoadCurve,
Jid; SpatialPos: .Pos,
RoadPos: atpoint (.RoadCurve,.Pos)]
consunme ;

let RoadsTmp3 =
RoadsTmp2 feed
filter [iscycle(.RoadCurve)]
filter [.RoadPos = 0.0]
proj ectextend [Rid, VMax, Lenth, RoadCurve, Jid,
SpatialPos; RoadPos: size(.RoadCurve)]
consunme ;

let RoadsTmp4 =
RoadsTmp2 feed
filter [iscycle(.RoadCurve)]
filter [.RoadPos = size(.RoadCurve)]
proj ectextend [Rid, VMax, Lenth, RoadCurve, Jid, SpatialPos; RoadPos:

0.0]
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consunme ;

let RoadsTmpb =
( ( RoadsTmp3 feed)
( RoadsTmp4 feed)
concat )
( RoadsTmp2 feed)
concat
sortby [Rid, RoadPos, Jid, SpatialPos, VMax, Lenth, RoadCurve]
rdup
consune ;

let RoadJuncList =
RoadsTmp5 feed
project [Rid, Jid]
sortby [Rid, Jid]
rdup
groupby [Rid; JuncList: group feed projecttransformstream/Jid] createlist ]
consunme ;

let JuncRLocList =
RoadsTmpb feed
projectextend [Jid; RLoc: createrloc (.Rid,
.RoadPos,
[const jdirection value(Both)])]
sortby [Jid, RLoc]
rdup
groupby [Jid; RLocList: group feed projecttransformstream RLoc]| createlist ]
consume ;

# compute sections

let SectTmp =
RoadsTmp5 feed
project [Rid, RoadCurve, SpatialPos]
sortby [Rid, RoadCurve, SpatialPos]
groupby [Rid, RoadCurve; SplitPoints: group feed
projecttransformstream/ SpatialPos]
col | ect _poi nts [TRUE |]
proj ectextendstream[Rid; SectCurve: splitslineatpoints(.RoadCurve,
.SplitPoints)]
extend[StartPoint: getstartpoint (.SectCurve),
EndPoint: getendpoint (.SectCurve),
Lenth: size(.SectCurve),
JDir: [const jdirection value (Both)]]
JunctionsTmp feed {jl1}
itSpatialJoin[StartPoint,Pos_jl,4,8]
filter [. StartPoint = .Pos_j1]
proj ectextend [Rid, SectCurve, EndPoint, Lenth, JDir; StartJid: .Jid-j1]
JunctionsTmp feed {j2}
i tSpatialJoin[EndPoint,Pos_j2 ,4,8]
filter [. EndPoint = .Pos_j2]
proj ectextend [Rid, SectCurve, Lenth, JDir, StartJid; EndJid: .Jid-j2]
RoadsTmp5 feed {rl}
hashjoin[Rid, Rid_rl]
filter [.Rid = .Rid_rl]
filter [.StartJid = .Jid.r1]
proj ectextend [Rid, SectCurve, Lenth, JDir, StartJid,
EndJid; VMax: .VMax.rl,
StartPos: .RoadPos_rl]
RoadsTmp5 feed {r2}
hashjoin[Rid, Rid-r2]
filter [.Rid = .Rid_r2]
filter [.EndJid = .Jid_r2]
projectextend [Rid, SectCurve, Lenth, JDir, StartJid, EndJid, VMax,
StartPos; EndPos: .RoadPos_r2]
sortby [Rid, StartJid, EndJid, Lenth, VMax, JDir, SectCurve, StartPos, EndPos]
filter [. StartPos < .EndPos]

rdup

addcounter [Sid ,1]
consunme ;
# compute section lists

let RoadSectList =
SectTmp feed
project [Rid, Sid]
sortby [Rid, Sid]
groupby [Rid; ListSect: group feed projecttransformstream/Sid] createlist ]
consume ;

let SectRoutelntervals =
SectTmp feed
projectextend [Sid; RInt: createrint (.Rid, .StartPos, .EndPos, .JDir)]
sortby [Sid, RInt]
groupby [Sid; ListRInt: group feed projecttransformstream RInt] createlist]
consunme ;

let JuncInAndOutList =
( SectTmp feed
projectextend [Sid; Jid: .StartJid])
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( SectTmp feed
projectextend [Sid; Jid: .EndJid])
concat
sortby [Jid, Sid]
rdup
groupby [Jid; ListInOutSect: group feed projecttransformstream/Sid] createlist |
consune ;

# create input relations for jnetwork creation

let InJunc =
JunctionsTmp feed
JuncRLocList feed {rl1}
hashjoin[Jid, Jid_rl]
filter [.Jid = .Jid.r1]
projectextend [Jid, Pos; ListRLoc: .RLocList-rl]
JuncInAndOutList feed {sl}
hashjoin[Jid, Jid_sl]
filter [.Jid = .Jid_sl
projectextend[Jid, Pos, ListRLoc; ListInSect: .ListInOutSect_sl,
ListOutSect: .ListInOutSect_sl]
sortby [Jid, Pos, ListRLoc, ListInSect, ListOutSect]
rdup
consunme ;

let InSect =
SectTmp feed
SectRoutelntervals feed {ri}
hashjoin[Sid, Sid-ri
filter [.Sid = .Sid_ri]
proj ectextend [Sid, SectCurve, StartJid, EndJid, JDir, VMax,
Lenth; ListRint: .ListRInt_ri]
InJunc feed {j1}
hashjoin[StartJid , Jid_j1]
filter [.StartJid = .Jid_j1]
projectextend [Sid, SectCurve, StartJid, EndJid, JDir, VMax, Lenth,
ListRint; ListAdjSectDown: .ListOutSect-jl,
ListRevAdjSectUp: .ListInSect_j1]
InJunc feed {j2}
hashj oi n [EndJid, Jid-j2]
filter [.EndJid = .Jid_j2]
proj ectextend [Sid, SectCurve, StartJid, EndJid, JDir, VMax, Lenth,
ListRint, ListAdjSectDown ,
ListRevAdjSectUp; ListAdjSectUp: .ListOutSect_j2,
ListRevAdjSectDown: .ListInSect_-j2]
project [Sid, SectCurve, StartJid, EndJid, JDir, VMax, Lenth, ListRint,
ListAdjSectUp, ListAdjSectDown, ListRevAdjSectUp, ListRevAdjSectDown]
sortby [Sid, StartJid, EndJid, SectCurve, JDir, VMax, Lenth, ListRint,
ListAdjSectUp, ListAdjSectDown, ListRevAdjSectUp , ListRevAdjSectDown]
rdup
consume ;

let InRoad =
RoadsTmp feed
RoadJuncList feed {j1}
hashj oi n[Rid, Rid-j1]
filter [.Rid = .Rid_j1]
proj ectextend [Rid, Lenth; ListJunc: .JuncList_j1]
RoadSectList feed {sl}
hashjoin[Rid, Rid_sl]
proj ectextend [Rid, ListJunc, Lenth; ListSect: .ListSect-sl]
project [Rid, ListJunc, ListSect, Lenth]
sortby [Rid, ListJunc, ListSect, Lenth]
rdup
consune ;

# create jnetwork

query createjnet (?JBNet”
1.0,
InJunc,
InSect ,
InRoad);

# Translate QueryPoint Set into JNewtork Representation

let QueryPointsJNet =
QueryPoints feed
projectextend [Id; Pos: tonetwork (JBNet, .Pos)]
consume ;

let QueryPointsJNetAll =
QueryPointsJNet feed
proj ectextendstream[Id; NPos: altrlocs (.Pos)]
projectextend [Id; Pos: .NPos]
consune ;

let QueryPointslJNet =
QueryPoints feed head[10]
projectextend [Id; Pos: tonetwork (JBNet, .Pos)]
consune ;
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let QueryPointslJNetAll =
QueryPoints1JNet feed
projectextendstream{Id; NPos: altrlocs (.Pos)]
projectextend [Id; Pos: .NPos]
consune ;

# Translate QueryRegions into JNetwork Representation

let routeslinej =
conponents (sections (JBNet) feed
projectextend [; Curve: toline(.Curve)]
aggregateB[Curve; fun(Ll: line, L2: line)
uni on_.new(L1, L2); [const line value ()]])
transformstream
extend [NoSeg: no_segments (.Elem)]
sortby [NoSeg desc]
extract [Elem];

let QRlinesj =
QueryRegions feed
projectextend [Id; Lr: intersection_new(.Region, routeslinej)]
consune ;

let QueryRegionsJNet =

QRlinesj feed

projectextend [Id; Region: tonetwork (JBNet, .Lr)]
consune ;

# Translate Trips into JNetwork Representation

let dataSJcar =
dataScar feed
proj ectextend [Licence, Model, Type; Trip: tonetwork (JBNet, .Trip)]
consume ;

let dataMJtrip =
dataMtrip feed
proj ectextend [Moid; Trip: tonetwork (JBNet, .Trip)]
consunme ;

# Build Indexes on JNetwork representation

#

# B—Tree indexes for licences in dataScar, and dataMtrip, and for moids in
# dataMcar and dataMJtrip.

derive dataSJcar_Licence_btree = dataSJcar createbtree[Licence];
derive dataMcar_Licence_btree = dataMcar createbtree[Licence];
derive dataMcar_-Moid_btree = dataMcar createbtree [Moid];

derive dataMJtrip_Moid_btree = dataMJtrip createbtree [Moid];

# Temporal JNetwork Position Indexes (TNPI) and JNetwork Position Indexes (NPI)
# for dataMNtrip and dataSNcar

derive dataSJcar_BoxNet_timespace =
dataSJcar feed
extend [TID: tupleid(.)]
proj ectextendstream[TID; UTrip: units (.Trip)]
extend [Box: tenpnetbox (. UTrip)]
sort by [Box asc]
bul kl oadrtree [Box];

derive dataMJtrip-BoxNet_timespace =
dataMJtrip feed
extend [TID: tupleid(.)]
projectextendstream/TID; UTrip: units (.Trip)]
extend [Box: tenpnetbox (. UTrip)]
sortby [Box asc]
bul kl oadrtree [Box];

derive dataSJcar_BoxNet =
dataSJcar feed
extend [TID: tupleid(.)]
proj ectextendstream[TID; UTrip: units (.Trip)]
extend [Box: netbox (.UTrip)]
sortby [Box asc]
bul kl oadrtree [Box];

derive dataMJtrip_-BoxNet =
dataMJtrip feed
extend [TID: tupleid(.)]
proj ectextendstream[TID; UTrip: units (.Trip)]
extend [Box: netbox (.UTrip)]
sortby [Box asc]
bul kl oadrtree [Box];



CHAPTER 5. SCRIPTS USING NETWORK IMPLEMENTATIONS 45

derive dataSJcar-TrajBoxNet =
dataSJcar feed
extend [TID: tupleid(.)]
projectextendstreamTID; RInt: units(trajectory (.Trip))]
proj ectextend [TID; Box: netbox (.RInt)]
sort by [Box asc]
bul kl oadrtree [Box];

derive dataMJtrip_TrajBoxNet =
dataMJtrip feed
extend [TID: tupleid(.)]
projectextendstreamTID; RInt: units(trajectory (.Trip))]
projectextend [TID; Box: netbox (.RInt)]
sort by [Box asc]
bul kl oadrtree [Box];
# Spatio—Temporal Index for dataMJtrip
derive dataMJtrip_-SpatioTemp =
dataMJtrip feed
extend [TID: tupleid(.)]
proj ectextend [TID; Box: bbox (. Trip)]
sortby [Box asc]
bul kl oadrtree [Box];
# Often used Query Object Relations
let QueryLicencesl = QueryLicences feed head[10] consune;
let QueryLicences2 = QueryLicences feed head[20] filter [.Id > 10] consume;
let QueryPeriodsl = QueryPeriods feed head[10] consune;
let QuerylInstantl = QueryInstants feed head[10] consume;
let QueryRegionslJNet = QueryRegionsJNet feed head[10] consume;

# Finished Close Database

close database;

5.2.2 Executable Query Sets

We provide for both network implementations executable SECONDO scripts with the 17 queries for the object
and the trip based approach of the BerlinMOD Benchmark.

5.2.2.1 Network

The script in the file Network_OBA-Queries.SEC executes the 17 queries of the object based approach of the
BerlinMOD Benchmark using the first network implementation.

Network queries for the object based approach of the BerlinMOD Benchmark.

The script assumes that there is a database berlinmod with a network data
model representation of the BerlinMOD Benchmark data.

This database can be generated by the script ’BerlinMOD_DataGenerator.SEC’.
The network data model representation and accroding indexes can be generated
with the script 'Network_-CreateObjects.SEC’

RER o R R R

Start Script Opening the Database
open database berlinmod;

# Query 1: What are the models of the vehicles with license plate numbers from
QueryLicence?

let OBANres001 =
QueryLicences feed {1}
loopjoin [dataSNcar_Licence_btree dataSNcar exactmatch [.Licence_1]]
project [Licence, Model]
consunme ;

# Query 2: How many vehicles exist that are passenger cars?

let OBANres002 =
dataSNcar feed
filter [.Type = ”passenger”]
count ;

# Query 3: Where have the vehicles with licenses from QueryLicencel been at
# each instant from Querylnstantl?
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let OBANres003 =
QueryLicencesl feed {1}
loopjoin [dataSNcar_Licence_btree dataSNcar exactmatch [.Licence_1]]
project [Licence, Trip]
QuerylInstantl feed {i}
product
proj ectextend [Licence, Instant_i; Pos: val (.Trip atinstant .Instant_-i)]
consune ;

# Query 4: Which license plate numbers belong to vehicles that have passed the
# points from QueryPoints?

let OBANres004 =
QueryPointsNet feed
projectextend [Id, Pos; Prect: gpoint2rect (.Pos)]
| oopj oi n[dataSNcar_TrajBoxNet wi ndowi ntersectsS[. Prect]
sort rdup dataSNcar gettuples]
filter [.Trip passes .Pos]
project [Id, Licence]
sortby [Id asc, Licence asc]
krdup [Id, Licence]
consunme ;

# Query 5: What is the minimum distance between places, where a vehicle with a
# license from QueryLicencesl and a vehicle with licenses from
# QueryLicence2 have been?

let OBANres005tmpl =
QueryLicencesl feed {11}
| oopsel [dataSNcar_Licence_btree dataSNcar exactmatch [.Licence_11]
projectextend [Licence; TrajLine: gline2line(trajectory(.Trip))]]
consune ;

let OBANres005tmp2 =
QueryLicences2 feed {12}
| oopsel [dataSNcar_Licence_btree dataSNcar exactmatch [.Licence_12]
projectextend [Licence; TrajLine: gline2line(trajectory (.Trip))]]
consune ;

let OBANres005 =
OBANres005tmpl feed {cl}
OBANres005tmp2 feed {c2}
product
projectextend [Licence-cl,
Licence-c2; Distance: round(distance (. TrajLine_c1,
.TrajLine_c2),3)]
sortby [Licence_cl, Licence_c2]
consune ;

# delete temporary objects

delete OBANres005tmpl;
delete OBANres005tmp2;

# Query 6: What are the pairs of license plate numbers of ”trucks”, that have
# been as close as 10m or less to each other?

let OBANres006tmpl =
dataSNcar feed

filter [.Type = ”truck”]

projectextend [Licence; Ptrip: mgpoint2mpoint (. Trip), BBox: nmgpbbox (. Trip)]

projectextend [Licence, Ptrip; Box: rectangle3(m nD(.BBox,1) — 5.0
maxD(.BBox,1) + 5.0
m nD(.BBox,2) — 5.0,
maxD(.BBox,2) + 5.0
m nD(.BBox,3) ,
maxD(.BBox,3))]

)
)
5

consume ;

let OBANres006 =
OBANres006tmpl feed {a}
OBANres006tmpl feed {b}
symmoin [(.Box.a intersects ..Box.b) and
(.Licence_a < ..Licence_b) and
(ever Nearer Than(.Ptrip-a, ..Ptrip-b, 10.0))]
project [Licence.a, Licence.b]
sortby [Licence.a asc, Licence.b asc]
krdup [Licence.a, Licence_b]
consunme ;

# delete temporary object

delete OBANres006tmpl;

# Query 7: What are the license plate numbers of the ”passenger” cars that

# have reached points from QueryPoints first of all ”passenger” cars

# during the complete observation period?

let OBANres007tmpl =
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QueryPointsNet feed
projectextend [Id, Pos; Prect: gpoint2rect (.Pos)]
| oopsel [fun(t:TUPLE) dataSNcar_-TrajBoxNet wi ndowi ntersectsS[attr (t,Prect)]
sort rdup dataSNcar gettuples
filter [.Type = ”"passenger”]
projectextend [Licence; Id: attr (t,Id) ,
Instant: inst (initial (.Trip at attr (t,Pos)))]]
filter [not (isempty (.Instant))]
sortby [Id asc, Instant asc]
consume ;

let OBANres007 =
OBANres007tmpl feed
groupby [Id; FirstTime: group feed min[Instant]]{b}
OBANres007tmpl feed {a}
symmoin [..Id.a = .Id_b]
filter [.Instant_-a <= .FirstTime-b]
project [Id-a, Licence-a]
sortby[Id-a, Licence-a]
consune ;

# delete temporary object
delete OBANres007tmpl;

# Query 8: What are the overall traveled distances of the vehicles with
# license plate numbers from QueryLicencesl during the periods from

# QueryPeriods1?

let OBANres008 =
QueryLicencesl feed {1}
| oopsel [dataSNcar_Licence_btree dataSNcar exactmatch [.Licence_l]]
QueryPeriodsl feed
filter [not (isempty (.Period))] {p}
product
proj ectextend [Licence,
Period_p; Distance: round(length(.Trip atperiods .Period_-p),3)]
sortby [Licence, Period_p]
consunme ;

# Query 9: What is the longest distance that was traveled by a vehicle during
# each of the periods from QueryPeriods?

let OBANres009 =
dataSNcar feed {c}
QueryPeriods feed
filter [not (i sempty (.Period))]{p}
product
projectextend [Id-p, Period-p,
Licence_c; Dist: round(length(.Trip_-c atperiods .Period-p),3)]
sortby [Id-p asc, Period_.p asc, Dist desc]
groupby [Id_.p, Period_-p; Distance: group feed max[Dist]]
project [Id_.p, Period_-p, Distance]
project [Period-p, Distance]
consume ;

# Query 10: When and where did the vehicles with license plate numbers from
# QueryLicencesl meet other vehicles (distance < 3m) and what are
# the latter licenses?

let OBANres010 =
dataSNcar feed
projectextend [Licence; TripA: mgpoi nt2npoint (. Trip), BBox: mgpbbox (. Trip)]
proj ectextend [Licence, TripA;Box: rectangle2((m nD(.BBox,1) — 1.5),
(maxD(.BBox,1) + 1.5),
(m nD(.BBox,2) — 1.5),
(maxD(.BBox,2) + 1.5))]{cl}
QueryLicencesl feed
| oopsel [dataSNcar_-Licence_btree dataSNcar exactmatch [. Licencel]]
proj ectextend [Licence, Trip; BBox: mgpbbox (. Trip)]
proj ectextend [Licence, Trip; TripA: mgpoi nt2mpoint (. Trip),
Box: rectangle2 ((m nD(.BBox,1) —
(maxD(.BBox,1) +
(m nD(.BBox,2) —
(maxD(.BBox,2) +

e
ol ot ot ot
NONONONS)

NPV

{c2}
symnjoin[.Box_-cl intersects ..Box.c2]
filter [.Licence_cl # .Licence_c2|
filter [everNearerThan(.TripA_cl, .TripA_c2, 3.0)]
projectextend [Licence-cl,
Licence-c2; Pos: .Trip-c2 atperiods deftime((distance(.TripA_cl, .TripA_c2)
< 3.0) at TRUE)]
filter [not (isenpty (.Pos))]
project [Licence-c2, Licence.cl, Pos]
sortby [Licence-c2 asc, Licence_.cl asc]
consunme ;

# Query 11: Which vehicles passed a point from QueryPointsl at one of the
# instants from Querylnstantl?

let OBANres011 =

47
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QuerylInstantl feed {i}
QueryPoints1Net feed
projectextend [Id, Pos; Prect: gpoint2rect (.Pos)]{p}
product
projectextend [Id-p, Pos_.p, Instant_-i; Box: box3d(.Prect-p, .Instant_i)]
| oopsel [fun(t:TUPLE) dataSNcar_-BoxNet_timespace wi ndowi ntersectsS[attr (t,Box)]
sort rdup dataSNcar gettuples
filter [.Trip passes (attr(t,Pos_.p))]
projectextend [Licence; Id: attr (t,Id-p), Instant: attr (t,Instant_i)]]
sortby [Id, Licence, Instant]
consume ;

# Query 12: Which vehicles met at a point from QueryPointsl at an instant from
# Querylnstant1?

let OBANres012tmpl =
QuerylInstantl feed {i}
QueryPointslNet feed
projectextend [Id, Pos; Prect: gpoint2rect (.Pos)]{p}
product
| oopsel [fun(t:TUPLE)
dataSNcar_BoxNet_timespace wi ndowi ntersectsS[box3d(attr (t,Prect_p),
attr (t,Instant_i))]
sort rdup dataSNcar gettuples
filter [.Trip passes (attr (t,Pos_.p))]
projectextend [Licence; Id_p: attr (t,Id-p),
Pos_p: attr (t,Pos_p),
Instant_i: attr (t,Instant_i)]]
sortby [Id-p asc, Instant_i asc, Licence asc]
consune ;

let OBANres012 =
OBANres012tmpl feed {cl}
OBANres012tmpl feed {c2}
symmoin [(.Licence_-cl < ..Licence-c2) and
(.Id-p-cl = ..Id_p-c2) and
(.Instant-i—cl = ..Instant_i_c2)]
project [Id-p-cl, Pos_.p-cl, Instant_-i_cl, Licence-cl, Licence.c2]
sortby [Id-p-cl asc, Instant-i_cl asc, Licence.c2 asc]

consume ;
# delete temporary objects
delete OBANres012tmpl;

# Query 13: Which vehicles traveled within one of the regions from
# QueryRegionsl during the periods from QueryPeriodsl?

let OBANres013 =
dataSNcar feed {c}
QueryRegions1Net feed
filter [not (isempty (.Region))] {r}
symmjoin[. Trip_.c passes ..Region_r]
projectextend [Licence-c, Id-r, Region_r; Trip: .Trip_c at .Region._r]
QueryPeriodsl feed filter [not (isenpty (.Period))]{p}
symmjoin [.Trip present ..Period_p]
projectextend [Id-r, Period_-p; Licence: .Licence-c,
Trip: .Trip atperiods .Period-p]
filter [no_.components (. Trip) > 0]
project [Id.r, Period_-p, Licence]
sortby [Id_-r asc, Period-p asc, Licence asc]
consume ;

# Query 14: Which vehicles traveled within one of the regions from
QueryRegionsl at one of the instants from Querylnstantl?

let OBANres014 =
dataSNcar feed
QuerylInstantl feed
product
proj ectextend [Licence, Instant; PosX: val (.Trip atinstant .Instant)]
proj ectextendstream[Licence, Instant; Pos: polygpoints (.PosX,BNETWORK) ]
QueryRegions1lNet feed filter [not (isempty (.Region))]
symmjoin[.Pos inside ..Region]
project [Id, Instant, Licence]
sortby [Id asc, Instant asc, Licence asc]
krdup [Id, Instant, Licence]
consune ;

# Query 15: Which vehicles passed a point from QueryPointsl during a period
# from QueryPeriodsl?

let OBANres015 =

QueryPoints1Net feed
projectextend [Id, Pos; Prect: gpoint2rect (.Pos)] {p}

QueryPeriodsl feed
filter [not (isempty (.Period))] {t}

product
projectextend [Id_-p, Pos_-p, Period_t; Box: box3d(.Prect_-p, .Period-t)]
| oopsel [fun(t:TUPLE)

dataSNcar_BoxNet_timespace wi ndowi ntersectsS[attr (t, Box)]

48
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sort rdup dataSNcar gettuples
filter [(.Trip atperiods (attr (t,Period_-t))) passes (attr (t,Pos_p))]
projectextend [; Id: attr (t,Id-p),
Period: attr (t,Period_t),
Licence: .Licencel]]
sortby [Id asc, Period asc, Licence asc]
krdup [Id, Period, Licence]
consune ;

# Query 16: List the pairs of licenses for vehicles the first from

# QueryLicencesl, the second from QueryLicences2, where the

# corresponding vehicles are both present within a region from

# QueryRegionsl during a period from QueryPeriodl , but do not meet
# each other there and then.

let OBANres016 =
QueryLicencesl feed {1}
loopjoin [dataSNcar_Licence_btree dataSNcar exactmatch [.Licence_1]] {c}
QueryPeriodsl feed
filter [not (i sempty (.Period))]{p}
symmjoin [.Trip.c present ..Period_p]
projectextend [Id_.p, Period_-p; Licence: .Licence_c,
Trip: .Trip-c atperiods .Period-p]
filter [no_.components (.Trip) > 0]
QueryRegions1Net feed
filter [not (isempty (.Region))] {r}
symmjoin[. Trip passes ..Region_r]
projectextend [Licence, Id-r, Region_r, Id_p,
Period_-p; Trip: .Trip at .Region_r]
filter [no_components (.Trip) > 0]{a}
QueryLicences2 feed {1}
loopjoin [dataSNcar_-Licence_btree dataSNcar exactmatch [.Licence-1]] {c}
QueryPeriodsl feed
filter [not (i sempty (.Period))]{p}
symmjoin [.Trip.c present ..Period_p]
projectextend [Id_.p, Period-p; Licence: .Licence_c,
Trip: .Trip-c atperiods .Period-p]
filter [no_.components (.Trip) > 0]
QueryRegions1Net feed filter [not (isempty (.Region))] {r}
symmjoin[. Trip passes ..Region_r]
projectextend [Licence, Id-r, Region_r, Id_p,
Period_-p; Trip: .Trip at .Region_r]
filter [no_conmponents (.Trip) > 0]{b}
symmjoin[(.Id-r.a = ..Id_r_-b) and (.Id-p-a = ..Id-p-b)]
filter [.Licence_a # .Licence_b]
filter [not (. Trip_a intersects .Trip_b)]
project [Id-r-a, Period_-p-a, Licence_a, Licence.-b]
sortby [Id-r_-a, Period-p-a, Licence.a, Licence_b]
consume ;

# Query 17: Which points from QueryPoints have been visited by a maximum
number of different vehicles?

let OBANresO17tmpl =
dataSNcar feed {c}
QueryPointsNet feed {p}
symmjoin [.Trip_-c passes ..Pos_p]
project [Id_-p, Licence_c]
sortby [Id_-p, Licence_c]
krdup [Id_-p, Licence_c|
groupby [Id_p; Hits: group feed count ]
consume ;

let OBANres017 =
OBANres017tmpl feed

filter [.Hits = (OBANresO17tmpl feed max [Hits])]
project [Id-p, Hits]

consunme ;

#delete temporary object

delete OBANres017tmpl;

# Save runtime information

let QRT_NET_OBA = SEC2COMMANDS feed consume;

# To save runtime information on hard disk uncomment next line

# save QRTNET_OBA to ’'NetworkOBARunTimes.DAT’;
# Finish Script and Close Database

close database;

The script in the file Network TBA-Queries.SEC executes the 17 queries of the trip based approach of the
BerlinMOD Benchmark using the first network implementation.

# Network queries for the trip based approach of the BerlinMOD Benchmark.

#

# The script assumes that there is a database berlinmod with a network data
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model representation of the BerlinMOD Benchmark data.

This database can be generated by the script ’BerlinMOD_DataGenerator.SEC’.
The network data model representation and accroding indexes can be generated
with the script 'Network_-CreateObjects.SEC’

BRI S

Start Script Opening the Database
open database berlinmod;

# Query 1: What are the models of the vehicles with license plate numbers from
QueryLicence?

let TBANres001 =
QueryLicences feed {1}
loopjoin [dataMcar_Licence_btree dataMcar exactmatch [. Licence_1]]
project [Licence, Model]
consunme ;

# Query 2: How many vehicles exit that are passenger cars?

let TBANres002 =
dataMcar feed
filter [.Type = ”"passenger”]
count ;

# Query 3: Where have the vehicles with licenses from QueryLicencel been at
# each instant from QuerylInstantl?

let TBANres003 =
QueryLicencesl feed {1}
| oopsel [dataMcar_Licence_btree dataMcar exactmatch [. Licence_l1] {11}]
l oopjoin[dataMNtrip-Moid_btree dataMNtrip exactmatch [. Moid_-11]]
QuerylInstantl feed {i}
symmjoin [.Trip present ..Instant_i]
projectextend [Instant_i, Licence_ll; Pos: val (. Trip atinstant .Instant_i)]
sortby [Instant_i, Licence-11]
consunme ;

# Query 4: Which license plate numbers belong to vehicles that have passed the
# points from QueryPoints?

let TBANres004 =
QueryPointsNet feed
projectextend [Id, Pos; Elem: gpoint2rect (.Pos)]
I oopj oi n[dataMNtrip_TrajBoxNet wi ndowi ntersectsS[.Elem]
sort rdup dataMNtrip gettuples]
filter [. Trip passes .Pos]
project [Moid, Id]
I oopsel [fun(t:TUPLE) dataMcar_Moid_btree dataMcar exactmatch[attr (t, Moid)]
projectextend [Licence; Id: attr (t,Id)]]
sortby [Id asc, Licence asc]
krdup [Id, Licence]
consune ;

# Query 5: What is the minimum distance between places, where a vehicle with a
# license from QueryLicencesl and a vehicle with Licenses from

# QueryLicence2 have been?

let TBANres005 =
QueryLicencesl feed project [Licence] {LL1}
| oopsel [fun(t:TUPLE)
dataMcar_Licence_btree dataMcar exactmatch [attr (t,Licence.LL1)] {CAR}
| oopsel [dataMNtrip-Moid_-btree dataMNtrip exactmatch [. Moid-CAR]]
projectextend [; Traj: trajectory (. Trip)]
aggregateB[Traj; fun(Ll: gline, L2: gline) L1 union L2; [const gline value ()]]
feed namedtransformstream| Traxj]
extend[Licence: attr (t,Licence_LL1)
projectextend [Licence; Trax: gline2line (.Traxj)]{cl}
QueryLicences2 feed project [Licence] {LL2}
| oopsel [fun(s:TUPLE)
dataMcar_Licence_btree dataMcar exactmatch [attr (s, Licence.LL2)] {CAR}
| oopsel [dataMNtrip-Moid_-btree dataMNtrip exactmatch [. Moid-CAR]]
projectextend [; Traj: trajectory (.Trip)]
aggregateB[Traj; fun(L3: gline, L4: gline) L3 union L4; [const gline value ()]]
feed namedtransformstream[ Traxj]
extend|[Licence: attr (s,Licence-LL2)]]
projectextend [Licence; Trax: gline2line(.Traxj)]{c2}
product
projectextend [Licence-cl,
Licence_c2; Distance: round(distance (.Trax_cl, .Trax_c2),3)]
sortby [Licence_cl, Licence_c2]

consume ;
# Query 6: What are the pairs of license plate numbers of ”"trucks”, that have
# been as close as 10m or less to each other?

let TBANres006tmpl =
dataMcar feed
filter [.Type = ”truck”]
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project [Licence, Moid] {c}
| oopjoin[dataMNtrip-Moid_btree dataMNtrip exactmatch [. Moid_c]]
projectextend [;Licence: .Licence_.c, BBox: mgpbbox (. Trip), Ptrip
projectextend [Licence, Ptrip; Box: rectangle3((m nD(.BBox,1) — 5
(maxD(.BBox,1) + 5.
(m nD(.BBox,2) — 5
(maxD(.BBox,2) + 5
m nD(.BBox,3) ,
maxD(.BBox,3))]
consume ;

let TBANres006 =
TBANres006tmpl feed {cl}
TBANres006tmpl feed {c2}
symmjoin[(.Box.cl intersects ..Box-c2) and (.Licence-cl < ..Licence-c2)]
filter [everNearerThan(.Ptrip_-cl, .Ptrip.c2, 10.0)]
project [Licence-cl, Licence-c2]
sortby [Licence-cl asc, Licence.c2 asc]
krdup [Licence_cl, Licence-c2]
consune ;

# delete temporary objects

delete TBANres006tmpl ;

# Query 7: What are the license plate numbers of the ”passenger” cars that
# have reached points from QueryPoints first of all ”passenger” cars
# during the complete observation period?

let TBANresO07tmpl =
QueryPointsNet feed
projectextend [Id, Pos; Prect: gpoint2rect (.Pos)]
| oopsel [fun(t:TUPLE) dataMNtrip-TrajBoxNet wi ndowi ntersectsS[attr (t,Prect)]
sort rdup dataMNtrip gettuples
filter [. Trip passes (attr (t,Pos))]
| oopj oi n[dataMcar_-Moid_btree dataMcar exactmatch [.Moid]
filter [. Type = ”"passenger” |
project [Licence] {X}]
projectextend [Licence-X; TimeAtPos: inst (initial (.Trip at attr (t,Pos))),
Id: attr(t, Id)]]
sortby [Id asc, TimeAtPos asc]
consume ;

let TBANres007 =
TBANresO07tmpl feed
groupby [Id; FirstTime: group feed m n[TimeAtPos]]{b}
TBANres007tmpl feed {a}
symmoin[(..Id_.a = .Id-b)]
filter [. TimeAtPos.a <= .FirstTime_b]
project [Id_.a, Licence-X_a]
sortby [Id-a asc, Licence-X_a asc]
krdup [Id-a, Licence-X_a]
consune ;

# delete temporary object

delete TBANres007tmpl ;

# Query 8: What are the overall traveled distances of the vehicles with
# license plate numbers from QueryLicencesl during the periods from
# QueryPeriods1?

let TBANres008 =
QueryLicencesl feed {1}
l oopjoin[dataMcar_Licence_btree dataMcar exactmatch [. Licence_-1]]
project [Licence, Moid]
l oopsel [fun(t:TUPLE) dataMNtrip-Moid_btree dataMNtrip exactmatch [attr (t, Moid)]
projectextend [Trip; Licence: attr (t,Licence)]]
QueryPeriodsl feed
symmjoin [.Trip present ..Period]
projectextend [Licence, Period, Id; Distance: |length (. Trip atperiods .Period)]
sortby [Id asc, Licence asc, Distance desc]
groupby [Id, Period, Licence; Dist: round(group feed sum[Distance] ,3)]
project [Licence, Period, Dist]
sortby [Licence, Period, Dist]
consume ;

# Query 9: What is the longest distance that was traveled by a vehicle during
each of the periods from QueryPeriods?

let TBANres009 =

dataMNtrip feed {c}

QueryPeriods feed
filter [not (i sempty (.Period))]{p}

symmjoin[. Trip_c present ..Period_p]
projectextend [Moid_c, Period-p,

Id_p; Distance: length(.Trip.c atperiods .Period-p)]

sortby [Id-p asc, Period_-p asc, Moid_-c asc, Distance desc]
groupby [Id_-p, Period-p, Moid_c; Dist: group feed sum[Distance]]
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groupby [Id_p, Period_p; Dista: round(group feed max|[Dist] ,3)]
filter [.Dista > 0.0]

project [Period_-p, Dista]

sortby [Period_p, Dista]

consunme ;
# Query 10: When and where did the vehicles with license plate numbers from
# QueryLicencesl meet other vehicles (distance < 3m) and what are
# the latter licenses?

let TBANres01l0 =
QueryLicencesl feed
project [Licence] {V1}
| oopsel [fun(t:TUPLE)
dataMcar_Licence_btree dataMcar exactmatch[attr (t,Licence-V1)]
proj ect [Moid]
l oopjoin[dataMNtrip-Moid-btree dataMNtrip exactmatch [. Moid] renove [Moid]]
extend [T3bbx: mgpbbox (. Trip_-V3)]
extend [PtripA: mgpoint 2mpoi nt (. Trip-V3)]
I oopj oi n[fun(u: TUPLE)
dataMNtrip_-SpatioTemp
wi ndowi nt ersectsS[rectangle3(m nD(attr (u,T3bbx),1)
maxD(attr (u,T3bbx) ,1)
m nD(attr (u,T3bbx) ,2)
maxD(attr (u,T3bbx) ,2)
m nD(attr (u,T3bbx),3),
maxD(attr (u,T3bbx) ,3))]
sort rdup dataMNtrip gettuples
filter [.Moid # attr(u, Moid-V3)]
proj ectextend [Moid; PtripB: mgpoi nt 2mpoi nt (. Trip)]
filter [ever Nearer Than(attr (u, PtripA), .PtripB, 3.0)]
proj ectextend [Moid; Times: deftime((distance(attr (u, PtripA),
.PtripB)
< 3.0) at TRUE)]

+ o+

[eNeNeNo]

filter [not (isempty (.Times))]
| oopjoin[dataMcar_-Moid_-btree dataMcar exactmatch [. Moid]
project [Licence]]]
projectextend [; QueryLicence: attr (t, Licence-V1),
OtherLicence: .Licence,
Pos: .Trip-V3 atperiods .Times]
filter [not (isempty (.Pos))]]
sortby [QueryLicence asc, OtherLicence asc]
groupby [QueryLicence,
OtherLicence; AllPos: group feed
aggregat eB[Pos; fun(Ml:mgpoint , M2:ngpoint)
M1 union M2; [const mgpoint value ()]]]
project [QueryLicence, OtherLicence, AllPos]
sortby [QueryLicence, OtherLicence, AllPos]
consune ;

# Query 11: Which vehicles passed a point from QueryPointsl at one of the
# instants from Querylnstantl?

let TBANresO0ll =
QuerylInstantl feed {i}
QueryPoints1Net feed
projectextend [Id, Pos; Prect: gpoint2rect (.Pos)]{p}
product
| oopsel [fun(t:TUPLE)
dataMNtrip-BoxNet_timespace wi ndowi ntersectsS[box3d(attr (t,Prect_-p),
attr (t,Instant_i))]
sort rdup dataMNtrip gettuples
filter [. Trip passes (attr (t,Pos_p))]
projectextend [Moid; Id: attr (t,Id-p),
Instant: attr (t,Instant_i)]]{a}
| oopj oi n[dataMcar-Moid_btree dataMcar exactmatch [. Moid-a]]
project [Id-a, Instant_a, Licence]
sortby [Id-a asc, Instant_-a asc, Licence asc]
krdup [Id-a, Instant_a, Licence]
consune ;

# Query 12: Which vehicles met at a point from QueryPointsl at an instant from
# Querylnstant1?

let TBANresO12tmpl =
QueryPointslNet feed
projectextend [Id, Pos; Prect: gpoint2rect (.Pos)]{p}
QuerylInstantl feed {i}
product
projectextend [Id_-p, Pos_.p, Instant_-i; Box: box3d(.Prect-p, .Instant_i)]
| oopsel [fun(t:TUPLE) dataMNtrip_-BoxNet_timespace wi ndowi ntersectsS[attr (t,Box)]
sort rdup dataMNtrip gettuples
filter [. Trip passes (attr (t,Pos_p))]
projectextend [Moid; Id: attr (t,Id-p),
Instant: attr (t,Instant_i)]]{a}
| oopj oi n[dataMcar_-Moid_btree dataMcar exactmatch [. Moid-a]]
proj ectextend [Moid, Licence; Id: .Id-.a, Instant: .Instant_a]
consune ;

let TBANres012 =
TBANresO12tmpl feed {A}

{v3}
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TBANres012tmpl feed {B}
symmjoin [(.Id_.A = ..Id_-B) and
(.Instant-A = ..Instant_B) and
(.Moid_A < ..Moid.B)]
project [Id-A, Instant-A , Licence-A, Licence.-B]
sortby [Id-A asc, Instant-A asc, Licence.B asc]
consune ;

# delete temporary object
delete TBANres0l2tmpl ;

# Query 13: Which vehicles traveled within one of the regions from
# QueryRegionsl during the periods from QueryPeriodsl?

let TBANres013 =
dataMNtrip feed {c}
QueryRegionslNet feed
filter [not (isempty (.Region))] {r}
symmjoin[. Trip_.c passes ..Region_r]
proj ectextend [Moid-c, Id-r; Trip: .Trip-c at .Region_.r]
QueryPeriodsl feed filter [not (isenpty (.Period))]{p}
symmjoin [.Trip present ..Period_p]
l oopjoin [dataMcar-Moid-btree dataMcar exactmatch [. Moid_c]]
project [Licence, Id_r, Period_-p]
sortby [ Licence asc, Id.r asc, Period_-p asc]
krdup [ Licence, Id.r, Period_p]
consunme ;

# Query 14: Which vehicles traveled within one of the regions from
# QueryRegionsl at one of the instants from Querylnstantl?

let TBANres014 =
QueryRegions1lNet feed
filter [not (i sempty (.Region))]
projectextendstream[Id, Region; Brect: routeinterval s(.Region)]{r}
QuerylInstantl feed {i}
product
projectextend [Id_r , Region.r, Instant_i; Box: box3d(.Brect_r, .Instant_i)]
| oopsel [fun(t:TUPLE) dataMNtrip_-BoxNet_timespace wi ndowi ntersectsS[attr (t,Box)]
sort rdup dataMNtrip gettuples
filter [(val (. Trip atinstant (attr (t,Instant_i)))) inside (attr (t,Region_r))]
projectextend [Moid;Instant: attr (t,Instant-i), Id: attr (t,Id-r)]]{a}
| oopjoin[dataMcar-Moid_-btree dataMcar exactmatch [.Moid.a]]
projectextend [Licence; Id: .Id-a, Instant: .Instant_-a]
sortby [Id asc, Instant asc, Licence asc|
krdup [Id, Instant, Licence]
consunme ;

# Query 15: Which vehicles passed a point from QueryPointsl during a period
from QueryPeriodsl?

let TBANres01l5 =
QueryPoints1Net feed
projectextend [Id, Pos; Prect: gpoint2rect (.Pos)] {p}
QueryPeriodsl feed
filter [not (i sempty (.Period))]{t}
product
| oopsel [fun(t:TUPLE)
dataMNtrip-BoxNet_timespace wi ndowi ntersectsS[box3d(attr (t,Prect_-p),
attr (t,Period_t))]
sort rdup dataMNtrip gettuples
filter [(.Trip atperiods (attr (t,Period_-t))) passes (attr (t,Pos_p))]
proj ectextend [Moid;Period: attr (t,Period_-t), Id: attr (t,Id-p)]]{a}
| oopjoin[dataMcar_-Moid_btree dataMcar exactmatch [.Moid-a]]
projectextend[Licence; Id: .Id-a, Period: .Period-a]
sortby [Id asc, Period asc, Licence asc]
krdup [Id, Period, Licence]
project [Licence, Id, Period]
consune ;

# Query 16: List the pairs of licenses for vehicles the first from

# QueryLicencesl, the second from QueryLicences2, where the

# corresponding vehicles are both present within a Region from

# QueryRegionsl during a period from QueryPeriodl , but do not meet
# each other there and then.

let TBANres016 =
QueryLicencesl feed {1}
loopjoin [dataMcar_Licence_btree dataMcar exactmatch [. Licence_-1]] {a}
l oopjoin[dataMNtrip-Moid_btree dataMNtrip exactmatch [. Moid_a]]
QueryPeriodsl feed
filter [not (isempty (.Period))]{p}
symmjoin [.Trip present ..Period_p]
projectextend [Id_.p, Period_-p; Licence: .Licence-a,
Trip: .Trip atperiods .Period-p]
filter [no_.components (. Trip)>0]
QueryRegions1Net feed filter [not (i sempty (.Region))]{r}
symmjoin [.Trip passes ..Region.r]
projectextend [Licence, Id.p, Period-p, Id-r; Trip: .Trip at .Region_r]
filter [no_conmponents (.Trip) > 0]{a}
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QueryLicences2 feed {1}
loopjoin [dataMcar_Licence_btree dataMcar exactmatch [. Licence_1]]{a}
| oopjoin[dataMNtrip-Moid_-btree dataMNtrip exactmatch [. Moid_a]]
QueryPeriodsl feed
filter [not (i sempty (.Period))]{p}
symmjoin [.Trip present ..Period_p]
projectextend [Id_.p, Period_-p; Licence: .Licence_a,
Trip: .Trip atperiods .Period-p]
filter [no_.components (. Trip)>0]
QueryRegions1Net feed filter [not (isempty (.Region))]{r}
symmjoin [.Trip passes ..Region.r]
projectextend [Licence, Id.p, Id_r; Trip: .Trip at .Region_r]
filter [no_components (. Trip) > 0]{b}
symmjoin[(.Id-r.a = ..Id_r_-b) and (.Id-p-a = ..Id-p-b)]
filter [. Licence_a # .Licence_b]
filter [not (.Trip-a intersects .Trip_b)]
project [Id-r-a, Id-p-a, Licence_a, Licence.b]
sortby [Id-r_-a asc, Id_p-a asc, Licence.a asc, Licence_b asc]
krdup [Id-r_a, Id-p-a, Licence_a, Licence_-b]
consunme ;

# Query 17: Which points from QueryPoints have been visited by a maximum
number of different vehicles?

let TBANresO17tmpl =
QueryPointsNet feed
projectextend [Id, Pos; Elem: gpoint2rect (.Pos)]
| oopsel [fun(t:TUPLE) dataMNtrip-TrajBoxNet wi ndowi ntersectsS[attr (t,Elem)]
sort rdup dataMNtrip gettuples
filter [.Trip passes (attr (t,Pos))]
projectextend [Moid; Id-p: attr (t,Id)]]
sortby [Id-p asc, Moid asc]
krdup [Id-p, Moid]
groupby [Id_-p; Hits: group feed count |
consume ;

let TBANres017 =
TBANres017tmpl feed
filter [.Hits = (TBANres017tmpl feed max [Hits])]
project [Id-p, Hits]
consune ;

# delete temporary object

delete TBANres017tmpl ;

# Save query runtimes

let QRTNET_TBA = SEC2COMMANDS feed consume;

# Uncomment the next line if you want to save run time information on disk

# save QRTNET.TBA to ’NetworkTBARunTimes .DAT’;
# Finish Script and Close Database

close database;

5.2.2.2 JNetwork

The script in the file JNetwork_0BA-Queries.SEC executes the 17 queries of the object based approach of the
BerlinMOD Benchmark using the second network implementation.

# This file performs the OBA-Queries of the BerlinMOD benchmark on the
# JNetwork Representation Secondo DBMS. Created by ’BerlinMOD_DataGenerator.SEC’
# and ’'JNetwork_-CreateBMODODbjects.SEC’

open database berlinmod;

# Query 1: What are the models of the vehicles with license plate numbers from
# QueryLicence?

let OBAJNres001 =
QueryLicences feed {1}
loopjoin[ dataSJcar_Licence_btree dataSJcar exactmatch [. Licence_l]]
project [Licence, Model]
consunme ;

# Query 2: How many vehicles exist that are passenger cars?

let OBAJNres002 =
dataSJcar feed
filter [.Type = ”"passenger”]
count ;

# Query 3: Where have the vehicles with licenses from QueryLicencel been at
# each instant from QuerylInstantl?
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let OBAJNres003 =
QueryLicencesl feed {1}
I oopjoin[dataSJcar_Licence_btree dataSJcar exactmatch [. Licence_l1]]

QuerylInstants feed {i} head[10]

product
projectextend [; Licence: .Licence.l,
Instant: .Instant_i,
Pos: val (. Trip atinstant .Instant_i)]
consume ;
# Query 4: Which license plate numbers belong to vehicles that have passed the
# points from QueryPoints?

let OBAJNres004 =
QueryPointsJNetAll feed
extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect, 1),
mnD(.Prect,2) — 0.00001,
maxD(.Prect,2) + 0.00001)]
I oopjoin[dataSJcar_-TrajBoxNet wi ndowi ntersectsS[.NBox]
sort rdup dataSJcar gettuples]
filter [.Trip passes .Pos]
project [Id, Licence]
sortby [Id asc, Licence asc]
krdup [Id, Licence]

consume ;

# Query 5: What is the minimum distance between places, where a vehicle with a
# license from QueryLicencesl and a vehicle with licenses from

# QueryLicence2 have been?

let OBAJNres005tmpl =

QueryLicencesl feed
| oopsel [dataSJcar_Licence_btree dataSJcar exactmatch [. Licence]]

projectextend [Licence; Traj: fromnetwork (trajectory (.Trip))]
consune ;

let OBAJNres005 =
QueryLicences2 feed
| oopsel [ dataSJcar_Licence_btree dataSJcar exactmatch [.Licence] |

projectextend[Licence; Traj: frometwork (trajectory (. Trip))]{t2}
OBAJNres005tmpl feed {t1}
product
projectextend|[ ; Licencel: .Licence-tl,
Licence2: .Licence_t2 ,
Dist: round(di stance (. Traj-tl, .Traj-t2),3)]
sortby [Licencel, Licence2]
consume ;

#delete temporary object

delete OBAJNres005tmpl ;

# Query 6: What are the pairs of license plate numbers of ”"trucks”, that have

# been as close as 10m or less to each other?

let OBAJNres006tmpl =
dataSJcar feed
filter [.Type = ”truck”]
projectextend [Licence; Ptrip: frometwork (. Trip), BBox: bbox (. Trip)]
extend [Box: rectangle2(m nD(.BBox,1) — 5.0, maxD(.BBox,1) + 5.0,
m nD(.BBox,2) — 5.0, maxD(.BBox,2) + 5.0)]

consunme ;

let OBAJNres006 =
OBAJNres006tmpl feed {a}
OBAJNres006tmpl feed {b}
symmjoin[(.Box_a intersects ..Box.b) and
(. Licence-a < ..Licence_b) and
(ever Nearer Than(.Ptrip_a, ..Ptrip_-b, 10.0))]
project [Licence.a, Licence.b]
sortby [Licence.a asc, Licence_b asc]
krdup [Licence.a, Licence_b]
consune ;

# delete temporary object

delete OBAJNres006tmpl ;

# Query 7: What are the license plate numbers of the ”passenger” cars that
have reached points from QueryPoints first of all ”passenger” cars
# during the complete observation period?

let OBAJNresO07tmpl =
QueryPointsJNetAll feed
extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect, 1),
m nD(.Prect,2) — 0.00001,
maxD(.Prect,2) 4+ 0.00001)]

| oopsel [fun(t:TUPLE)
dataSJcar_TrajBoxNet wi ndowi ntersectsS[attr (t,NBox)]
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sort rdup dataSJcar gettuples
filter [.Type = ”passenger”]
projectextend [Licence; Id: attr (t,Id) ,
Instant: inst (initial (. Trip at attr (t,Pos)))]]
filter [not (isempty (.Instant))]
sortby[Id asc, Instant asc]
consune ;

let OBAJNres007 =
OBAJNres007tmpl feed
groupby [Id; FirstTime: group feed m n[Instant]]{b}
OBAJNres007tmpl feed {a}
hashjoin[Id_b,Id_a]
filter [(.Id-a = .Id-b) and (.Instant_-a <= .FirstTime_b)]
project [Id-a, Licence_a]
sortby [Id-a, Licence.a]
rdup
consunme ;

# delete temporary object
delete OBAJNres007tmpl ;

# Query 8: What are the overall traveled distances of the vehicles with
# license plate numbers from QueryLicencesl during the periods from
# QueryPeriodsl?

let OBAJNres008 =
QueryLicencesl feed {1}
| oopsel [ dataSJcar_Licence_btree dataSJcar exactmatch [. Licence_l1]]
QueryPeriodsl feed
filter [not (isempty (.Period))]{p}
product
proj ectextend [Licence; Period: .Period-p,
Dist: round(length (. Trip atperiods .Period_-p),3)]
project [Licence, Period, Dist]
sortby [Licence asc, Period asc]
consunme ;

# Query 9: What is the longest distance that was traveled by a vehicle during
# each of the periods from QueryPeriods?

let OBAJNres009 =
dataSJcar feed {c}
QueryPeriods feed
filter [not (i sempty (.Period))]{p}
product
projectextend [Id_-p, Period-p,
Licence_c; Dist: round(length(.Trip_-c atperiods .Period-p),3)]
sortby [Id-p asc, Period_.p asc, Dist desc]
groupby [Id_.p, Period_-p; Distance: group feed max[Dist]]
project [Period-p, Distance]
consune ;

# Query 10: When and where did the vehicles with license plate numbers from
# QueryLicencesl meet other vehicles (distance < 3m) and what are
# the latter licenses?

let OBAJNres010tmpl =
QueryLicencesl feed
| oopsel [dataSJcar_Licence_btree dataSJcar exactmatch [. Licence]]

proj ectextend [Licence, Trip; TripA: frometwork (. Trip), BBox: bbox (. Trip)]
proj ectextend [Licence, Trip, TripA; Box: rectangle2 ((m nD(.BBox,1) — 1.5),
(maxD(.BBox,1) + 1.5),
(m nD(.BBox,2) — 1.5),
(maxD(.BBox,2) + 1.5))]
consune ;
let OBAJNres010 =
dataSJcar feed
projectextend [Licence; TripA: frometwork (. Trip), BBox: bbox (. Trip)]
projectextend [Licence, TripA ;Box: rectangle2((m nD(.BBox,1) — 1.5),
(maxD(.BBox,1) + 1.5),
(m nD(.BBox,2) — 1.5),
(maxD(.BBox,2) + 1.5))]{cl}

OBAJNres010tmpl feed {c2}
symmoin[((.Box.cl intersects ..Box-c2) and
(.Licence_-cl # ..Licence_c2)) and
(ever Nearer Than (. TripA_cl, ..TripA_c2, 3.0))]
proj ectextend [Licence-cl,
Licence-c2; Pos: .Trip_c2 atperiods deftime((distance (.TripA_cl,
.TripA_c2)
< 3.0) at TRUE)]
filter [not (isenmpty (.Pos))]
project [Licence-c2, Licence-cl, Pos]
sortby [Licence-c2 asc, Licence_.cl asc]
consune ;

# delete temporary object
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delete OBAJNres010tmpl ;
# Query 11: Which vehicles passed a point from QueryPointsl at one of the
# instants from Querylnstantl?

let OBAJNres01l1l =
QueryPoints1JNetAll feed

extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect, 1),
m nD(.Prect,2) — 0.00001,

maxD(.Prect,2) 4+ 0.00001)]
I oopsel [fun(t:TUPLE) dataSJcar_-TrajBoxNet wi ndowi ntersectsS[attr (t,NBox)]
sort rdup dataSJcar gettuples
filter [.Trip passes attr (t,Pos)]
projectextend [Licence; Id: (attr(t,Id)),
TripN: .Trip at attr (t,Pos)]]

QuerylInstantl feed {i}

symmjoin[.TripN present ..Instant_i
project [Licence, Id, Instant_i]
sortby [Id, Licence, Instant_i]
consume ;

# Query 12: Which vehicles met at a point from QueryPointsl at an instant from

# Querylnstant1?

let OBAJNresO12tmpl =
QuerylInstantl feed {i}
QueryPoints1JNetAll feed

extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect,1),
m nD(.Prect,2) — 0.00001,

maxD (. Prect ,2) 4+ 0.00001)]{p}
product
projectextend [Instant_-i, Id_-p, Pos_p; Box: box3d(.NBox.p, .Instant_i)]
| oopsel [fun(t:TUPLE)
dataSJcar_BoxNet_timespace wi ndowi ntersectsS[attr (t,Box)]
sort rdup dataSJcar gettuples
projectextend [Licence; Id: attr (t,Id-p),
Instant: attr (t,Instant_i),
Pos: attr (t,Pos_p)]]
sortby [Id asc, Instant asc, Licence asc, Pos asc]
rdup
consume ;

let OBAJNres012 =
OBAJNres012tmpl feed {cl}
OBAJNres012tmpl feed {c2}
symmoin[((.Licence_cl < ..Licence-c2) and
(.Id-cl = ..Id-c2)) and
(.Instant_cl = ..Instant_c2)]
project [Id_-cl1, Pos_cl, Instant-cl, Licence_cl, Licence_c2]
sortby [Id-cl asc, Instant_-cl asc, Licence-c2 asc]
rdup
consune ;

# delete temporary object
delete OBAJNresO012tmpl ;

# Query 13: Which vehicles traveled within one of the regions from
# QueryRegionsl during the periods from QueryPeriodsl?

let OBAJNres013 =
dataSJcar feed {c}
QueryRegionslJNet feed
filter [not (isempty (.Region))] {r}
symmjoin[. Trip_.c passes ..Region_r]
projectextend [Licence.c, Id-r, Region_r; Trip: .Trip_c at .Region._r]
filter [not (isempty (. Trip))]
QueryPeriodsl feed
filter [not (i sempty (.Period))]{p}
symmjoin [.Trip present ..Period_p]
projectextend [Id-r, Period_-p; Licence: .Licence_c,
Trip: .Trip atperiods .Period-p]
filter [not (isempty (. Trip))]
project [Id-r, Period_-p, Licence]
sortby [Id-r asc, Period.-p asc, Licence asc]
consume ;

# Query 14: Which vehicles traveled within one of the regions from
# QueryRegionsl at one of the instants from QueryInstantl?

let OBAJNres014 =

QueryRegionslJNet feed
filter [not (isenmpty (.Region))]
proj ectextendstream{Id, Region; Box: units (.Region)]
projectextend [Id, Region; BBox: netbox (.Box)[{r}

QuerylInstantl feed {i}

product

| oopsel [fun (t:TUPLE)
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dataSJcar_BoxNet_timespace wi ndowi ntersectsS[box3d(attr (t,BBox.r),
attr (t,Instant_i))]
sort rdup dataSJcar gettuples
filter [val (. Trip atinstant attr (t,Instant_i)) inside attr (t,Region_r)]
proj ectextend [Licence; Instant: attr (t,Instant_i), Id-r: attr (t,Id-r)]]
sortby [Id_r, Instant, Licence]
krdup[Id-r, Instant, Licence]
project [Id_r, Instant, Licence]
consunme ;

# Query 15: Which vehicles passed a point from QueryPointsl during a period
# from QueryPeriodsl?

let OBAJNres015 =
QueryPoints1JNetAll feed
extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect, 1),
m nD(.Prect ,2) — 0.00001,
maxD(.Prect ,2) + 0.00001)] {p}
QueryPeriodsl feed filter [not (isenmpty (.Period))] {t}
product
I oopsel [fun(t:TUPLE)
dataSJcar_BoxNet_timespace wi ndowi ntersectsS[box3d(attr (t,NBox_p),
attr (t,Period-t))]
sort rdup dataSJcar gettuples
filter [.Trip passes attr (t,Pos.p)]
filter [(.Trip at attr (t,Pos_p)) present attr (t,Period-t)]
projectextend [Licence; Id_-pos: attr (t,Id-p), Times: attr (t,Period_-t)]]
project [Id_-pos, Times, Licence]
sortby [Id_pos asc, Times asc, Licence asc]
krdup [Id_pos, Times, Licence]
consume ;

# Query 16: List the pairs of licenses for vehicles the first from

# QueryLicencesl, the second from QueryLicences2, where the

# corresponding vehicles are both present within a region from

# QueryRegionsl during a period from QueryPeriodl , but do not meet
# each other there and then.

let OBAJNres016 =
QueryLicencesl feed {1}
loopjoin [dataSJcar_Licence_btree dataSJcar exactmatch [.Licence_1]] {c}
QueryPeriodsl feed
filter [not (i sempty (.Period))]{p}
symmjoin [.Trip.c present ..Period_p]
projectextend [Id_.p, Period-p; Licence: .Licence_c,
Trip: .Trip-c atperiods .Period-p]
filter [not (isempty (. Trip))]
QueryRegions1JNet feed
filter [not (isempty (.Region))] {r}
symmjoin[. Trip passes ..Region_r]
projectextend [Licence, Id-r, Region_r, Id_p,
Period_-p; Trip: .Trip at .Region_r]
filter [not (isempty (.Trip))]{a}
QueryLicences2 feed {1}
loopjoin [dataSJcar_Licence_btree dataSJcar exactmatch [.Licence-1]] {c}
QueryPeriodsl feed
filter [not (i sempty (.Period))]{p}
symmjoin [.Trip.c present ..Period_p]
projectextend [Id_.p, Period-p; Licence: .Licence_c,
Trip: .Trip-c atperiods .Period-p]
filter [not (isempty (. Trip))]
QueryRegionslJNet feed
filter [not (isempty (.Region))] {r}
symmjoin[. Trip passes ..Region_r]
projectextend [Licence, Id-r, Region_r, Id_p,
Period_p; Trip: .Trip at .Region_r]
filter [not (isempty (. Trip))]{b}

symmoin[(((.Id-r.a = ..Id_-r_b) and
(.Id-p-a = ..Id-p-b)) and
(.Licence-a # ..Licence_b)) and

(not (. Trip-a intersects ..Trip-b))]
project [Id-r-a, Period_-p-a, Licence_a, Licence.b]
sortby [Id-r_a, Period_-p-a, Licence-a, Licence.b]

consune ;

# Query 17: Which points from QueryPoints have been visited by a maximum
number of different vehicles?

let OBAJNres017tmpl =
QueryPointsJNetAll feed
extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect, 1),
mnD(.Prect,2) — 0.00001,
maxD(.Prect,2) + 0.00001)]
I oopjoin[dataSJcar_-TrajBoxNet wi ndowi ntersectsS[.NBox]
sort rdup dataSJcar gettuples]
project [Id, Licence]
sortby [Id, Licence]
krdup [Id, Licence]
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groupby [Id; Hits: group feed count ]
consune ;

let OBAJNres017 =
OBAJNres017tmpl feed
filter [.Hits = (OBAJNresO17tmpl feed max[Hits])]
project [Id, Hits]
consunme ;
# delete temporary object
delete OBAJNres017tmpl ;
# Store Query Run Times

let QRT.JNET_-OBA = SEC2COMMANDS feed consune;

# Uncomment next line to save runtimes on hard disk
#save QRT.INET.OBA to ’JNetworkOBARunTimes.DAT’;

# finsihed close database

close database;

59

The script in the file JNetwork TBA-Queries.SEC executes the 17 queries of the trip based approach of the

BerlinMOD Benchmark using the first network implementation.

JNetwork queries for the trip based approach of the BerlinMOD Benchmark.

The script assumes that there is a database berlinmod with a jnetwork data
model representation of the BerlinMOD Benchmark data.

This database can be generated by the script ’BerlinMOD_DataGenerator.SEC’.
The network data model representation and accroding indexes can be generated
with the script ’JNetwork_CreateObjects.SEC’

BRI S R R

Start Script Opening the Database#
open database berlinmod;

# Query 1: What are the models of the vehicles with license plate numbers from
QueryLicence?

let TBAJNres001 =
QueryLicences feed {1}
I oopjoin [dataMcar_-Licence_-btree dataMcar exactmatch [. Licence-1]]
project [Licence, Model]
consune ;

# Query 2: How many vehicles exit that are passenger cars?

let TBAJNres002 =
dataMcar feed
filter [.Type = ”"passenger”]
count ;

# Query 3: Where have the vehicles with licenses from QueryLicencel been at
each instant from Querylnstantl?

let TBAJNres003 =
QueryLicencesl feed {1}
| oopsel [dataMcar_Licence_btree dataMcar exactmatch [. Licence_1] {11}]
| oopjoin[dataMJtrip-Moid_btree dataMJtrip exactmatch [. Moid_11]]
QuerylInstantl feed {i}
symmjoin [.Trip present ..Instant_i]
projectextend [Instant_-i, Licence_1l; Pos: val (. Trip atinstant .Instant_-i)]
sortby [Instant_i, Licence_ll]
consune ;

# Query 4: Which license plate numbers belong to vehicles that have passed the
# points from QueryPoints?

let TBAJNres004 =
QueryPointsJNetAll feed
extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect, 1),
m nD(.Prect,2) — 0.00001,
maxD(.Prect,2) + 0.00001)]
| oopjoin[dataMJtrip-TrajBoxNet wi ndowi ntersectsS[.NBox]
sort rdup dataMJtrip gettuples]
project [Moid, Id]
| oopsel [fun(t:TUPLE)
dataMcar_-Moid_btree dataMcar exactmatch [attr (t, Moid)]
projectextend [Licence; Id: attr (t,Id)]]
sortby [Id asc, Licence asc]
krdup[Id, Licence]
consume ;

# Query 5: What is the minimum distance between places, where a vehicle with a
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# license from QueryLicencesl and a vehicle with Licenses from

# QueryLicence2 have been?

let TBAJNres005tmpl =
QueryLicencesl feed project [Licence] {LL1}
| oopsel [fun(t:TUPLE)
dataMcar_Licence_btree dataMcar exactmatch [attr (t,Licence.LL1)] {CAR}
| oopsel [dataMJtrip-Moid_-btree dataMJtrip exactmatch [. Moid-CAR]]
projectextend [; Traj: trajectory (. Trip)]
aggregateB[Traj; fun(Ll: jline, L2: jline) L1 union L2; [const jline value (”JBNet” ())]]
feed namedtransformstream| Traxj |
extend[Licence: attr (t,Licence-LL1)]]
projectextend [Licence; Trax: frometwork (. Traxj)]
consunme ;

let TBAJNres005 =
QueryLicences2 feed
project [Licence] {LL2}
| oopsel [fun(s:TUPLE)
dataMcar_Licence_btree dataMcar exactmatch[attr (s,Licence.LL2)] {CAR}
| oopsel [dataMJtrip-Moid_-btree dataMJtrip exactmatch [. Moid-CAR]]
projectextend [; Traj: trajectory (. Trip)]
aggregateB[Traj; fun(L3: jline, L4: jline) L3 union L4; [const jline value (”JBNet” ())]]
feed namedtransformstream| Traxj]
extend[Licence: attr (s,Licence.LL2)]]
projectextend [Licence; Trax: frometwork (. Traxj)]{c2}
TBAJNres005tmpl feed {cl}
product
projectextend [Licence_-cl, Licence_c2; Distance: round(distance (. Trax_cl,
.Trax_c2),3)]
sortby [Licence_cl, Licence_c2]
consune ;

# delete temporary object
delete TBAJNres005tmpl ;

# Query 6: What are the pairs of license plate numbers of ”"trucks”, that have
# been as close as 10m or less to each other?

let TBAJNres006tmpl =

dataMcar feed filter [.Type = ”"truck”]

project [Licence, Moid] {c}

I oopjoin[dataMJtrip_-Moid_btree dataMJtrip exactmatch [. Moid_c]]
projectextend [; Licence: .Licence_c, Ptrip: frometwork (. Trip)]
extend [BBox: bbox (. Ptrip)]
projectextend [Licence, Ptrip; Box: rectangle3 ((m nD(.BBox,1)

(maxD(.BBox,1)
(mi nD(.BBox,2)
(maxD(.BBox,2)
m nD(.BBox,3) ,
maxD(.BBox,3))]

+ 1+ |

consunme ;

let TBAJNres006 =
TBAJNres006tmpl feed {cl}
TBAJNres006tmpl feed {c2}
symmjoin[((.Box-cl intersects ..Box.c2) and
(.Licence-cl < ..Licence-c2)) and
(ever NearerThan(.Ptrip-cl, ..Ptrip.c2, 10.0)]
project [Licence_-cl, Licence-c2]
sortby [Licence-cl asc, Licence.c2 asc]
krdup [Licence_cl, Licence-c2]
consune ;

# delete intermediate result

delete TBAJNres006tmpl ;

# Query 7: What are the license plate numbers of the ”passenger” cars that
# have reached points from QueryPoints first of all ”passenger” cars
# during the complete observation period?

let TBAJNres007tmpl =
QueryPointsJNetAll feed
extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect, 1),
m nD(.Prect,2) — 0.00001,
maxD (. Prect ,2) + 0.00001)]
| oopsel [fun(t:TUPLE) dataMJtrip-TrajBoxNet wi ndowi ntersectsS[attr (t,NBox)]
sort rdup dataMJtrip gettuples
| oopj oi n[dataMcar_-Moid_btree dataMcar exactmatch [.Moid]
filter [.Type = ”passenger” |
project [Licence] {X}]
projectextend|[ Licence_-X; TimeAtPos: inst (initial (.Trip at attr (t,Pos))),
Id: attr (t, Id)]]
filter [not (i sempty (. TimeAtPos))]
sortby [Id asc, TimeAtPos asc]
consune ;

let TBAJNres007 =
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TBAJNres007tmpl feed
groupby [Id; FirstTime: group feed m n[TimeAtPos]]{b}
TBAJNres007tmpl feed {a}
symmjoin[(..Id_.a = .Id-b) and (.. TimeAtPos.a <= .FirstTime_-b)]
project [Id_.a, Licence-X_a]
sortby [Id-a asc, Licence-X_a asc]
krdup [Id-a, Licence-X_a|
consune ;

# delete intermediate result
delete TBAJNres007tmpl ;

# Query 8: What are the overall traveled distances of the vehicles with
# license plate numbers from QueryLicencesl during the periods from
# QueryPeriodsl?

let TBAJNres008 =
QueryLicencesl feed {1}
l oopjoin[dataMcar_Licence_btree dataMcar exactmatch [. Licence_-1]]
project [Licence, Moid]
I oopsel [fun(t:TUPLE) dataMJtrip_Moid_btree dataMJtrip exactmatch[attr (t,
projectextend [Trip; Licence: attr (t,Licence)]]
QueryPeriodsl feed
symmjoin [.Trip present ..Period]

Moid )]

projectextend [Licence, Period, Id; Distance: |length (. Trip atperiods .Period)]

sortby [Id asc, Licence asc, Distance desc]
groupby [Id, Period, Licence; Dist: round(group feed sum[Distance],3)]
project [Licence, Period, Dist]
sortby [Licence, Period, Dist]
consune ;

# Query 9: What is the longest distance that was traveled by a vehicle during
# each of the periods from QueryPeriods?

let TBAJNres009 =
dataMJtrip feed {c}
QueryPeriods feed
filter [not (i sempty (.Period))]{p}
symmoin[. Trip.c present ..Period_p]
projectextend [Moid_c, Period-p, Id_-p; Distance: length(.Trip-c atperiods
sortby [Id-p asc, Period_-p asc, Moid_-c asc, Distance desc]
groupby [Id_-p, Period_-p, Moid_c; Dist: group feed sum[Distance]]
groupby [Id_p, Period_p; Dista: round(group feed max|[Dist] ,3)]
filter [.Dista > 0.0]
project [Period_-p, Dista]
sortby [Period_p, Dista]
consune ;

# Query 10: When and where did the vehicles with license plate numbers from
QueryLicencesl meet other vehicles (distance < 3m) and what are
# the latter licenses?

let TBAJNres010 =
QueryLicencesl feed project [Licence] {V1}
| oopsel [fun(t:TUPLE)
dataMcar_Licence_btree dataMcar exactmatch[attr (t,Licence-V1)]
proj ect [ Moid]

l oopjoin[dataMJtrip-Moid_-btree dataMJtrip exactmatch [. Moid] renmove [Moid]]

extend [T3bbx: bbox (. Trip-V3)]
extend [PtripA: fromnetwork (. Trip_-V3)]
l oopjoin[fun(u:TUPLE) dataMJtrip-SpatioTemp
wi ndowi ntersectsS[rectangle3(m nD(attr (u,T3bbx),1) —
maxD(attr (u,T3bbx),1) +
m nD(attr (u,T3bbx),2) —
maxD(attr (u,T3bbx),2) +
m nD(attr (u,T3bbx),3),
maxD(attr (u,T3bbx) ,3))]
sort rdup dataMJtrip gettuples
filter [.Moid # attr(u, Moid-V3)]
proj ectextend [Moid; PtripB: frommetwork (. Trip)]
filter [everNearer Than(attr (u, PtripA), .PtripB, 3.0)]

Wwww
[eNeloNo)

.Period_p)]

proj ectextend [Moid; Times: deftime((distance(attr (u, PtripA),

.PtripB)
< 3.0) at TRUE)]
filter [not (isenmpty (.Times))]
I oopjoin[dataMcar_-Moid_btree dataMcar exactmatch [. Moid]
project [Licence]]]
projectextend [; QueryLicence: attr (t, Licence-V1),
OtherLicence: .Licence,
Pos: .Trip-V3 atperiods .Times]
filter [not (isempty (.Pos))]]
sortby [QueryLicence asc, OtherLicence asc]
groupby [QueryLicence,
OtherLicence; AllPos: group feed
aggregat eB[Pos; fun(Ml:njpoint , M2:m point)

M1 union M2; [const m point value(”JBNet” ())]]]

proj ect [QueryLicence, OtherLicence, AllPos]
sortby [QueryLicence, OtherLicence, AllPos]
consume ;

{v3}
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# Query 11: Which vehicles passed a point from QueryPointsl at one of the
# instants from Querylnstantl?

let TBAJNres01ll =
QuerylInstantl feed {i}
QueryPoints1JNetAll feed
extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect, 1),
m nD(.Prect ,2) — 0.00001,
maxD(.Prect ,2) + 0.00001)]{p}
product
| oopsel [fun(t:TUPLE)
dataMJtrip-BoxNet_timespace wi ndowi ntersectsS[box3d(attr (t,NBox.-p),
attr (t,Instant_i))]
sort rdup dataMJtrip gettuples
projectextend [Moid; Id: attr (t,Id-p), Instant: attr (t,Instant-i)]]{a}
| oopjoin[dataMcar_-Moid_-btree dataMcar exactmatch [. Moid-a]]
project [Id-a, Instant_a, Licence]
sortby [Id-a asc, Instant_-a asc, Licence asc]
krdup [Id_.a, Instant_-a, Licence]
consune ;

# Query 12: Which vehicles met at a point from QueryPointsl at an instant from
# Querylnstant1?

let TBAJNres012tmpl =
QueryPoints1JNetAll feed
extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect, 1),
m nD(.Prect,2) — 0.00001,
maxD (. Prect ,2) + 0.00001)]{p}
QuerylInstantl feed {i}
product
projectextend [Id-p, Pos_.p, Instant-i; Box: box3d(.NBox.p, .Instant_i)]
| oopsel [fun(t:TUPLE) dataMJtrip-BoxNet_timespace wi ndowi ntersectsS[attr (t,Box)]
sort rdup dataMJtrip gettuples
projectextend [Moid; Id: attr (t,Id-p), Instant: attr (t,Instant-i)]]{a}
| oopj oi n[dataMcar-Moid_btree dataMcar exactmatch [. Moid-a]]
proj ectextend [Moid, Licence; Id: .Id-.a, Instant: .Instant_-a]

consume ;

let TBAJNres012 =
TBAJNresO12tmpl feed {A}
TBAJNres012tmpl feed {B}
symmoin [(.Id_.A = ..Id_-B) and
(.Instant-A = ..Instant_B) and
(.Moid_A < ..Moid.B)]
project [Id-A, Instant-A , Licence-A, Licence-B]
sortby [Id-A asc, Instant-A asc, Licence.B asc]
consune ;

# delete intermediate result
delete TBAJNres012tmpl ;

# Query 13: Which vehicles traveled within one of the regions from
# QueryRegionsl during the periods from QueryPeriodsl?

let TBAJNres013 =
dataMJtrip feed {c}
QueryRegions1JNet feed
filter [not (i sempty (.Region))] {r}
symmjoin[. Trip_.c passes ..Region_r]
proj ectextend [Moid-c, Id_r; Trip: .Trip-c at .Region_.r]
QueryPeriodsl feed filter [not (isenpty (.Period))]{p}
symmjoin [.Trip present ..Period_p]
proj ectextend [Moid_-c, Id_r, Period-p; TripA: .Trip atperiods .Period-p]
filter [not (isempty (.TripA))]
loopjoin [dataMcar-Moid-btree dataMcar exactmatch [. Moid_c]]
project [Licence, Id.r, Period_p]
sortby [Licence asc, Id-r asc, Period-p asc]
krdup [Licence, Id-r, Period._p]
consume ;

# Query 14: Which vehicles traveled within one of the regions from
# QueryRegionsl at one of the instants from QueryInstantl?

let TBAJNres014 =
QueryRegions1JNet feed
filter [not (isenpty (.Region))]
proj ectextendstream/Id, Region; UReg: units (.Region)]
extend[Brect: netbox (.UReg)]{r}
QuerylInstantl feed {i}
product
| oopsel [fun(t:TUPLE)
dataMJtrip_.BoxNet_timespace wi ndowi ntersectsS[box3d(attr (t,Brect_r),
attr (t,Instant_i))]
sort rdup dataMJtrip gettuples
filter [(val (. Trip atinstant (attr (t,Instant_i)))) inside (attr (t,Region_r))]
proj ectextend [Moid;Instant: attr (t,Instant_-i), Id: attr (t,Id-r)]]{a}
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| oopjoin[dataMcar_-Moid_btree dataMcar exactmatch [.Moid-a]]
projectextend [Licence; Id: .Id-a, Instant: .Instant-a]
sortby [Id asc, Instant asc, Licence asc]
krdup[Id, Instant, Licence]
consune ;
# Query 15: Which vehicles passed a point from QueryPointsl during a period
from QueryPeriodsl?

let TBAJNres01l5 =
QueryPoints1JNetAll feed

extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect,1),
mnD(.Prect,2) — 0.00001,

maxD(.Prect,2) 4+ 0.00001)] {p}
QueryPeriodsl feed filter [not (isenpty (.Period))]{t}

product

| oopsel [fun(t:TUPLE)
dataMJtrip_.BoxNet_timespace wi ndowi ntersectsS[box3d(attr (t,NBox.p),
attr (t,Period_t))]

sort rdup dataMJtrip gettuples
filter [(. Trip atperiods (attr (t,Period_-t))) passes attr (t,Pos_p)]
proj ectextend [Moid;Period: attr (t,Period-t), Id: attr (t,Id-p)]]{a}
| oopjoin[dataMcar_-Moid_btree dataMcar exactmatch [.Moid-a]]

projectextend[Licence; Id: .Id-a, Period: .Period-a]

sortby [Id asc, Period asc, Licence asc]

krdup [Id, Period, Licence]

project [Licence, Id, Period]

consune ;

# Query 16: List the pairs of licenses for vehicles the first from

# QueryLicencesl, the second from QueryLicences2, where the

# corresponding vehicles are both present within a Region from

# QueryRegionsl during a period from QueryPeriodl , but do not meet
# each other there and then.

let TBAJNres016 =

QueryLicencesl feed {1}
loopjoin [dataMcar_Licence_btree dataMcar exactmatch [. Licence_-1]] {a}

l oopjoin[dataMJtrip_-Moid_btree dataMJtrip exactmatch [. Moid_-a]]
QueryPeriodsl feed filter [not (isenpty (.Period))]{p}
symmjoin [.Trip present ..Period-p]
projectextend [Id_.p, Period_-p; Licence: .Licence-a,
Trip: .Trip atperiods .Period-p]
filter [not (isempty (. Trip))]
QueryRegions1JNet feed filter [not (i senpty (.Region))]{r}
symmjoin [.Trip passes ..Region_r]
projectextend [Licence, Id_-p, Period-p, Id-r; Trip:
filter [not (isempty (.Trip))]{a}

QueryLicences2 feed {1}
Il oopjoin [dataMcar_Licence_btree dataMcar exactmatch [. Licence_1]]{a}

I oopjoin[dataMJtrip_-Moid_btree dataMJtrip exactmatch [. Moid_a]]
QueryPeriodsl feed filter [not (isempty (.Period))]{p}
symmjoin [.Trip present ..Period_p]
projectextend [Id_.p, Period-p; Licence: .Licence_a, Trip: .Trip atperiods
filter [not (isempty (. Trip))]
QueryRegions1JNet feed filter [not (i sempty (.Region))]{r}
symmjoin [.Trip passes ..Region_r]
projectextend [Licence, Id.p, Id_r; Trip: .Trip at .Region_r]
filter [not (isempty (.Trip))]{b}
symmjoin[(.Id-r.a = ..Id_r_-b) and (.Id-p-a = ..Id-p-b)]
filter [. Licence_a # .Licence_b]
filter [not (. Trip-a intersects .Trip-b)]
project [Id-r-a, Id-p-a, Licence_a, Licence.b]
sortby [Id_r_.a asc, Id_p-a asc, Licence.a asc, Licence_b asc]
krdup [Id-r_a, Id-p-a, Licence_a, Licence_-b]

consunme ;

.Trip at .Region_r]

.Period_p]

# Query 17: Which points from QueryPoints have been visited by a maximum
# number of different vehicles?

let TBAJNresO17tmpl =
QueryPointsJNetAll feed

extend [Prect: netbox (.Pos)]
projectextend [Id, Pos; NBox: rectangle2(m nD(.Prect,1), maxD(.Prect, 1),
mnD(.Prect,2) — 0.00001,

maxD (. Prect,2) 4+ 0.00001)]
| oopsel [fun(t:TUPLE) dataMJtrip-TrajBoxNet wi ndowi ntersectsS[attr (t,NBox)]

sort rdup dataMJtrip gettuples
projectextend [Moid; Id-p: attr (t,Id)]]

sortby [Id-p asc, Moid asc]

krdup [Id-p, Moid]

groupby [Id_-p; Hits: group feed count |

consume ;

let TBAJNres017 =

TBAJNres017tmpl feed
filter [.Hits = (TBAJNres017tmpl feed max[Hits])]

project [Id-p, Hits]
consune ;
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# delete temporary object

delete TBAJNres017tmpl ;

# save query runtimes

let QRT_INET.TBA = SEC2COMMANDS f eed

# Uncomment the
# save QRT_JNET_TBA to

# Finish Script

close database;

next line if

you want to save

?>JNetworkTBARunTimes.DAT’ ;

and Close Database

consume ;

run time information on disk

5.2.3 Comparison of Query Run Times and Storage Space

64

Figure B.] shows a competition between the query run times of BerlinMOD Benchmark standard version and
both network implementations on a workstation with 2 GB main memory, with 2.4 GHz CPU and 1 TB hard
disk for different amounts of data (see Table EI). The single query run times are marked by different colors
query 1 is at the bottom and query 17 on the top of the stack. The queries with remarkable run times for
the bigger scalefactors are the queries 4 (fuchsia), 6 (yellow), 7 (black), 9 (grey), 10 (red), 13 (fuchsia), and 17

(orange). Table shows the storage space needed by the different data representations for scalefactor 1.0.
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Table 5.2: Storage Space for Scalefactor 1.0

5.3 Open Street Map Data and Networks

For each network representation we have a script importing street networks provided by [7] in OSM-Format

Scalefactor | Cars | Days || Scalefactor | Cars | Days || Scalefactor | Cars | Days
0.005 141 11 0.2 894 12 ]| 2.0 2828 39
0.05 447 6| 1.0 2000 28 || 3.0 3464 48
Table 5.1: Amount of Cars and Days for Different Scalefactors
Object Space Net JNet
network - 11.1 MiB 35.2 MiB
dataScar 6.9 GiB 7.7 GiB 3.5 GiB
dataMtrip 7.2 GiB 8.0 GiB 4.0 GiB
QueryPoints 16 KiB 20.0 KiB 56 KiB
QueryRegions 1.1 MiB 108 KiB 152 KiB
Data 14.1 GiB 15.7 GiB 7.5 GiB
dataScar_Journey_sptuni 3.4 GiB - -
dataScar_Journey_tmpuni 4.1 GiB - -
dataScar_Journey_spttmpuni 6.2 GiB - -
dataMtrip_sptuni 3.4 GiB - -
dataMtrip_tmpuni 4.1 GiB - -
dataMtrip_spttmpuni 6.2 GiB - -
dataScar_BoxNet_timespace - 8.2 GiB 4.0 GiB
dataMtrip_BoxNet_timespace - 8.2 GiB 4.0 GiB
dataScar_TrajBoxNet - | 229 MiB | 42.2 MiB
dataMtrip_-TrajBoxNet - | 151.3 MiB | 162.9 MiB
dataMtrip_SpatioTemp - | 36.2MiB | 36.3 MiB
Indezes 24.4 GiB 16.6 GiB 8.2 GiB
Total Storage Space 38.5 GiB | 32.3 GiB | 15.7 GiB
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using the operator fullosmimport of the SECONDO algebra module 0SMAlgebra. This import is defined in line

12 of both scripts. The operator gets the name of the fildd containing the Open Street Map data and a string

defining a common prefix for the six relations created by the import operation.

The six relations contain the information of nodes, node tags, ways, way tags, relations and relation tags
provided by the OSM-File. These relations are used by the scripts to create the corresponding network respec-
tively jnetwork objects. In both scripts the name of the new database can be defined by the user in line 6,
which must correspond to line 8 where the new created database is opened.

5.3.1 Network

NetworkFromFull0SMImport.SEC The name of the resulting network object can be defined by the user of the

script by editing the last let command in the script before the database is closed.

The script

FHFHF*

imports Openstreetmap data from osm—File
object from this data source

Create and open database

create database keDB;

open database keDB;

and creates

a network

2If the file is not allocated in the secondo/bin directory the full qualified path is needed together with the file name.
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# Define source Thfile for import and network creation
let SOURCEFILE = ’'KL_Enkenbach.osm’;

# import osm data from file

query fullosm nport (SOURCEFILE, ”Osm”);

# The tag layer must not be set in osm data if the way is on layer 0.
# Because we decide based on the layer tag if two ways intersect we extend
# the missing layer tag for all ways where no layer is given with value 0.

let WayldsWithoutTags =
OsmWays feed
project [Wayld]
sort by [Wayld]
OsmWayTags feed
projectextend [; Wayld: .WayldInTag ]
sortby [Wayld]
rdup
mer gedi f f
consume ;

let OsmWayTagsLayerExtended =
OsmWayTags feed
sortby [WayldInTag ]
groupby [WayIdInTag; C: group feed
filter [.WayTagKey = "layer” |
count ]
filter [.C = 0]
projectextend [WayldIinTag; WayTagKey: ’layer’,
WayTagValue: 0]
consunme ;

let LayerTagForWayldsWithoutTag =
WayldsWithoutTags feed
projectextend [; WayldInTag: .Wayld,
WayTagKey: ’layer ’,
WayTagValue: ’07]
consune ;

let OsmWayTagNew =
( ( OsmWayTags feed)
( OsmWayTagsLayerExtended feed)
concat )
( LayerTagForWayldsWithoutTag feed)
concat
consune ;

# Connect Spatial Information for nodes and ways

# We distinguish between different forms of way curves, because the network
# knows only curves of type sline which may only have one start and end point,
# and may not cross themself. Therefore not curve values values which do not
# fit in this system have to be splitted into disjoint sline wvalues.

let SpatialPosOfNodes =
OsmNodes feed
proj ectextend [Nodeld; NodePos: makepoint (.Lon,.Lat)]
consume ;
let SpatialWayCurveSimple =
OsmWays feed
SpatialPosOfNodes feed
hashj oi n [NodeRef, Nodeld, 99997]
proj ect [Wayld, NodeCounter, NodePos]
sortby [Wayld, NodeCounter]
groupby [Wayld; WayCurve: group feed
projecttransfornmstream NodePos]
collect_sline[TRUE]]
consume ;

let SpatialWayCurveComplex =
OsmWays feed
SpatialWayCurveSimple feed
filter [not (isdefined(.WayCurve))] {s}
hashj oi n [Wayld, WaylId_s]
proj ect [Wayld, NodeCounter, NodeRef]
SpatialPosOfNodes feed
hashj oi n [NodeRef, Nodeld, 99997]
proj ect [Wayld, NodeCounter, NodePos]
sortby [Wayld, NodeCounter]
groupby [Wayld; WayCurve: group feed
projecttransformstream[NodePos]
collect_line[TRUE],

StartPointCurve: group feed head[1] extract [NodePos]]
proj ectextendstream Wayld, StartPointCurve; WayC: .WayCurve |onglines]
addcount er [PartNo ,1]
proj ectextend [Wayld, PartNo, StartPointCurve,

WayC; StartPoint: getstartpoint (.WayC),
EndPoint: getendpoint (.WayC)]
sortby [Wayld, PartNo]

66
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extend_last [PrevEndPoint: ..EndPoint :: [const point value (0.0 0.0)]]
sort by [Wayld, PartNo]
proj ectextend [Wayld; WayCurve: ifthenelse (.StartPointCurve = .StartPoint,
.WayC,
ifthenel se (.StartPoint = .PrevEndPoint,
.WayC,

set _.startsmal | er (.WayC,
not (get _startsmaller (.WayC)))))]
consune ;

let SpatialWayCurve =
( SpatialWayCurveSimple feed filter [isdefined(.WayCurve)])
( SpatialWayCurveComplex feed)
concat
filter [isdefined(.WayCurve)]
consume ;

# Collect tag information by identfier

let NestedNodeRel =
SpatialPosOfNodes feed
OsmNodeTags feed
hashj oi n [Nodeld , NodeldInTag |
proj ect [Nodeld, NodePos, NodeTagKey, NodeTagValue]
sort by [Nodeld, NodePos, NodeTagKey, NodeTagValue]
rdup
nest [Nodeld, NodePos; Nodelnfo]
consune ;

let NestedWayRel =
SpatialWayCurve feed
OsmWayTagNew f eed
hashjoin [Wayld, WayldInTag |
proj ect [Wayld, WayCurve, WayTagKey, WayTagValue]

filter [not (((.WayTagKey = ”"oneway”) and
((.WayTagValue = "no”) or
(. WayTagValue = ” false”) or
(. WayTagValue = 707 ))))]
sort by [Wayld, WayCurve, WayTagKey, WayTagValue]
rdup

nest [Wayld, WayCurve; Waylnfo]
proj ectextend [Wayld, WaylInfo; WayC: .WayCurve,
ChangeDirection: ifthenelse (. WayInfo afeed

filter [.WayTagKey = ”"oneway” ]
filter [(.WayTagValue = 7—1") or
(. WayTagValue = "reverse” )]

count > 0,
TRUE, FALSE)]
proj ectextend [Wayld, WaylInfo; WayCurve: ifthenelse (.ChangeDirection,
set _.startsmal | er (.WayC,
not (get _startsmaller (.WayC))),
.WayC) |
consume ;

let NestedRelationRel =
OsmRelations feed
OsmRelationTags feed
hashjoi n[Relld, RelldInTag]
project [Relld, RefCounter, MemberRef, MemberType, MemberRole, RelTagKey, RelTagValue]
sortby [Relld, RefCounter, MemberRef, MemberType, MemberRole, RelTagKey, RelTagValue]
rdup
nest [Relld, RefCounter, MemberRef, MemberType, MemberRole; RefInfo]
nest [Relld; Rellnfo]
consume ;

# Build roads defined by way relation of osm
# select highway data

let RoadParts =
NestedWayRel feed
filter [.WaylInfo afeed
filter [. WayTagKey = ”highway” ]
filter [(.WayTagValue contains ”living”) or
. WayTagValue contains ”motorway”) or
. WayTagValue contains ”path”) or
. WayTagValue contains ”primary”) or
.WayTagValue contains ”residential”) or
. WayTagValue contains ”road”) or
. WayTagValue contains ”secondary”) or
. WayTagValue contains ”service”) or
.WayTagValue contains ”tertiary”) or
. WayTagValue contains ”trunk”) or
. WayTagValue contains ”track”) or
. WayTagValue contains ”unclassified”) or
. WayTagValue contains ”pedestrian”)]

NN AN AN AN N AN S S S S

count > 0]
filter [isdefined(.WayCurve)]
filter [not (isenpty (.WayCurve))]
consune ;

# Roads may consists of more than one osm way. The osm ways of very long roads
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are connectedof by a ref tag which is equal for all ways belonging to the same
road .

The roads created by this may not consist of sline wvalues only such that we
have to distinguish between simple and complex road curves when we generate
the resulting road curves.

I FH®

let RoadsByRefH1 =
RoadParts feed
filter [not (iscycle (.WayCurve))]
filter [. WayInfo afeed

filter [. WayTagKey = ”oneway” |
count = 0]
filter [. WayInfo afeed
filter [. WayTagKey = "ref”]

count > 0]
filter [. WayInfo afeed
filter [. WayTagKey = ”highway” |
filter [not (.WayTagValue contains ”link”)]
count > 0]
unnest [WayInfo]

filter [. WayTagKey = "ref”]
proj ectextendstream Wayld, WayCurve; RefToken: tokenize(’ ’4.WayTagValue,”;/” )]
proj ectextend [Wayld, WayCurve; Ref: trim(toObject (’” ’+.RefToken +’77,7a”))]
sortby [Ref, WayCurve]

consune ;

let RoadsByRefSimpleH1 =
RoadsByRefH1 feed
sortby [Ref, WayCurve]
groupby [Ref; C: group feed count ]
consunme ;

let RoadsByRefSimpleH2 =
RoadsByRefSimpleH1 feed
filter [.C = 1] {r1}
RoadsByRefH1 feed {r2}
hashjoin[Ref_r1, Ref_r2]
projectextend [; Ref: .Ref_rl,
RoadCurve: .WayCurve_r2]
consume ;

let RoadsByRefSimpleH3 =
RoadsByRefSimpleH1 feed
filter [.C > 1] {r1}
RoadsByRefH1 feed {r2}
hashjoin[Ref_r1, Ref_r2]
projectextend [; Ref: .Ref_r2,
WayCurve: .WayCurve_r2]
sort by [Ref, WayCurve]
groupby [Ref; RoadC: group feed projecttransfornstream WayCurve]
collect_sline[TRUE]]
proj ectextend [Ref; RoadCurve: .RoadC]
consume ;

let RoadsByRefSimple =
( RoadsByRefSimpleH2 feed)
( RoadsByRefSimpleH3 feed)
concat
sort by [Ref, RoadCurve]
consume ;

let RoadsByRefComplex =

RoadsByRefH1 feed
sort by [Ref, WayCurve]

RoadsByRefSimple feed
filter [not (i sdefined(.RoadCurve))] {s}

hashjoi n[Ref, Ref_s]
proj ectextend [Ref, WayCurve; StartPoint: getstartpoint (.WayCurve)]
sort by [Ref, WayCurve, StartPoint]
groupby [Ref; RoadC: group feed projecttransfornstream WayCurve]

collect.line[TRUE],

StartPointCurve: group feed head[1] extract [StartPoint]]
proj ectextendstream[Ref, StartPointCurve; RoadCur: .RoadC |onglines]
addcount er [PartNo ,1]
proj ectextend [Ref, PartNo, StartPointCurve,

RoadCur; StartPoint: getstartpoint (.RoadCur),
EndPoint: getendpoint (.RoadCur)]
sort by [Ref, PartNo]

extend_-last [PrevEndPoint: ..EndPoint :: [const point value (0.0 0.0)]]
sort by [Ref, PartNo]
proj ectextend [Ref; RoadCurve: ifthenelse (.StartPointCurve = .StartPoint,
.RoadCur,
ifthenelse (.StartPoint = .PrevEndPoint,
.RoadCur,

set _startsmal |l er (.RoadCur,
not (get _startsmal l er (.RoadCur)))))]
consune ;

let RoadsByRef =
( RoadsByRefSimple feed
filter [isdefined(.RoadCurve)])
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( RoadsByRefComplex feed)

concat
filter [isdefined(.RoadCurve)]
consume ;
# Another form of connecting way segments to long roads is the name tag which
# is equal for all ways belonging to the same road.
# Again we have to distinguish between simple and complex road curves generating

# the resulting road curves.

let RoadsByNameH1 =
RoadParts feed
filter [not (iscycle (.WayCurve))]
filter [. WayInfo afeed

filter [. WayTagKey = ”oneway” |
count = 0]
filter [. WayInfo afeed
filter [. WayTagKey = ”name” |

count > 0]
filter [. WayInfo afeed

filter [. WayTagKey = "ref”]
count = 0]
filter [. WayInfo afeed
filter [. WayTagKey = ”highway” ]

filter [not (.WayTagValue contains ”link”)]
count > 0]
unnest [ WayInfo]

filter [. WayTagKey = ”name” |
proj ectextend [Wayld, WayCurve; Name: trim(toObject (7’ 4+.WayTagValue +’7,7a”))]
sort by [Name, WayCurve]

consune ;

let RoadsByNameSimpleH1 =
RoadsByNameH1 f eed
sort by [Name, WayCurve]
groupby [Name; C: group feed count]
consume ;

let RoadsByNameSimpleH2 =
RoadsByNameSimpleH1 feed
filter [.C = 1] {r1}
RoadsByNameH1 feed {r2}
hashj oi n [Name_rl, Name_r2]
proj ectextend [; Name: .Name.rl, RoadCurve: .WayCurve._r2]
consune ;

let RoadsByNameSimpleH3 =
RoadsByNameSimpleH1 feed
filter [.C > 1] {r1}
RoadsByNameH1 feed {r2}
hashj oi n [Name.rl, Name_r2]
projectextend [; Name: .Name.rl, WayCurve: .WayCurve._r2]
sortby [Name, WayCurve]
groupby [Name; RoadC: group feed projecttransformstream WayCurve]
collect_sline[TRUE]]
proj ect ext end [Name; RoadCurve: .RoadC]
consunme ;

let RoadsByNameSimple =
( RoadsByNameSimpleH2 feed)
( RoadsByNameSimpleH3 feed)
concat
sortby [Name, RoadCurve]
consune ;

let RoadsByNameComplex =

RoadsByNameH1 f eed

RoadsByNameSimple feed
filter [not (i sdefined(.RoadCurve))]| {s}

hashj oi n [Name, Name_s]
proj ect ext end [Name, WayCurve; StartPoint: getstartpoint (. WayCurve)]
sortby [Name, WayCurve, StartPoint]
groupby [Name; RoadC: group feed projecttransformstream WayCurve]

collect_line[TRUE],

StartPointCurve: group feed head[1] extract [StartPoint]]
proj ectextendstream/Name, StartPointCurve; RoadCur: .RoadC |onglines]
addcount er [PartNo ,1]
proj ect ext end [Name, PartNo, StartPointCurve,

RoadCur; StartPoint: getstartpoint (.RoadCur),

EndPoint: getendpoint (.RoadCur)]
sort by [Name, PartNo]

extend_last [PrevEndPoint: ..EndPoint :: [const point value (0.0 0.0)]]
sort by [Name, PartNo]
proj ect ext end [Name; RoadCurve: ifthenelse (.StartPointCurve = .StartPoint,
.RoadCur,
ifthenel se (.StartPoint = .PrevEndPoint,
.RoadCur,

set _startsmal |l er (.RoadCur,
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not (get _startsmal l er (.RoadCur)))))]

consunme ;
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let RoadsByName =
( RoadsByNameSimple feed filter [isdefined(.RoadCurve)])
( RoadsByNameComplex feed)

concat
filter [isdefined(.RoadCurve)]
consume ;
# road links connect bigger roads for example two highways are connected by

# several links.

let RoadLinksH1 =
RoadParts feed
filter [not (iscycle (.WayCurve))]
filter [. WayInfo afeed

filter [. WayTagKey = ”oneway” |
count = 0]
filter [. WayInfo afeed
filter [. WayTagKey = ”highway” ]

filter [. WayTagValue contains ”link”]
count > 0]
unnest [WaylInfo]
filter [. WayTagKey = ”highway” ]
filter [. WayTagValue contains 7link”]
proj ect [Wayld, WayCurve]
sort by [Wayld, WayCurve]
consune ;

let RoadLinksSimpleH1l =
RoadLinksH1 feed
sort by [Wayld, WayCurve]
groupby [Wayld; C: group feed count ]
consume ;

let RoadLinksSimpleH2 =
RoadLinksSimpleH1 feed
filter [.C = 1] {r1}
RoadLinksH1 feed {r2}
hashjoin [Wayld.rl, Wayld_r2]
projectextend [; Wayld: .Wayld_.rl, RoadCurve: .WayCurve.r2]
consune ;

let RoadLinksSimpleH3 =
RoadLinksSimpleH1 feed
filter [.C > 1] {r1}
RoadLinksH1 feed {r2}
hashjoin [Wayld.rl, Wayld_r2]
projectextend [; Wayld: .Wayld_rl, WayCurve: .WayCurve.r2]
sort by [Wayld, WayCurve]
groupby [Wayld; RoadC: group feed projecttransfornstream WayCurve]
collect_sline[TRUE]]
proj ectextend [WayIld; RoadCurve: .RoadC]
consume ;

let RoadLinksSimple =
( RoadLinksSimpleH2 feed)
( RoadLinksSimpleH3 feed)
concat
sortby [Wayld, RoadCurve]
consune ;

let RoadLinksComplex =

RoadLinksH1 feed

RoadLinksSimple feed
filter [not (i sdefined(.RoadCurve))]| {s}

hashj oi n [Wayld, WaylId_s]
proj ectext end [Wayld, WayCurve; StartPoint: getstartpoint (.WayCurve)]
sort by [Wayld, WayCurve, StartPoint]
groupby [Wayld; RoadC: group feed projecttransformstream WayCurve]

collect_line[TRUE],

StartPointCurve: group feed head[1] extract [StartPoint]]
proj ectextendstream Wayld, StartPointCurve; RoadCur: .RoadC |onglines]
addcount er [PartNo ,1]
proj ectextend [Wayld, PartNo, StartPointCurve,

RoadCur; StartPoint: getstartpoint (.RoadCur),
EndPoint: getendpoint (.RoadCur)]
sortby [Wayld, PartNo]

extend_last [PrevEndPoint: ..EndPoint :: [const point value (0.0 0.0)]]
sort by [Wayld, PartNo]
proj ectextend [Wayld; RoadCurve: ifthenelse (.StartPointCurve = .StartPoint,
.RoadCur,
ifthenel se (.StartPoint = .PrevEndPoint,
.RoadCur,

set _startsmal |l er (.RoadCur,

not (get _startsmal l er (.RoadCur)))))]

consunme ;

let RoadLinks =
( RoadLinksSimple feed
filter [isdefined(.RoadCurve)])
( RoadLinksComplex feed)
concat
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filter [isdefined(.RoadCurve)]
consune ;

# all ways not selected before build also valid roads if they are not marked
# to be oneways or roundabouts.

let RoadRestH1 =
RoadParts feed
filter [not (iscycle (.WayCurve))]
filter [. WayInfo afeed
filter [. WayTagKey = ”oneway” |
count = 0]
filter [. WayInfo afeed
filter [.WayTagKey contains "ref”]
count = 0]
filter [. WayInfo afeed
filter [. WayTagKey contains ”name” |

count = 0]
filter [. WayInfo afeed
filter [. WayTagKey = ”highway” ]
filter [. WayTagValue contains ”link”]
count = 0]
unnest [WayInfo]
filter [. WayTagKey = ”highway” ]

proj ect [Wayld, WayCurve]
sort by [Wayld, WayCurve]
consune ;

let RoadRestSimpleH1 =
RoadRestH1 feed
sort by [Wayld, WayCurve]
groupby [Wayld; C: group feed count ]
consume ;

let RoadRestSimpleH2 =
RoadRestSimpleH1 feed
filter [.C = 1] {r1}
RoadRestH1 feed {r2}
hashj oi n [WayId_r1, WaylId_r2]
projectextend [; Wayld: .Wayld_.rl, RoadCurve: .WayCurve.r2]
consume ;

let RoadRestSimpleH3 =
RoadRestSimpleH1 feed
filter [.C > 1] {r1}
RoadRestH1 feed {r2}
hashj oi n [WayId_r1, WaylId_r2]
projectextend [; Wayld: .Wayld_-rl, WayCurve: .WayCurve_r2]
sort by [Wayld, WayCurve]
groupby [Wayld; RoadC: group feed projecttransfornstream WayCurve]
collect_sline[TRUE]]
proj ectext end [Wayld; RoadCurve: .RoadC]
consunme ;

let RoadRestSimple =
( RoadRestSimpleH2 feed)
( RoadRestSimpleH3 feed)
concat
sort by [Wayld, RoadCurve]
consume ;

let RoadRestComplex =

RoadRestH1 feed

RoadRestSimple feed
filter [not (i sdefined(.RoadCurve))]| {s}

hashj oi n [Wayld, WaylId_s]
proj ectextend [Wayld, WayCurve; StartPoint: getstartpoint (.WayCurve)]
sort by [Wayld, WayCurve, StartPoint]
groupby [Wayld; RoadC: group feed projecttransfornstream WayCurve]

collect_line[TRUE],

StartPointCurve: group feed head[1] extract [StartPoint]]
proj ectextendstream Wayld, StartPointCurve; RoadCur: .RoadC |onglines]
addcount er [PartNo ,1]
proj ectextend [Wayld, PartNo, StartPointCurve,

RoadCur; StartPoint: getstartpoint (.RoadCur),
EndPoint: getendpoint (.RoadCur)]
sortby [Wayld, PartNo]

extend_-last [PrevEndPoint: ..EndPoint :: [const point value (0.0 0.0)]]
sort by [Wayld, PartNo]
proj ectextend [WayIld; RoadCurve: ifthenelse (.StartPointCurve = .StartPoint,
.RoadCur,
ifthenelse (.StartPoint = .PrevEndPoint,
.RoadCur,

set _.startsmal | er (.RoadCur,
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not (get _startsmal l er (.RoadCur)))))]

consunme ;

let RoadRest =
( RoadRestSimple feed
filter [isdefined(.RoadCurve)])
( RoadRestComplex feed)
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concat
filter [isdefined(.RoadCurve)]
consune ;

# one way streets

let RoadsByOneway =
RoadParts feed
filter [not (iscycle(.WayCurve))]
filter [.WaylInfo afeed
filter [.WayTagKey = ”oneway” |
count > 0]

projectextend [; Name: num2string (.Wayld), Curve: .WayCurve]

consune ;

# road cycles

let RoadsByCycle =
RoadParts feed
filter [iscycle (.WayCurve)]
proj ectextend [; Name: num2string (.Wayld), Curve: set_startsmaller (.WayCurve, TRUE)]
consume ;

# concat all forms of roads to roads relation

let Roads =
( ( ( RoadsByRef feed
projectextend [;Name: .Ref, Curve: .RoadCurve])
( RoadsByName feed
proj ectextend [;Name: .Name, Curve: .RoadCurvel])
concat )
( ( RoadLinks feed
projectextend [;Name: num2string (.Wayld), Curve: .RoadCurve])
( RoadRest feed
proj ectextend [; Name: num2string (.Wayld), Curve: .RoadCurve])
concat )
concat )
( (RoadsByCycle feed)
(RoadsByOneway feed)
concat )
concat
filter [isdefined(.Curve)]
extend [CurvLength: size(.Curve)]
sortby [CurvLength desc]
addcounter [Rid, 1]
consune ;

# Build Junctions
# Junction are defined to be crossings between way curves or death ends of a

# road

let ExtendedRoadParts =
RoadParts feed
proj ectextend [Wayld; StartPoint: getstartpoint (.WayCurve),
EndPoint: getendpoint (. WayCurve)]
consune ;

let CrossingPtsTmpH1 =
RoadParts feed
unnest [ WayInfo]
filter [. WayTagKey = ”layer”]
proj ectextend [Wayld, WayCurve; Layer: .WayTagValue]
consune ;

let CrossingPtsTmp =
CrossingPtsTmpH1 feed {sl}
CrossingPtsTmpH1 feed {s2}
itSpatialJoin [WayCurve.sl, WayCurve.s2, 4 ,8]
filter [(.Layer_-sl = .Layer_s2)]
filter [. Wayld_sl < .Wayld_s2]
filter [. WayCurve_sl intersects .WayCurves2]
proj ectextendstream Wayld_sl,
Wayld_s2; Pt: conponents (crossings (. WayCurve_sl,
. WayCurve_s2))]
filter [isdefined(.Pt)]
projectextend [Pt; Wayldl: .Wayld_sl, Wayld2: .Wayld_s2]
consune ;

let CrossingsAndRoadPartEndPoints =
( ( ExtendedRoadParts feed
projectextend [Wayld; Point: .StartPoint])
( ExtendedRoadParts feed
proj ectextend [Wayld; Point: .EndPoint])
concat )
( ( CrossingPtsTmp feed
projectextend [; Wayld: .Wayldl, Point: .Pt])
( CrossingPtsTmp feed
projectextend [; Wayld: .Wayld2, Point: .Pt])
concat )
concat
sortby [Wayld, Point]
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krduph [Wayld, Point]
consune ;

let RoadEnds =
Roads feed
projectextend [Rid; StartPoint: getstartpoint (.Curve),
EndPoint: getendpoint (.Curve)]
consume ;

let RoadEndPointsA =
( RoadEnds feed
projectextend [Rid; Point: .StartPoint])
( RoadEnds feed
projectextend [Rid; Point: .EndPoint])
concat
sortby [Rid, Point]
rdup
consune ;

let AddJuncs =
RoadEndPointsA feed
project [Point]
sortby [Point]
CrossingsAndRoadPartEndPoints feed
project [Point]
sortby [Point]
mer gedi f f
consume ;

let Junctionlds =
( CrossingsAndRoadPartEndPoints feed project [Point])
( AddJuncs feed)
concat
sortby [Point]
rdup
filter [isdefined(.Point)]
addcounter [Jid , 1]
consunme ;

# The junctions have more than one road position if they are not a death end
# of a road

let JunctionPositionsOnRoadsl =
CrossingsAndRoadPartEndPoints feed
filter [isdefined(.Point)]{pl}
Junctionlds feed
filter [isdefined(.Point)]{j}
itSpatialJoin[Point_pl,Point_j,4,8]
filter [.Point_.pl = .Point_j]
projectextend [; Jid: .Jid-j, Point: .Point.j, Wayld: .Wayld_pl]
RoadParts feed {w}
hashj oi n [Wayld, Wayld_w]
projectextend[Jid, Point,
Wayld; WayCurve: .WayCurve_w,
WayStartPoint : getstartpoint (. WayCurvew) ,
WayEndPoint: getendpoint (. WayCurve_w )]
Roads feed {r1}
itSpatialJoin[Point,Curve._rl , 4,8]

filter [.Point inside .Curve._rl]

filter [. WayStartPoint inside .Curve_rl]
filter [. WayEndPoint i nside .Curve.rl]
filter [.WayCurve inside .Curve_rl]

proj ectextend[Jid, Point,
Wayld; Rid: .Rid.rl,

RMeas: atpoint (.Curve_rl ,.Point),

WayStartPosOnRoute: atpoint (.Curve_rl, .WayStartPoint),

WayEndPosOnRoute: atpoint (. Curve_rl, .WayEndPoint)]
sortby [Jid, Point, Wayld, Rid, RMeas, WayStartPosOnRoute, WayEndPosOnRoute]
rdup

consune ;

let JunctionPositionsOnRoads2 =
CrossingsAndRoadPartEndPoints feed
filter [isdefined(.Point)]{pl}
Junctionlds feed
filter [isdefined(.Point)]{j}
itSpatialJoin[Point_pl,Point_j,4,8]
filter [.Point_.pl = .Point_j]
projectextend [; Jid: .Jid_-j, Point: .Point.j, Wayld: .Wayld_p1]
sortby [Jid, Point, Wayld]
JunctionPositionsOnRoadsl feed
project [Jid, Point, Wayld]
sortby [Jid, Point, Wayld]
mer gedi f f
RoadParts feed {w}
hashj oi n [Wayld, Wayld_w]
projectextend[Jid, Point,
Wayld; WayCurve: .WayCurve_w,
WayStartPoint : getstartpoint (. WayCurvew) ,
WayEndPoint: getendpoint (. WayCurve_w) |
Roads feed {r1}
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itSpatialJoin[Point,Curve_rl , 4 ,8]
filter [.Point inside .Curve._rl]
proj ectextend[Jid, Point,
Wayld; Rid: .Rid-rl,
RMeas: atpoint (.Curve_rl ,.Point),
WayStartPosOnRoute: atpoint (.Curve_rl,
getstartpoint (intersection (.WayCurve
.Curve_rl))),
WayEndPosOnRoute: atpoint (. Curve_rl,
get endpoi nt (i ntersection (.WayCurve,
.Curve_rl)))]

sortby [Jid, Point, Wayld, Rid, RMeas, WayStartPosOnRoute , WayEndPosOnRoute]

rdup
consunme ;

let JunctionPositionsOnRoads =
( JunctionPositionsOnRoadsl feed)
( JunctionPositionsOnRoads2 feed)
concat

consunme ;

let JunctionsAtRoadEnds =
RoadEndPointsA feed
filter [isdefined(.Point)] {r}
Junctionlds feed
filter [isdefined(.Point)] {j}
itSpatialJoin[Point_r,Point_j ,4,8]
filter [.Point-r = .Point_j]
projectextend [; Jid: .Jid-j, Point: .Point-j, Rid: .Rid-r]
Roads feed {rl1}
hashjoin[Rid, Rid_rl]
projectextend[Jid, Point, Rid; RMeas: atpoint (.Curve._rl ,.Point)]
sortby [Jid, Point, Rid, RMeas]
rdup
consume ;

let JunctionsAtRoadEndPairs =
JunctionsAtRoadEnds feed {jl1}
JunctionsAtRoadEnds feed {j2}
hashjoin[Jid-j1, Jid_-j2]
filter [.Rid-j1 <= .Rid-j2]
filter [.RMeas_jl # .RMecas_j2]|
projectextend [;Jid: .Jid_j1,
R1lid: .Rid_j1,
R1Meas: .RMeas_jl,
R2id: .Rid_j2,
R2Meas: .RMeas_j2,
NewCC: 65535]
sortby [Jid, Rlid, R1lMeas, R2id, R2Meas, NewCC]
krduph [Jid , R1lid, RlMeas, R2id, R2Meas, NewCC]
consume ;

let JunctionRoadPairs =
JunctionPositionsOnRoads feed {j1}
JunctionPositionsOnRoads feed {j2}
hashjoin[Jid-j1, Jid_-j2]
filter [.Rid-j1 <= .Rid-j2]
projectextend [; Jid: .Jid_j1,
Point: .Point_j1 ,
Rlid: .Rid_j1,
R1Meas: .RMeas_jl,
R2id: .Rid_j2,
R2Meas: .RMeas_j2,
CC: 65535,
Wayldl: .Wayld_j1,
WaylStartPosOnRoute: .WayStartPosOnRoute_j1,
WaylEndPosOnRoute: .WayEndPosOnRoute_j1,
Wayld2: . Wayld_j2,
Way2StartPosOnRoute: . WayStartPosOnRoute_j2,
Way2EndPosOnRoute: . WayEndPosOnRoute_j2]
sortby [Jid, Rlid, RlMeas, R2id, R2Meas, CC, WaylStartPosOnRoute,
WaylEndPosOnRoute, Way2StartPosOnRoute, Way2EndPosOnRoute,
Wayldl, Wayld2]
krduph [Jid , R1lid, RlMeas, R2id, R2Meas, CC, WaylStartPosOnRoute,
WaylEndPosOnRoute, Way2StartPosOnRoute, Way2EndPosOnRoute ]

consunme ;

# Compute correct Connectivity Codes for all junctions
# Select Road End Points

let RoadEndPoints =

JunctionRoadPairs feed
sortby [Jid, Rlid, R1Meas, R2id, R2Meas]
groupby [Jid; C: group feed count]
filter [.C = 1] {s}

JunctionRoadPairs feed

hashjoin[Jid_s, Jid]
filter [.R1id = .R2id]
filter [.Wayldl = .WaylId2]
projectextend [Jid, Rlid, RlMeas, R2id,
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R2Meas; NewCC: ifthenelse (.R1Meas = 0, 16, 2)]
consune ;

# Select One Way Curves

let OneWayCurvelds =
NestedWayRel feed
filter [. WayInfo afeed
filter [. WayTagKey = ”oneway” |

filter [not ((.WayTagValue = "no”) or
(. WayTagValue = ” false”) or
(. WayTagValue = 707 ))]
count > 0]
proj ect [Wayld]
consune ;
# lll()t()]'“,”(].v\,'h' are also oneways
let MotorWayCurvelds =
NestedWayRel feed
filter [. WayInfo afeed
filter [.WayTagKey = ”highway”]
filter [.WayTagValue = ”"motorway” |
count > 0]
project [Wayld]
consune ;
# roundabout are also oneways
let RoundaboutWayCurvelds =
NestedWayRel feed
filter [.WaylInfo afeed
filter [.WayTagKey = ”junction” ]
filter [.WayTagValue = "roundabout” ]

count > 0]
project [Wayld]
consune ;

let OneWaylds =
( ( OneWayCurvelds feed)
( RoundaboutWayCurvelds feed)
concat )
( MotorWayCurvelds feed)
concat
sortby [WaylId]
rdup
consunme ;

# set connectivity code for junctions of roundabouts

let JunctionsOfCycles =
JunctionRoadPairs feed
filter [.Rlid = .R2id]
filter [.Wayldl = .Wayld2]
RoundaboutWayCurvelds feed
hashj oi n [WayIdl, Wayld]
projectextend [Jid, Rlid, RlMeas, R2id, R2Meas; NewCC: 1285]
consunme ;

# set connectivity codes for oneway junctions

let JunctionsOfOnewaysSameRID1 =
JunctionRoadPairs feed
filter [.R1lid = .R2id]
filter [. Wayldl # .Wayld2]
OneWaylds feed
hashj oi n [WayIdl, Wayld]
projectextend [Jid, Rlid, RlMeas, R2id,
R2Meas; NewCC: ifthenelse (. WaylStartPosOnRoute < .WaylEndPosOnRoute,

ifthenel se (.R1Meas = .WaylEndPosOnRoute,
.CC binand 21845,
ifthenel se (.R1Meas = .WaylStartPosOnRoute,

.CC binand 3855,
.CC binand 1285)),

ifthenel se (.R1Meas = .WaylEndPosOnRoute,
.CC binand 43690,
ifthenel se (.R1Meas = .WaylStartPosOnRoute,

.CC binand 61680,
.CC binand 41120)))]
consume ;

let JunctionsOfOnewaysSameRID2 =
JunctionRoadPairs feed
filter [.Rlid = .R2id]
filter [.Wayldl # .Wayld2]
OneWaylds feed
hashj oi n [WayId2, Wayld]
projectextend [Jid, Rlid, RlMeas, R2id,
R2Meas; NewCC: ifthenelse (. Way2StartPosOnRoute < .Way2EndPosOnRoute,
i fthenel se (.R2Meas = .Way2EndPosOnRoute,
.CC binand 21845,

(0]
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ifthenel se (.R2Meas = .Way2StartPosOnRoute,
.CC binand 3855,
.CC binand 1285)),

i fthenel se (.R2Meas = .Way2EndPosOnRoute,
.CC binand 43690,
ifthenel se (.R2Meas = . Way2StartPosOnRoute,

.CC binand 61680,

.CC binand 41120)))]
consume ;

let JunctionsWithOneWayOnRouteA =
JunctionRoadPairs feed
filter [.R1lid < .R2id]
filter [. Wayldl # .Wayld2]
OneWaylds feed
hashj oi n [WayIdl, Wayld]
projectextend [Jid, Rlid, RlMeas, R2id,
R2Meas; NewCC: ifthenelse (. WaylStartPosOnRoute <= .WaylEndPosOnRoute,

ifthenel se (.R1Meas = .WaylEndPosOnRoute,
.CC binand 56797,
ifthenel se (.R1Meas = .WaylStartPosOnRoute,

.CC binand 65295,
.CC binand 56589)),

ifthenel se (.R1Meas = .WaylEndPosOnRoute,
.CC binand 61166,
ifthenel se (.R1Meas = .WaylStartPosOnRoute,

.CC binand 65520,

.CC binand 61152)))]
consune ;

let JunctionsWithOneWayOnRouteB =
JunctionRoadPairs feed
filter [.R1lid < .R2id]
filter [.Wayldl # .Wayld2]
OneWaylds feed
hashj oi n [WayId2, Wayld]
projectextend [Jid, Rlid, RlMeas, R2id,
R2Meas; NewCC: ifthenelse (. Way2StartPosOnRoute <= .Way2EndPosOnRoute,

i fthenel se (.R2Meas = .Way2EndPosOnRoute ,
.CC binand 30583,
ifthenel se (.R2Meas = . Way2StartPosOnRoute,

.CC binand 4095,
.CC binand 1911)),

i fthenel se (.R2Meas = .Way2EndPosOnRoute ,
.CC binand 48095,
ifthenel se (.R2Meas = . Way2StartPosOnRoute,

.CC binand 61695,

.CC binand 45243)))]
consune ;

# Build Relation of Restrictions for way connections

let ViaNodesRel =
NestedRelationRel feed
filter [.Rellnfo afeed
filter [.RefInfo afeed
filter [.RelTagKey contains ”"restriction”]
count > 0]
count > 0]
unnest [Rellnfo]
filter [. MemberRole = ”via”]
filter [.MemberType = "node” |
SpatialPosOfNodes feed
hashj oi n [ MemberRef, Nodeld]

proj ectextend [Relld, Nodeld, NodePos; RelTagVal: .RefInfo afeed extract [RelTagValuel]]
consume ;

let FromWaysRel =
NestedRelationRel feed
filter [.Rellnfo afeed
filter [.RefInfo afeed
filter [.RelTagKey contains ”"restriction”]
count > 0]
count > 0]
unnest [Rellnfo]
filter [.MemberRole = ”from” ]
SpatialWayCurve feed
hashj oi n [MemberRef, Wayld]
project [Relld, Wayld, WayCurve]
consume ;
let ToWaysRel =
NestedRelationRel feed
filter [.Rellnfo afeed
filter [.RefInfo afeed
filter [.RelTagKey contains ”restriction”]
count > 0]
count > 0]
unnest [Rellnfo]
filter [.MemberRole = 7to”]
SpatialWayCurve feed
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hashj oi n [MemberRef, Wayld]
project [Relld, Wayld, WayCurve]
consune ;

let NodeRestrictions =
ViaNodesRel feed {v}
FromWaysRel feed {f}
hashjoin[Relld_v, Relld_f]
project [Relld_.v, Nodeld_-v, NodePos_v, RelTagVal_-v, WaylId_f]
ToWaysRel feed {t}
hashjoin[Relld_v, Relld_t]
project [Nodeld_.v, NodePos_.v, RelTagVal.v, Wayld_f, WayId_t]
sortby [Nodeld_-v, NodePos_.v, Wayld_-f, Wayld_t, RelTagVal_v]
rdup
consunme ;

# Compute connectivity codes for known restrictions on single junctions

let RestrictedJunctionsAAl =
JunctionRoadPairs feed
NodeRestrictions feed
itSpatialJoin[Point, NodePos.v,4,68]
filter [. Point = .NodePos_v]

filter [.Wayldl = . WaylId_f]
filter [.Wayld2 = .Wayld_t]
filter [.Rlid = .R2id]
projectextend [Jid, Rlid, Rl1Meas, R2id,
R2Meas ;NewCC: ifthenel se (. Wayldl = .Wayld2,
ifthenel se (. WaylStartPosOnRoute < .WaylEndPosOnRoute,
ifthenel se (. WaylStartPosOnRoute = .R1Meas,

.CC binand 65519,
.CC binand 65533),
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
.CC binand 65533,
.CC binand 65519)),
ifthenel se (. WaylStartPosOnRoute < .WaylEndPosOnRoute,
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
ifthenelse (.RelTagVal_v contains ”"no”
.CC binand 65503,
.CC binand 65327),
ifthenel se (.RelTagVal_v contains
.CC binand 65534,
.CC binand 65521)),
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
ifthenel se (. RelTagVal_v contains
.CC binand 65534,
.CC binand 65521),
ifthenel se (.RelTagVal_v contains ”"no”
.CC binand 65503,
.CC binand 65327))))]

9 ”»

no

sortby [Jid, R1lid, Rl1Meas, R2id, R2Meas, NewCC]
consunme ;

let RestrictedJunctionsAA2 =
JunctionRoadPairs feed
NodeRestrictions feed
itSpatialJoin[Point, NodePos.v,4,8]
filter [. Point = .NodePos_v]

filter [.Wayld2 = . Wayld_f]
filter [.Wayldl = .Wayld_t]
filter [.Rlid = .R2id]
projectextend [Jid, Rlid, Rl1Meas, R2id,
R2Meas ;NewCC: ifthenel se (. Wayldl = .Wayld2,
ifthenel se (. Way2StartPosOnRoute < .Way2EndPosOnRoute ,
ifthenel se (. Way2StartPosOnRoute = .R2Meas,

.CC binand 65519,
.CC binand 65533),
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
.CC binand 65533,
.CC binand 65519)),
ifthenel se (. Way2StartPosOnRoute < .Way2EndPosOnRoute,
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (.RelTagVal_v contains ”no”,
.CC binand 65503,
.CC binand 65327),
ifthenel se (.RelTagVal_v contains ”no”,
.CC binand 65534,
.CC binand 65521)),
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (. RelTagVal_v contains ”no”,
.CC binand 65534,
.CC binand 65521),
ifthenel se (. RelTagVal_v contains ”no”,
.CC binand 65503,
.CC binand 65327))))]
sortby [Jid, R1lid, Rl1Meas, R2id, R2Meas, NewCC]
consunme ;

let RestrictedJunctionsAB =
JunctionRoadPairs feed
NodeRestrictions feed
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itSpatialJoin[Point, NodePos.v,4,8]
filter [. Point = .NodePos_v]
filter [.Wayldl = . Wayld_f]
filter [.Wayld2 = .Wayld_t]
filter [.R1lid < .R2id]
projectextend [Jid, Rlid, Rl1Meas, R2id,
R2Meas; NewCC: ifthenel se (.Wayldl = .Wayld2,
0,
ifthenel se (. WaylStartPosOnRoute < .WaylEndPosOnRoute,
ifthenel se (. Way2StartPosOnRoute < .WaylEndPosOnRoute,
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (.RelTagVal_v contains ”no”
.CC binand 65471,
.CC binand 65359),
ifthenel se (.RelTagVal_v contains ”no”
.CC binand 65407,
.CC binand 65423)),
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (.RelTagVal_v contains "no”
.CC binand 65531,
.CC binand 65524),
ifthenel se (.RelTagVal_v contains "no”
.CC binand 65527,
.CC binand 65528))),
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (.RelTagVal_v contains "no”
.CC binand 65407,
.CC binand 65423),
ifthenel se (.RelTagVal_v contains ”no”
.CC binand 65471,
.CC binand 65359)),
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (.RelTagVal_v contains ”no”
.CC binand 65527,
.CC binand 65528),
ifthenel se (.RelTagVal_v contains ”"no”
.CC binand 65531,
.CC binand 65524)))),
i fthenel se (. Way2StartPosOnRoute < .WaylEndPosOnRoute,
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (.RelTagVal_v contains "no”
.CC binand 65531,
.CC binand 655524),
ifthenel se (.RelTagVal_v contains "no”
.CC binand 65527,
.CC binand 65528)),
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenelse (.RelTagVal_v contains ”no”
.CC binand 65471,
.CC binand 65359),
ifthenel se (.RelTagVal_v contains ”no”
.CC binand 65407,
.CC binand 65423))),
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (.RelTagVal_v contains ”no”
.CC binand 65527,
.CC binand 65528),
ifthenel se (.RelTagVal_v contains "no”
.CC binand 65531,
.CC binand 65524)),
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (.RelTagVal_v contains "no”
.CC binand 65407,
.CC binand 65423),
ifthenel se (.RelTagVal_v contains ”no”,
.CC binand 65471,
.CC binand 65359))))))]
sortby [Jid, R1lid, R1Meas, R2id, R2Meas, NewCC]
consume ;

let RestrictedJunctionsBA =
JunctionRoadPairs feed
NodeRestrictions feed
i tSpatialJoin[Point,

filter [.Point = .NodePos_v]
filter [.Wayld2 = . Wayld_f]
filter [.Wayldl = .Wayld_t]
filter [.R1lid < .R2id]
projectextend [Jid, R1id,
R2Meas; NewCC:

R1Meas,
ifthenel se (. Wayldl =

NodePos.v ,4 ,8]

R2id,
. Wayld2,

0,
ifthenel se (. WaylStartPosOnRoute < .WaylEndPosOnRoute,
ifthenel se (. Way2StartPosOnRoute < .WaylEndPosOnRoute,
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (.RelTagVal_v contains "no”,
.CC binand 61439,
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.CC binand 8191),
ifthenel se (. RelTagVal_v contains
.CC binand 65279,
.CC binand 61951)),
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (. RelTagVal_v contains ”no”
.CC binand 57343,
.CC binand 12287),
ifthenel se (.RelTagVal_v contains ”"no”
.CC binand 65023,
.CC binand 62207))),
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (.RelTagVal_v contains ”"no”
.CC binand 65279,
.CC binand 61951),
ifthenel se (. RelTagVal_v contains
.CC binand 61439,
.CC binand 8191)),
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (. RelTagVal_v contains ”no”
.CC binand 65023,
.CC binand 62207),
ifthenel se (.RelTagVal_v contains ”"no”
.CC binand 57343,
.CC binand 12287)))),
i fthenel se (. Way2StartPosOnRoute < .WaylEndPosOnRoute,
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
ifthenel se (. Way2StartPosOnRoute = .R2Meas,
ifthenel se (. RelTagVal_v contains ”no”
.CC binand 57343,
.CC binand 12287),
ifthenel se (.RelTagVal_v contains ”"no”
.CC binand 65023,
.CC binand 62207)),
ifthenel se (. Way2StartPosOnRoute = .R2Meas,

”» ”»

no

”» ”»

no

ifthenel se (.RelTagVal_v contains ”no”
.CC binand 61439,
.CC binand 8191),
ifthenel se (.RelTagVal_v contains ”no”
.CC binand 65279,
.CC binand 61951))),
ifthenel se (. WaylStartPosOnRoute = .R1Meas,
ifthenel se (. Way2StartPosOnRoute = .R2Meas,

ifthenel se (.RelTagVal_v contains ”no”
.CC binand 65023,

.CC binand 62207),
ifthenel se (.RelTagVal_v contains ”"no”
.CC binand 57343,

.CC binand 12287)),
ifthenel se (. Way2StartPosOnRoute = .R2Meas,

ifthenel se (.RelTagVal_v contains ”"no”

.CC binand 65279,

.CC binand 61951),
ifthenel se (. RelTagVal_v contains

.CC binand 61439,

.CC binand 8191))))))]

”» ”»

no

sortby [Jid, R1lid, Rl1Meas, R2id, R2Meas, NewCC]

consume ;

# compute resulting connectivity code respecting all restrictions computed before
# for each junction. This means a junction may be a oneway and also have

# additional

let Junctions

restrictions , such that the connectivity values must be combined.

( ( ( ( JunctionsWithOneWayOnRouteA feed)
( JunctionsWithOneWayOnRouteB feed)
concat )

( ( RestrictedJunctionsAAl feed)
( RestrictedJunctionsAA2 feed)
concat )

concat )

( ( ( RestrictedJunctionsAB feed)
( RestrictedJunctionsBA feed)
concat )
( ( JunctionsOfOnewaysSameRID1 feed)
( JunctionsOfOnewaysSameRID2 feed)
concat )

concat )
concat )

( ( ( RoadEndPoints feed)
( JunctionsAtRoadEndPairs feed)

concat )

( ( JunctionRoadPairs feed projectextend[Jid, Rlid, Rl1Meas, R2id, R2Meas; NewCC: .CC])
( JunctionsOfCycles feed)

concat )
concat )
concat

project [Jid, Rlid, R1Meas, R2id, R2Meas, NewCC]
sortby [Jid, R1lid, Rl1Meas, R2id, R2Meas]
groupby [Jid, R1lid, RlMeas, R2id, R2Meas; CC: group feed
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projecttransformstream NewCC]
bi nands |
consume ;

# Build network with all possible restrictions

let KENetwork =
thenetwork (1,
0.0001,
Roads feed
proj ectextend [Rid, CurvLength,
Curve; Dual: FALSE,
StartS: get_startsmaller (.Curve)]
consunme,
Junctions feed
project [R1lid, RlMeas, R2id, R2Meas, CC]
consune );

# Script finished close database

close database;

5.3.2 JNetwork

JNetworkFromFull0SMImport.SEC The name of the resulting jnetwork object can be defined in the query with
operation createjnet before the database is closed by changing the first parameter.

# The script imports Openstreetmap data from osm—File and creates a jnetwork
# object from this data source

#

# Create and open database

create database testdb;

open database testdb;

# Define source file with complete path for import and jnetwork creation
let SOURCEFILE = ’/home/jandt/Downloads/OSM-Dateien/MapMatchTest.osm’;

# import osm data form file into sisx relations described in OSMAlgebra
# for operator fullosmimport

query fullosm nport (SOURCEFILE, ”Osm”);

# Extend taginformation with default values for needed but not yet set tags
# Set Oneway—Tag for motorways and roundabouts because tag motorway and tag
# roundabout imply oneway definiton in osm

let AddMissingOnewayHighway =
OsmWayTags feed
sortby [WayIdInTag ]
groupby [ WayldInTag; Motorway: group feed

filter [.WayTagKey = ”highway”]
filter [.WayTagValue = "motorway” |
count ,
Oneway: group feed
filter [. WayTagKey = ”oneway” |
count ]

filter [.Motorway > 0]

filter [.Oneway = 0]

proj ectextend [WayldInTag ; WayTagKey: ’oneway’, WayTagValue: ’yes’]
consune ;

let AddMissingOnewayRoundabout =
OsmWayTags feed
sortby [WayIdInTag ]
groupby [ WayIdInTag ; Roundabout: group feed

filter [.WayTagKey = ”junction”]
filter [.WayTagValue = "roundabout” ]
count
Oneway: group feed
filter [. WayTagKey = ”oneway” |
count |

filter [.Roundabout > 0]

filter [.Oneway = 0]

proj ectextend [WayldInTag ; WayTagKey: ’oneway’, WayTagValue:
consume ;

)

yes ]

let OsmWayTagNew2 =
((AddMissingOnewayRoundabout feed)
(AddMissingOnewayHighway feed)
concat )
(OsmWayTags feed)
concat
consume ;
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# add layertag where it is missing because we need it for crossing computation

let WayldsWithoutTags =
OsmWays feed
project [Wayld]
sortby [Wayld]
OsmWayTags feed
projectextend [; Wayld: .WayIdInTag]
sortby [Wayld]
rdup
mer gedi f f
consume ;

let OsmWayTagsLayerExtended =
OsmWayTags feed
sortby [WayldInTag ]
groupby [WayIdInTag; C: group feed
filter [.WayTagKey = "layer” |
count ]
filter [.C = 0]
projectextend [WayldIinTag; WayTagKey: ’layer’,
WayTagValue: 0]
consunme ;

let LayerTagForWayldsWithoutTag =
WayldsWithoutTags feed
projectextend [; WayldInTag: .Wayld,
WayTagKey: ’layer ’,
WayTagValue: 0]
consume ;

let OsmWayTagNewl =
((OsmWayTagNew2 feed)
(OsmWayTagsLayerExtended feed)
concat )
(LayerTagForWayldsWithoutTag feed)
concat

consune ;

# vmax speed is needed for jnetwork creation to support fastest path computation
# later on

let OsmWayTagsVMaxExtended =
OsmWayTags feed
sortby [WayldInTag |
groupby [WayIdInTag; C: group feed
filter [.WayTagKey = ”"maxspeed” |
count ]
filter [.C = 0]
projectextend [WayldIinTag; WayTagKey: ’'maxspeed’,
WayTagValue: 0.0 7]
consume ;

let VMaxForWayldsWithoutTag =
WayldsWithoutTags feed
projectextend [; WayldInTag: .Wayld,
WayTagKey: ’maxspeed’,
WayTagValue: 0.0 7]
consunme ;

let OsmWayTagNew =
((OsmWayTagNewl feed)
(OsmWayTagsVMaxExtended feed)
concat )
(VMaxForWayldsWithoutTag feed)
concat

consune ;

# Connect Spatial Information from nodes and ways

# We have to distinguish between simple and complex curves because the

# defined way curves may have more than two endpoints or cross themself, what
# is not allowed for jnetwork sline values.

let SpatialPosOfNodes =

OsmNodes feed

proj ectextend [Nodeld; NodePos: makepoint (.Lon,.Lat)]
consune ;

let SpatialWayCurveSimple =
OsmWays feed
SpatialPosOfNodes feed
hashj oi n [NodeRef, Nodeld]
filter [.NodeRef = .Nodeld]
proj ect [Wayld, NodeCounter, NodePos]
sortby [Wayld, NodeCounter ]

groupby [Wayld; WayCurve: group feed projecttransformstream NodePos] collect_sline[TRUE]]

consunme ;

let SpatialWayCurveComplex =
OsmWays feed
SpatialWayCurveSimple feed
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filter [not (isdefined(.WayCurve))] {s}
hashj oi n [Wayld, WaylId_s]
filter [.Wayld = .Wayld_s]
proj ect [Wayld, NodeCounter, NodeRef]
SpatialPosOfNodes feed
hashj oi n [NodeRef, Nodeld]
filter [.NodeRef = .Nodeld]
proj ect [Wayld, NodeCounter, NodePos]
sortby [Wayld, NodeCounter ]
groupby [Wayld; WayCurve: group feed projecttransformstream NodePos] collect_line[TRUE],

StartPointCurve: group feed head[1] extract [NodePos]]

proj ectextendstream Wayld, StartPointCurve; WayC: .WayCurve |onglines]
addcount er [PartNo,1]
proj ectextend [Wayld, PartNo, StartPointCurve,

WayC; StartPoint: getstartpoint (.WayC),

EndPoint: getendpoint (.WayC)]

sortby [Wayld, PartNo]

extend_last [PrevEndPoint: ..EndPoint :: [const point value (0.0 0.0)]]

sortby [Wayld, PartNo]

proj ectextend [Wayld; WayCurve: ifthenelse (.StartPointCurve = .StartPoint, .WayC,
ifthenelse (. StartPoint = .PrevEndPoint, .WayC,

set_startsmal | er (.WayC, not (get_startsmaller (.WayC)))))]
consunme ;

let SpatialWayCurve =
(SpatialWayCurveSimple feed filter [isdefined(.WayCurve)])
(Spatial WayCurveComplex feed)

concat

filter [isdefined(.WayCurve)]
consune ;
# Collect tag information by identfier

let NestedNodeRel =
SpatialPosOfNodes feed
OsmNodeTags feed
hashj oi n [Nodeld , NodeldInTag |
filter [.Nodeld = .NodeldInTag ]
proj ect [Nodeld, NodePos, NodeTagKey, NodeTagValue]
sortby [Nodeld, NodePos, NodeTagKey, NodeTagValue]
rdup
nest [Nodeld, NodePos; Nodelnfo]
consune ;

let NestedWayRel =
SpatialWayCurve feed
OsmWayTagNew feed
hashjoin [Wayld, WayldInTag |

filter [.Wayld = .WayldInTag ]

project [Wayld, WayCurve, WayTagKey, WayTagValue]

filter [not (((.WayTagKey = "oneway”) and ((.WayTagValue = "no”) or
(. WayTagValue = ” false”) or
(. WayTagValue = 707))))]

sort by [Wayld, WayCurve, WayTagKey, WayTagValue]
rdup
nest [Wayld, WayCurve; WayInfo]
proj ectextend [Wayld, WaylInfo; WayC: .WayCurve,
ChangeDirection: ifthenelse (. WayInfo afeed filter [.WayTagKey = ”"oneway” ]
filter [(.WayTagValue ”?—17) or
(. WayTagValue ?reverse” )]

count > 0,
TRUE, FALSE)]
proj ectextend [Wayld, WaylInfo; WayCurve: ifthenelse (.ChangeDirection,
set_startsmal | er (.WayC, not (get_startsmaller (.WayC))),
. WayC) |
consunme ;

let NestedRelationRel =
OsmRelations feed
OsmRelationTags feed
hashjoi n[Relld, RelldInTag]
filter [.Relld = .RelldInTag]
project [Relld, RefCounter, MemberRef, MemberType, MemberRole, RelTagKey, RelTagValue]
sortby [Relld, RefCounter, MemberRef, MemberType, MemberRole, RelTagKey, RelTagValue]
rdup
nest [Relld, RefCounter, MemberRef, MemberType, MemberRole; ReflInfo]
nest [Relld; Rellnfo]
consume ;

# Select interesting WayCurves for street network

let RoadParts =
NestedWayRel feed
filter [.WayInfo afeed
filter [. WayTagKey = ”highway” ]
filter [(.WayTagValue contains ”living”) or
(. WayTagValue contains ”motorway”) or
(. WayTagValue contains ”path”) or
(. WayTagValue contains ”primary”) or



CHAPTER 5. SCRIPTS USING NETWORK IMPLEMENTATIONS

. WayTagValue contains ”residential”) or
. WayTagValue contains ”road”) or
. WayTagValue contains ”secondary”) or
. WayTagValue contains ”service”) or
. WayTagValue contains ”tertiary”) or
. WayTagValue contains ”trunk”) or
. WayTagValue contains ”track”) or
. WayTagValue contains ”unclassified”) or
.WayTagValue contains ”pedestrian”)]
count > 0]
filter [isdefined(.WayCurve)]
filter [not (isenpty (.WayCurve))]
consume ;

e T T e

# Build Junctions

let ExtendedRoadParts =
RoadParts feed
unnest [WaylInfo]
filter [. WayTagKey = ”layer”]
proj ectextend [Wayld; StartPoint: getstartpoint (.WayCurve),
EndPoint: getendpoint (. WayCurve)]
consunme ;

let WayEndPoints =

(ExtendedRoadParts feed projectextend [Wayld; Point: .StartPoint])
(ExtendedRoadParts feed projectextend [Wayld; Point: .EndPoint])

concat
consume ;

let CrossingPtsTmpH1 =

RoadParts feed

unnest [WaylInfo]

filter [.WayTagKey = ”layer”]

proj ectextend [Wayld, WayCurve; Layer: .WayTagValue]
consune ;

let CrossingPtsTmp =
CrossingPtsTmpH1 feed {sl}
CrossingPtsTmpH1 feed {s2}
itSpatialJoin [WayCurve.sl, WayCurve_s2, 4 ,8]
filter [(.Layer_-sl = .Layer-s2)]
filter [. Wayld_sl < .Wayld_s2]
filter [. WayCurve_sl intersects .WayCurves2]
proj ectextendstream Wayld_sl,

Wayld_s2; Pt: components (crossings (. WayCurve_sl, .WayCurves2))]

filter [isdefined(.Pt)]
projectextend [Pt; Wayldl: .Wayldsl,
Wayld2: . WaylId_s2]
consume ;

let CrossingPts =
(CrossingPtsTmp feed projectextend |
(CrossingPtsTmp feed projectextend |
concat
sortby [Wayld, Point]
rdup

consune ;

)
)

let CrossingsAndRoadPartEndPoints =
(WayEndPoints feed)
(CrossingPts feed)
concat
sortby [Wayld, Point]
krduph [Wayld, Point]
consune ;

let DeadEndCrossings =

CrossingsAndRoadPartEndPoints feed

sortby [Wayld, Point]

rdup

CrossingPts feed

sortby [Wayld, Point]

rdup

mer gedi f f

projectextend [;Pt: .Point, Wayldl: .Wayld, Wayld2: .Wayld]
consume ;

let AllCrossings =
(CrossingPtsTmp feed)
(DeadEndCrossings feed)
concat
sortby [Pt, Wayldl, Wayld2]
rdup

consune ;

let Junctionlds =
AllCrossings feed project [Pt]
sortbhy [Pt]
rdup

Wayld: .Wayldl, Point:
Wayld: .Wayld2, Point:

. Pt
. Pt]

D)

)
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filter [isdefined(.Pt)]

addcounter [Jid , 1]

projectextend [Jid; Point: .Pt]
consune ;

# Split osm ways into network sections at junction points

let RoadPartSectionsTmpl =
RoadParts feed
Junctionlds feed
i tSpatial Join[WayCurve, Point,4,8]
filter [.Point inside .WayCurve]
project [Wayld, WayCurve, Point]
sortby [Wayld, WayCurve, Point]
groupby [Wayld, WayCurve; Splitpoints: group feed projecttransfornmstream Point] collect_points [TRUE]]
proj ectextendstream Wayld; SectCurve: splitslineatpoints(.WayCurve, .Splitpoints)]
extend[StartPoint: getstartpoint (.SectCurve),
EndPoint: getendpoint (.SectCurve),
Lenth: size(.SectCurve)]
RoadParts feed {rl}
hashj oi n [Wayld, WaylId_rl]
filter [.Wayld = .WaylId_rl]
proj ectextend [Wayld, SectCurve, StartPoint, EndPoint,
Lenth; WayCurve: .WayCurve_rl,
Oneway: ifthenelse (. WayInfo_rl afeed

filter [. WayTagKey_-rl = ”oneway” |
count > O,TRUE, FALSE),
RoadType: .WaylInfo_rl afeed filter [. WayTagKey_rl1 = ”"highway”] extract [WayTagValue_rl],
Speed: str2real (. WayInfo_rl afeed filter [. WayTagKey_-rl = ”"maxspeed”] extract [WayTagValue_rl])]
extend [VMax: ifthenelse (.Speed > 0.0, .Speed,
ifthenel se (.RoadType contains ”living”, 10.0,

ifthenel se (.RoadType contains ”motorway”, 200.0,
ifthenel se (.RoadType contains ”path”, 5.0,
ifthenel se (.RoadType contains ”primary”, 100.0,

ifthenel se (.RoadType contains ”residential”, 30.0,
ifthenel se (.RoadType contains ”road”, 50.0,
ifthenel se (.RoadType contains ”secondary”, 70.0,
ifthenel se (.RoadType contains ”service”, 30.0,

ifthenel se (.RoadType contains ”tertiary”, 50.0,
ifthenel se (.RoadType contains ”trunk”, 130.0,
ifthenel se (.RoadType contains ”track”, 10.0,
ifthenel se (.RoadType contains ”unclassified”, 50.0,
ifthenel se (.RoadType contains ”pedestrian” ,5.0,30.0)))))))))))))) .
Side: ifthenelse (.Oneway,[const jdirection value(Up)],[const jdirection value(Both)])]
Junctionlds feed {j1}
itSpatialJoin[StartPoint, Point_jl1 ,4,8]
filter [.StartPoint = .Point_jl]
proj ectextend [Wayld, SectCurve, StartPoint, EndPoint, Lenth, Side, VMax,
WayCurve; StartJid: .Jid-j1]
Junctionlds feed {j2}
itSpatialJoin[EndPoint, Point_j2 ,4,8]
filter [.EndPoint = .Point_-j2]
proj ectextend [Wayld, SectCurve, StartPoint, EndPoint, WayCurve, Lenth, Side,
VMax, StartJid; EndJid: .Jid_j2]
addcounter [Sid, 1]
consune ;

# junctions

let JunctionsAndWayCrossings =
AllCrossings feed filter [isdefined(.Pt)]
Junctionlds feed
itSpatialJoin[Pt, Point,4,8]
filter [.Pt = .Point]
project [Wayldl, WayId2, Point, Jid]
RoadPartSectionsTmpl feed {rl}
hashj oi n [WayIdl, WaylId_rl]
filter [.Wayldl = .Wayld_rl]
filter [(.Jid = .StartJid_r1) or (.Jid = .EndJid.r1)]
proj ectextend [Wayldl, Wayld2, Point, Jid; Sidl: .Sid-rl,
S1SectCurve: .SectCurve.rl,
S1StartPoint: .StartPoint_rl ,
S1EndPoint: .EndPoint_rl,
S1StartJid: .StartJid-rl ,
S1EndJid: .EndJid-rl,
SlLenth: .Lenth_rl,
S1Side: .Side-rl,
S1JuncAtStart: ifthenelse (.StartJid_rl = .Jid, TRUE, FALSE)]
RoadPartSectionsTmpl feed {r2}
hashj oi n [WayId2, WayId_r2]
filter [.Wayld2 = . Wayld_r2]
filter [(.Jid = .StartJid-r2) or (.Jid = .EndJid-r2)]
proj ectextend [Wayldl, Wayld2, Point, Jid, Sidl, S1SectCurve,
S1StartPoint , S1EndPoint, S1StartJid, S1EndJid, SlLenth,
S1JuncAtStart, S1Side; Sid2: .Sid-r2,
S2SectCurve: .SectCurve.r2,
S2StartPoint: .StartPoint_r2,
S2EndPoint: .EndPoint_r2,
S2StartJid: .StartJid-r2 ,
S2EndJid: .EndJid-r2,
S2Lenth: .Lenth_r2,
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S2Side: .Side_r2,
S2JuncAtStart: ifthenelse (.StartJid_r2 = .Jid, TRUE, FALSE)]
consune ;

# build roads
#
# by ref

let RoadsByRefH1 =
RoadParts feed
filter [not (iscycle (.WayCurve))]
filter [. WayInfo afeed

filter [. WayTagKey = ”oneway” |
count = 0]

filter [. WayInfo afeed
filter [. WayTagKey = 7ref”]

count > 0]

ilter [. WayInfo afeed

filter [. WayTagKey = ”highway” ]

filter [not (. WayTagValue contains ”link”)]
count > 0]

unnest [WaylInfo]

—

filter [.WayTagKey = 7ref”]
proj ectextendstream Wayld, WayCurve; RefToken: tokenize(’ ’+.WayTagValue,”;/” )]
proj ectextend [Wayld, WayCurve; Ref: trim(toObject (’”’'4+.RefToken +’77,7a”))]
sort by [Ref, WayCurve]

consune ;

let RoadsByRefSimpleH1l =
RoadsByRefH1 feed
sort by [Ref, WayCurve]
groupby [Ref; C: group feed count ]
consume ;

let RoadsByRefSimpleH2 =
RoadsByRefSimpleH1 feed
filter [.C = 1] {r1}
RoadsByRefH1 feed {r2}
hashjoin[Ref_rl, Ref_r2]
filter [. Reforl = . Ref_r2]
projectextend [; Ref: .Ref.rl,

RoadCurve: .WayCurve_r2]
consume ;

let RoadsByRefSimpleH3 =
RoadsByRefSimpleH1 feed
filter [.C > 1] {rl}
RoadsByRefH1 feed {r2}
hashjoin[Ref_r1, Ref_r2]
filter [. Reforl = . Ref_r2]
projectextend [; Ref: .Ref_r2,
WayCurve: .WayCurve_r2,
SegStart: getstartpoint (. WayCurver2)]
sortby [Ref, SegStart, WayCurve]
groupby [Ref; RoadC: group feed projecttransformstream WayCurve] collect_sline[TRUE],
StartPointCurve: group feed head[1] extract [SegStart]]
extend [StartRoadC: getstartpoint (.RoadC)]
proj ectextend [Ref; RoadCurve: ifthenelse(.StartPointCurve = .StartRoadC,
.RoadC,
set_startsmal |l er (.RoadC,
not (get _startsmaller (.RoadC))))]
consume ;

let RoadsByRefSimple =
(RoadsByRefSimpleH2 feed)
(RoadsByRefSimpleH3 feed)
concat
sortby [Ref, RoadCurve]
consune ;

let RoadsByRefComplex =

RoadsByRefH1 feed
sort by [Ref, WayCurve]
RoadsByRefSimple feed

filter [not (i sdefined(.RoadCurve))] {s}
hashjoi n[Ref, Ref_s]
filter [.Ref = .Ref_s|]
proj ectextend [Ref, WayCurve; StartPoint: getstartpoint (. WayCurve)]
sortby [Ref, WayCurve, StartPoint]
groupby [Ref; RoadC: group feed projecttransformstream WayCurve] collect_line[TRUE],

StartPointCurve: group feed head[1] extract [StartPoint ]

proj ectextendstream Ref, StartPointCurve; RoadCur: .RoadC |onglines]
addcounter [PartNo,1]
proj ectextend [Ref, PartNo, StartPointCurve,

RoadCur; StartPoint: getstartpoint (.RoadCur),

EndPoint: getendpoint (.RoadCur)]

sortby [Ref, PartNo]

extend_last [PrevEndPoint: ..EndPoint :: [const point value (0.0 0.0)]]
sort by [Ref, PartNo]
proj ectextend [Ref; RoadCurve: ifthenelse (.StartPointCurve = .StartPoint, .RoadCur,

ifthenelse (.StartPoint = .PrevEndPoint, .RoadCur,
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set_startsmal | er (.RoadCur,
not (get _startsmal l er (.RoadCur)))))]
consune ;

let RoadsByRef =
(RoadsByRefSimple feed filter [isdefined(.RoadCurve)])
(RoadsByRefComplex feed)
concat
filter [isdefined(.RoadCurve)]
consunme ;

# by name

let RoadsByNameH1 =
RoadParts feed
filter [not (iscycle (.WayCurve))]
filter [. WayInfo afeed

filter [. WayTagKey = ”oneway” |
count = 0]

filter [. WayInfo afeed
filter [. WayTagKey = ”name” |

count > 0]
filter [. WayInfo afeed
filter [. WayTagKey = ”highway” ]
filter [not (. WayTagValue contains ”link”)]
count > 0]
unnest [WaylInfo]

filter [. WayTagKey = ”name” |
proj ectextend [Wayld, WayCurve; Name: trim(toObject (77 +.WayTagValue +’7 " ,7a”))]
sort by [Name, WayCurve]

consune ;

let RoadsByNameSimpleH1 =
RoadsByNameH1 f eed
sort by [Name, WayCurve]
groupby [Name; C: group feed count |
consume ;

let RoadsByNameSimpleH2 =
RoadsByNameSimpleH1 feed
filter [.C = 1] {rl}
RoadsByNameH1 feed {r2}
hashj oi n [Name-rl, Name_r2]
filter [.Name_rl = .Name._r2]
proj ectextend [; Name: .Name.rl,

RoadCurve: .WayCurve_r2]
consunme ;

let RoadsByNameSimpleH3 =
RoadsByNameSimpleH1 feed
filter [.C > 1] {rl}
RoadsByNameH1 feed {r2}
hashj oi n [Name_rl, Name_r2]
filter [.Namer2 = .Name._r2]
projectextend [; Name: .Name.rl,
WayCurve: .WayCurve_r2,
SegStartPoint: getstartpoint (. WayCurve._r2)]
sort by [Name, SegStartPoint , WayCurve]
groupby [Name; RoadC: group feed projecttransformstream WayCurve] collect_sline[TRUE],
StartRoadPoint: group feed head[1] extract [SegStartPoint]]
extend [StartRoadC: getstartpoint (.RoadC)]
proj ectextend [Name; RoadCurve: ifthenelse (.StartRoadPoint = .StartRoadC,
.RoadC,
set _startsmal |l er (.RoadC,
not (get _startsmaller (.RoadC))))]
consume ;

let RoadsByNameSimple =
(RoadsByNameSimpleH2 feed)
(RoadsByNameSimpleH3 feed)
concat
sort by [Name, RoadCurve |
consune ;

let RoadsByNameComplex =
RoadsByNameH1 f eed
RoadsByNameSimple feed
filter [not (i sdefined(.RoadCurve))] {s}
hashj oi n [Name, Name_s]
filter [.Name = .Name_s]
proj ect ext end [Name, WayCurve; StartPoint: getstartpoint (. WayCurve)]
sort by [Name, WayCurve, StartPoint ]
groupby [Name; RoadC: group feed projecttransformstream WayCurve] collect_line[TRUE],
StartPointCurve: group feed head[1] extract [StartPoint]]
proj ectextendstream/Name, StartPointCurve; RoadCur: .RoadC |onglines]
addcount er [PartNo,1]
proj ect ext end [Name, PartNo, StartPointCurve,
RoadCur; StartPoint: getstartpoint (.RoadCur),
EndPoint: getendpoint (.RoadCur)]
sort by [Name, PartNo]
extend_last [PrevEndPoint: ..EndPoint :: [const point value (0.0 0.0)]]
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sort by [Name, PartNo]
proj ect ext end [Name; RoadCurve: ifthenelse (.StartPointCurve = .StartPoint, .RoadCur,
ifthenelse (.StartPoint = .PrevEndPoint, .RoadCur,
set_startsmal | er (.RoadCur,
not (get _startsmaller (.RoadCur)))))]
consume ;

let RoadsByName =
(RoadsByNameSimple feed filter [isdefined(.RoadCurve)])
(RoadsByNameComplex feed)
concat
filter [isdefined(.RoadCurve)]
consune ;

# road links

let RoadLinksH1 =
RoadParts feed
filter [not (iscycle(.WayCurve))]
filter [. WayInfo afeed

filter [. WayTagKey = ”oneway” |
count = 0]

filter [. WayInfo afeed
filter [. WayTagKey = ”highway” ]

filter [. WayTagValue contains 7link”]
count > 0]

unnest [WaylInfo]

filter [.WayTagKey = ”highway” ]

filter [. WayTagValue contains ”link”]

project [Wayld, WayCurve]

sort by [Wayld, WayCurve]

consune ;

let RoadLinksSimpleH1l =

RoadLinksH1 feed

sort by [Wayld, WayCurve]

groupby [Wayld; C: group feed count ]
consume ;

let RoadLinksSimpleH2 =
RoadLinksSimpleH1 feed
filter [.C = 1] {rl}
RoadLinksH1 feed {r2}
hashjoin [Wayld.-rl, Wayld_r2]
filter [. Wayld_-rl = .WaylId_r2]
projectextend [; Wayld: .Wayld_rl,
RoadCurve: .WayCurve_r2]
consume ;

let RoadLinksSimpleH3 =
RoadLinksSimpleH1 feed
filter [.C > 1] {rl}
RoadLinksH1 feed {r2}
hashjoin [Wayld-rl, Wayld_r2]
filter [. Wayld_-rl = .WaylId_r2]
projectextend [; Wayld: .Wayld_rl,
WayCurve: .WayCurve_r2,
SegStart: getstartpoint (. WayCurve.r2)]
sortby [Wayld, SegStart, WayCurve]
groupby [Wayld; RoadC: group feed projecttransfornstream WayCurve] collect_sline[TRUE],
StartRoad: group feed head[1] extract [SegStart]]
extend [StartRoadC: getstartpoint (.RoadC)]
proj ectextend [Wayld; RoadCurve: ifthenelse (.StartRoad = .StartRoadC,
.RoadC,
set _startsmal | er (.RoadC, not (
get _startsmaller (.RoadC))))]
consume ;

let RoadLinksSimple =
(RoadLinksSimpleH2 feed)
(RoadLinksSimpleH3 feed)
concat
sort by [Wayld, RoadCurve]
consune ;

let RoadLinksComplex =

RoadLinksH1 feed
RoadLinksSimple feed

filter [not (i sdefined(.RoadCurve))] {s}
hashj oi n [Wayld, WaylId_s]
filter [.Wayld = .Wayld_s]
proj ectextend [Wayld, WayCurve; StartPoint: getstartpoint (.WayCurve)]
sort by [Wayld, WayCurve, StartPoint ]
groupby [Wayld; RoadC: group feed projecttransfornstream WayCurve] collect_line[TRUE],

StartPointCurve: group feed head[1] extract [StartPoint]]

proj ectextendstream Wayld, StartPointCurve; RoadCur: .RoadC |onglines]
addcount er [PartNo,1]
proj ectextend [Wayld, PartNo, StartPointCurve,

RoadCur; StartPoint: getstartpoint (.RoadCur),

EndPoint: getendpoint (.RoadCur)]

sort by [Wayld, PartNo]



CHAPTER 5. SCRIPTS USING NETWORK IMPLEMENTATIONS 88

extend_last [PrevEndPoint: ..EndPoint :: [const point value (0.0 0.0)]]

sort by [Wayld, PartNo]

proj ectextend [Wayld; RoadCurve: ifthenelse (.StartPointCurve = .StartPoint, .RoadCur,
ifthenelse (.StartPoint = .PrevEndPoint, .RoadCur,

set_startsmal | er (.RoadCur,
not (get _startsmaller (.RoadCur)))))]
consune ;

let RoadLinks =
(RoadLinksSimple feed filter [isdefined(.RoadCurve)])
(RoadLinksComplex feed)

concat

filter [isdefined(.RoadCurve)]
consunme ;
# rest except oneways and cycles

let RoadRestHl1 =
RoadParts feed
filter [not (iscycle (.WayCurve))]
filter [. WayInfo afeed

filter [. WayTagKey = ”oneway” |
count = 0]

filter [.WayInfo afeed
filter [.WayTagKey = ”highway” ]
filter [. WayTagValue contains ”link”]
count = 0]

unnest [WaylInfo]

filter [.WayTagKey = ”highway” ]

project [Wayld, WayCurve]
sort by [Wayld, WayCurve]
consume ;

let RoadRestSimpleH1 =

RoadRestH1 feed

sort by [Wayld, WayCurve]

groupby [Wayld; C: group feed count ]
consume ;

let RoadRestSimpleH2 =
RoadRestSimpleH1 feed
filter [.C = 1] {rl}
RoadRestH1 feed {r2}
hashj oi n [WaylId_r1, WaylId_r2]
filter [.Wayldrl = .Wayld_r2]
projectextend [; Wayld: .Wayld_rl,
RoadCurve: .WayCurve_r2]
consume ;

let RoadRestSimpleH3 =
RoadRestSimpleH1 feed
filter [.C > 1] {rl}
RoadRestH1 feed {r2}
hashj oi n [WayId_r1, WaylId_r2]
filter [. Wayld_-rl = .WaylId_r2]
projectextend [; Wayld: .Wayld_rl,
WayCurve: .WayCurve_r2,
SegStart: getstartpoint (. WayCurve.r2)]
sortby [Wayld, SegStart, WayCurve]
groupby [Wayld; RoadC: group feed projecttransfornstream WayCurve] collect_sline[TRUE],
StartRoad: group feed head[1] extract [SegStart]]
extend [StartRoadC: getstartpoint (.RoadC)]
proj ectextend [Wayld; RoadCurve: ifthenelse (.StartRoad = .StartRoadC,
.RoadC,
set_startsmal |l er (.RoadC,
not (get _startsmaller (.RoadC))))]
consume ;

let RoadRestSimple =
(RoadRestSimpleH2 feed)
(RoadRestSimpleH3 feed)
concat
sort by [Wayld, RoadCurve]
consume ;

let RoadRestComplex =

RoadRestH1 feed
RoadRestSimple feed

filter [not (i sdefined(.RoadCurve))] {s}
hashj oi n [Wayld, WaylId_s]
filter [.Wayld = .Wayld_s]
proj ectextend [Wayld, WayCurve; StartPoint: getstartpoint (.WayCurve)]
sort by [Wayld, WayCurve, StartPoint ]
groupby [Wayld; RoadC: group feed projecttransfornstream WayCurve] collect_line[TRUE],

StartPointCurve: group feed head[1] extract [StartPoint]]

proj ectextendstream Wayld, StartPointCurve; RoadCur: .RoadC |onglines]
addcount er [PartNo,1]
proj ectextend [Wayld, PartNo, StartPointCurve,

RoadCur; StartPoint: getstartpoint (.RoadCur),

EndPoint: getendpoint (.RoadCur)]

sort by [Wayld, PartNo]
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extend_last [PrevEndPoint: ..EndPoint :: [const point value (0.0 0.0)]]

sort by [Wayld, PartNo]

proj ectextend [Wayld; RoadCurve: ifthenelse (.StartPointCurve = .StartPoint, .RoadCur,
ifthenelse (.StartPoint = .PrevEndPoint, .RoadCur,

set_startsmal | er (.RoadCur,
not (get _startsmaller (.RoadCur)))))]
consume ;

let RoadRest =
(RoadRestSimple feed filter [isdefined(.RoadCurve)])
(RoadRestComplex feed)

concat

filter [isdefined(.RoadCurve)]
consunme ;
# build oneway routes

let RoadsByOneway =
RoadParts feed
filter [not (iscycle(.WayCurve))]
filter [.WayInfo afeed
filter [.WayTagKey = "oneway” |
count > 0]
proj ectextend [; Name: nunm2string (.Wayld), Curve: .WayCurve]
consune ;

# build roundabouts

let RoadsByCycle =
RoadParts feed
filter [iscycle(.WayCurve)]
proj ectextend [; Name: nunm2string (.Wayld),
Curve: set_startsmaller (.WayCurve, TRUE)]

consunme ;
# build roads by relation if relation is a relation of way ids
# relations of relations can not be used for connecting roads yet

let RoadsByRelationH1 =
NestedRelationRel feed
filter [.Rellnfo afeed
filter [.RefInfo afeed
filter [.RelTagKey = "route”]
filter [. RelTagValue = "road” ]
count > 0]
count > 0]
unnest [Rellnfo]
project [Relld, RefCounter, MemberRef, MemberType, MemberRole, RefInfo]
consume ;

let RoadsByRelationWaysH1 =

RoadsByRelationH1 feed

filter [. MemberType = "way” |

NestedWayRel feed

hashj oi n [MemberRef, Wayld]

filter [. MemberRef = .Wayld]

project [Relld, MemberRole, RefCounter, WayCurve]
consune ;

let RoadsByRelationWaysSimple =
RoadsByRelationWaysH1 feed
sortby [Relld, MemberRole, RefCounter, WayCurve]

groupby [Relld , MemberRole; RoadCurve: group feed projecttransfornmstream WayCurve] collect_sline[TRUE]]

consume ;

let RoadsByRelationWaysComplex =
RoadsByRelationWaysH1 feed
RoadsByRelationWaysSimple feed
filter [not (i sdefined(.RoadCurve))] {t}
hashjoin[Relld, Relld_t]
filter [.Relld = .Relld_t]
sortby [Relld, MemberRole, RefCounter, WayCurve]

groupby [Relld , MemberRole; RoadC: group feed projecttransformstream WayCurve] collect_line[TRUE]]

proj ectextendstream[Relld, MemberRole; RoadCurve: .RoadC |onglines]
consune ;

let RoadsByRelationWaysH2 =

(RoadsByRelationWaysSimple feed)

(RoadsByRelationWaysComplex feed)

concat

NestedRelationRel feed {h}

hashjoi n[Relld, Relld_h]

filter [.Relld = .Relld_h]

projectextend [Relld, RoadCurve; Rellnfo: .Rellnfo_h]

unnest [Rellnfo]

unnest [RefInfo_h]

proj ectextend [Relld, RoadCurve; RelTagKey: .RelTagKey-h,

RelTagValue: .RelTagValue_h]

filter [(.RelTagKey = 7ref”) or (.RelTagKey = "name” )]

consunme ;
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let RoadsByRelationWaysH3 =

RoadsByRelationWaysH2 feed

filter [.RelTagKey = 7ref”]

proj ectextend [Relld, RoadCurve; Name: .RelTagValue]
consune ;

let RoadsByRelationWaysH4 =
RoadsByRelationWaysH2 feed
RoadsByRelationWaysH3 feed
proj ectextend [Relld, RoadCurve; RelTagKey: 'A’, RelTagValue:
mer gedi f f
filter [.RelTagKey = ”name” |
proj ectextend [Relld, RoadCurve; Name: .RelTagValue]
consunme ;

let RoadsByRelationWays =
(RoadsByRelationWaysH3 feed)
(RoadsByRelationWaysH4 feed)
concat

consunme ;

# build roads relation from part relations build before

let Roads =
( ( (RoadsByRef feed
proj ectextend [;Name: .Ref, Curve: .RoadCurve])
(RoadsByName feed
proj ectextend [;Name: .Name, Curve: .RoadCurve])
concat )
( (RoadLinks feed

7A7]

proj ectextend [; Name: num2string (.Wayld), Curve: .RoadCurve])

(RoadRest feed

projectextend [;Name: num2string (.Wayld), Curve: .RoadCurve])

concat )
concat )

( ( (RoadsByCycle feed)
(RoadsByOneway feed)
concat )

(RoadsByRelationWays feed

projectextend [; Name: tostring(.Name), Curve: .RoadCurvel])

concat )
concat
filter [isdefined(.Curve)]
extend [CurvLength: size(.Curve)]
sortby [CurvLength desc, Name, Curve]

rdup
addcounter [Rid, 1]
consunme ;
# Connect roads, junctions and sections

let ConnectRoadsAndJunctions =
JunctionsAndWayCrossings feed
project [Jid, Point, SlSectCurve, S1Side, S2Side]
Roads feed
project [Rid, Curve]
it Spatial Join[Point,Curve,4,8]
filter [. Point inside .Curve]
projectextend [Jid, Rid; PosOnRoad: atpoint (.Curve, .Point),
Side: ifthenelse (.S1SectCurve inside

consume ;

let RoadsJunctionsLists =

ConnectRoadsAndJunctions feed

project [Rid, PosOnRoad, Jid]

sortby [Rid, PosOnRoad, Jid]

groupby [Rid; JuncList: group feed projecttransformstream|Jid]
consume ;

let JunctionsPositionsOnRoads =
ConnectRoadsAndJunctions feed

.Curve, .Sl1Side,
.S2Side)]

createlist]

projectextend [Jid; RouteLoc: createrloc (.Rid, .PosOnRoad, .Side)]

sortby [Jid, RouteLoc]

groupby [Jid; LocationList: group feed projecttransformstream RouteLoc] createlist |

consunme ;

let ConnectSectionsAndRoads =
RoadPartSectionsTmpl feed
project [Sid, SectCurve, StartPoint, EndPoint, Side]
Roads feed
project [Rid, Curve]
itSpatialJoin[SectCurve, Curve, 4, 8]
filter [.StartPoint inside .Curve]
filter [.EndPoint inside .Curve]
filter [.SectCurve inside .Curve]

projectextend [Rid, Sid, Side; StartPos: atpoint (.Curve, .StartPoint),

EndPos: atpoint (.Curve,. EndPoint)]

projectextend [Rid, Sid; RoutePart: createrint (.Rid, .StartPos, .EndPos, .Side)]

consunme ;
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let SectionsAtRoads =
ConnectSectionsAndRoads feed
sortby [Rid, RoutePart, Sid]

groupby [Rid; ListSids: group feed projecttransformstream/Sid] createlist ]

consunme ;

let SectionRoutelntervals =
ConnectSectionsAndRoads feed
project [Sid, RoutePart]
sortby [Sid, RoutePart]

groupby [Sid; IntervalList: group feed projecttransformstream RoutePart] createlist]

consume ;

let JunctionsAndWayCrossings2 =
JunctionsAndWayCrossings feed
JunctionsPositionsOnRoads feed {jl1}
hashjoin[Jid, Jid-j1]
filter [.Jid = .Jid-j1]
projectextend [Jid, Point, Wayldl, WayId2, Sidl, S1SectCurve,
S1StartPoint , S1EndPoint, S1StartJid, S1EndJid, SlLenth,

SlJuncAtStart, S1Side, Sid2, S2SectCurve, S2StartPoint, S2EndPoint, S2StartlJid,
S2EndJid, S2Lenth, S2JuncAtStart, S2Side; RoutePositions: .LocationList_j1]

consunme ;

let JunctionsInAndOutComingSectionsH1 =
JunctionsAndWayCrossings2 feed
projectextend [Jid, Sidl,

Sid2; SlInSect: ifthenelse (.S1Side = [const jdirection value(Both)], TRUE,
ifthenelse((.S1Side = [const jdirection value(Up)]) and
not (.S1JuncAtStart),TRUE,
ifthenelse ((.S1Side = [const jdirection value(Down)]) and
.S1JuncAtStart, TRUE ,FALSE))),
S10utSect: ifthenelse (.S1Side = [const jdirection value(Both)], TRUE,
ifthenelse((.S1Side = [const jdirection value(Up)]) and
.S1JuncAtStart , TRUE ,
ifthenelse ((.S1Side = [const jdirection value(Down)]) and
not (.S1JuncAtStart),TRUE ,FALSE))),
S2InSect: ifthenelse(.S2Side = [const jdirection value(Both)], TRUE,
ifthenelse ((.S2Side = [const jdirection value(Up)]) and
not (.S2JuncAtStart ), TRUE,
ifthenelse ((.S2Side = [const jdirection value(Down)]) and
.S2JuncAtStart, TRUE ,FALSE))),
S20utSect: ifthenelse (.S2Side = [const jdirection value(Both)], TRUE,
ifthenelse ((.S2Side = [const jdirection value(Up)]) and
.S2JuncAtStart , TRUE ,
ifthenelse ((.S2Side = [const jdirection value(Down)]) and

not (.S2JuncAtStart),TRUE,FALSE)))]
consune ;

let JunctionsInComingSectionsH1 =
JunctionsInAndOutComingSectionsH1 feed
filter [.SlInSect]
projectextend [Jid; Sid: .Sidl]
consume ;

let JunctionsInComingSectionsH2 =
JunctionsInAndOutComingSectionsH1 feed
filter [.S2InSect]
projectextend [Jid; Sid: .Sid2]
consume ;

let JunctionsInComingSectionsH3 =
JunctionsInAndOutComingSectionsH1 feed
filter [not (.S1InSect or .S2InSect)]
projectextend [Jid; Sid: [const int value undef]]
consume ;

let JunctionsInComingSections =
((JunctionsInComingSectionsH1 feed)
(JunctionsInComingSectionsH2 feed)
concat )
(JunctionsInComingSectionsH3 feed)
concat
sortby [Jid, Sid]

groupby [Jid; ListInSections: group feed projecttransfornmstream[Sid]

consunme ;

let JunctionsOutgoingSectionsH1 =
JunctionsInAndOutComingSectionsH1 feed
filter [.S1OutSect]
projectextend [Jid; Sid: .Sidl]
consume ;

let JunctionsOutgoingSectionsH2 =
JunctionsInAndOutComingSectionsH1 feed
filter [.S20utSect]
projectextend [Jid; Sid: .Sid2]
consune ;

createlist]

91



CHAPTER 5. SCRIPTS USING NETWORK IMPLEMENTATIONS

let JunctionsOutgoingSectionsH3 =
JunctionsInAndOutComingSectionsH1 feed
filter [not (.S1O0utSect or .S20utSect)]
projectextend [Jid; Sid: [const int value undef]]
consune ;

let JunctionsOutgoingSections =

((JunctionsOutgoingSectionsH1 feed)

(JunctionsOutgoingSectionsH2 feed)

concat )

(JunctionsOutgoingSectionsH3 feed)

concat

sortby [Jid, Sid]

groupby [Jid; ListOutSections: group feed projecttransformstream/Sid] createlist ]
consume ;

let JunctionsInAndOutComingSections =
JunctionsInComingSections feed {i}
JunctionsOutgoingSections feed {o}
hashjoin[Jid_.i, Jid-o]

filter [.Jid_.i = .Jid_o]
projectextend [; Jid: .Jid.i,
ListInSections: .ListInSections_i,

ListOutSections: .ListOutSections_o]
consune ;

# Create Inputfiles for Routes and Junctions for JNetwork

let InRoutes =
Roads feed {rl1}
RoadsJunctionsLists feed {jl1}
hashjoin[Rid_rl, Rid_j1]
filter [.Rid_rl = .Rid_j1]
projectextend [; Rid: .Rid_rl,
Lenth: .CurvLength_rl,
JuncList: .JuncList_j1]
SectionsAtRoads feed {sl1}
hashjoi n[Rid, Rid-sl]
filter [.Rid = .Rid_s1]
projectextend [Rid, JuncList, Lenth; SectList: .ListSids_s1]
project [Rid, JuncList, SectList , Lenth]
sortby [Rid]
rdup
consunme ;

let InJunctions =
JunctionsAndWayCrossings2 feed
project [Jid, Point, RoutePositions]
JunctionsInAndOutComingSections feed {sl}
hashjoin[Jid, Jid_sl]
filter [.Jid = .Jid_s1]
projectextend[Jid, Point, RoutePositions; InSects: .ListInSections_sl,
OutSects: .ListOutSections_s1]
sortby[Jid]
rdup
consume ;

# Compute Adjacency lists for sections

let AdjacentSectionsUpHa =

RoadPartSectionsTmpl feed

InJunctions feed

hashjoi n [EndJid, Jid]

filter [.EndJid = .Jid]

filter [.Side # [const jdirection value(Down)]]

project [Sid, OutSects]

sortby [Sid, OutSects]

groupby [Sid; AdjSectUp: group feed projecttransformstream OutSects] createlist ]
consume ;

let AddAdjacentSectionsUpMissing =
RoadPartSectionsTmpl feed project [Sid]
sortby [Sid]
AdjacentSectionsUpHa feed project [Sid]
sortby [Sid]
mer gedi f f
project [Sid] {sl1}
RoadPartSectionsTmpl feed {s2}
hashjoin[Sid_sl, Sid-s2]
filter [.Sid_.sl = .Sid_s2]
projectextend [; Sid: .Sid_sl,
AdjSectUp: [const listint value(undefined)]]
consune ;

let AdjacentSectionsUpH1 =
(AdjacentSectionsUpHa feed)
(AddAdjacentSectionsUpMissing feed)
concat

consune ;
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let AdjacentSectionsDownHa =

RoadPartSectionsTmpl feed

InJunctions feed

hashjoin[StartJid , Jid]

filter [.StartJid = .Jid]

filter [.Side # [const jdirection value(Up)]]

project [Sid, OutSects]

sortby [Sid, OutSects]

groupby [Sid; AdjSectDown: group feed projecttransformstream OutSects] createlist ]
consume ;

let AddAdjacentSectionsDownMissing =
RoadPartSectionsTmpl feed project [Sid]
sortby [Sid]
AdjacentSectionsDownHa feed project [Sid]
sortby [Sid]
mer gedi f f
project [Sid] {s1}
RoadPartSectionsTmpl feed {s2}
hashjoin[Sid_sl, Sid_-s2]
filter [.Sid_sl = .Sid-s2]
projectextend [; Sid: .Sid_sl,
AdjSectDown: [const listint value(undefined)]]
consune ;

let AdjacentSectionsDownH1 =
(AdjacentSectionsDownHa feed)
(AddAdjacentSectionsDownMissing feed)
concat
sortby [Sid]

consune ;

let ReverseAdjacentSectionsUpHa =

RoadPartSectionsTmpl feed

InJunctions feed

hashjoin[StartJid , Jid]

filter [.StartJid = .Jid]

filter [.Side # [const jdirection value(Down)]]

project [Sid, InSects]

sortby [Sid, InSects]

groupby [Sid; RevAdjSectUp: group feed projecttransformstream/InSects] createlist |
consunme ;

let AddReverseAdjacentSectionsUpMissing =
RoadPartSectionsTmpl feed project [Sid]
sortby [Sid]
ReverseAdjacentSectionsUpHa feed project [Sid]
sortby [Sid]
mer gedi f f
project [Sid] {sl1}
RoadPartSectionsTmpl feed {s2}
hashjoin[Sid_sl, Sid_-s2]
filter [.Sid_sl = .Sid-s2]
projectextend [; Sid: .Sid_sl,
RevAdjSectUp: [const listint value(undefined)]]
consume ;

let ReverseAdjacentSectionsUpH1 =
(ReverseAdjacentSectionsUpHa feed)
(AddReverseAdjacentSectionsUpMissing feed)
concat
sortby [Sid]

consume ;

let ReverseAdjacentSectionsDownHa =
RoadPartSectionsTmpl feed
InJunctions feed
hashjoi n [EndJid, Jid]
filter [.EndJid = .Jid]
filter [.Side # [const jdirection value(Up)]]
project [Sid, InSects]
sortby [Sid, InSects]

groupby [Sid; RevAdjSectDown: group feed projecttransformstream/InSects] createlist]

consume ;

let AddReverseAdjacentSectionsDownMissing =
RoadPartSectionsTmpl feed project [Sid]
sortby [Sid]
ReverseAdjacentSectionsDownHa feed project [Sid]
sortby [Sid]
mer gedi f f
project [Sid] {s1}
RoadPartSectionsTmpl feed {s2}
hashjoin[Sid_-s1, Sid-s2]
filter [.Sid_sl = .Sid_s2]
projectextend [; Sid: .Sid_sl,
RevAdjSectDown: [const listint value(undefined)]]
consune ;

let ReverseAdjacentSectionsDownH1 =
(ReverseAdjacentSectionsDownHa feed)
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(AddReverseAdjacentSectionsDownMissing feed)
concat
sortby [Sid]

consune ;

# Restrictions for section connections by nodes

let ViaNodesRel =
NestedRelationRel feed
filter [.Rellnfo afeed
filter [.RefInfo afeed
filter [.RelTagKey contains "restriction”]
count > 0]
count > 0]
unnest [Rellnfo ]
filter [. MemberRole = ”via”]
filter [.MemberType = ”node” |
SpatialPosOfNodes feed
hashj oi n [ MemberRef, Nodeld]
filter [. MemberRef = .Nodeld]
proj ectextend [Relld, Nodeld,
NodePos; RelTagVal: .RefInfo afeed extract [RelTagValuel]]
consume ;

let FromWaysRel =
NestedRelationRel feed
filter [.Rellnfo afeed
filter [.RefInfo afeed
filter [.RelTagKey contains "restriction”]
count > 0]
count > 0]
unnest [Rellnfo ]
filter [.MemberRole = ”from” |
SpatialWayCurve feed
hashj oi n [MemberRef, Wayld]
filter [. MemberRef = .Wayld]
project [Relld, Wayld, WayCurve]
consunme ;

let ToWaysRel =
NestedRelationRel feed
filter [.Rellnfo afeed
filter [.RefInfo afeed
filter [.RelTagKey contains "restriction”]
count > 0]
count > 0]
unnest [Rellnfo |
filter [.MemberRole = ”"to”]
SpatialWayCurve feed
hashj oi n [MemberRef, Wayld]
filter [. MemberRef = .Wayld]
project [Relld, Wayld, WayCurve]
consunme ;

let NodeRestrictions =
ViaNodesRel feed {v}
FromWaysRel feed {f}
hashjoin[Relld_v, Relld_f]
filter [.Relld_.v = .Relld_f]
project [Relld_.v, Nodeld_-v, NodePos_v, RelTagVal.v, WaylId_f]
ToWaysRel feed {t}
hashjoin[Relld_v, Relld_t]
filter [.Relld.v = .Relld_t]
project [Nodeld-v, NodePos_.v, RelTagVal.v, Wayld_-f, WayId_t]
sortby [Nodeld_-v, NodePos_.v, Wayld_f, Wayld_t, RelTagVal_v]
rdup
consunme ;

let ConnectRestrictionsWithJunctions =
JunctionsAndWayCrossings feed
NodeRestrictions feed
itSpatialJoin[Point, NodePos.v,4,68]

filter [.Point = .NodePos_v]
filter [((.Wayld_-f = .Wayldl) and (.Wayld_-t = .WaylId2)) or
((.Wayld-f = .Wayld2) and (.Wayld_t = .Wayldl))]
projectextend [RelTagVal_v; Sid_f: ifthenelse (.Wayld_-f = .Wayldl,
Sid_-t: ifthenelse (. Wayld_-t = .Wayldl,
consume ;
# remove not connected sections from adjacency lists

let NoRestrictions =
ConnectRestrictionsWithJunctions feed
filter [.RelTagVal_v contains ”"no”|
consume ;

let AdjacentSectionsUpH2 =
AdjacentSectionsUpH1 feed
NoRestrictions feed
hashjoin[Sid, Sid_f]
filter [.Sid = .Sid_f]

.Sid1,
.Sid1,

.sid2),
.Sid2)]
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proj ectextend [Sid; AdjSectU: .AdjSectUp — .Sid-t]
consume ;

let AdjacentSectionsUpH3 =
AdjacentSectionsUpH1 feed project [Sid]
sortby [Sid]
AdjacentSectionsUpH2 feed project [Sid]
sortby [Sid]
mer gedi ff
AdjacentSectionsUpH1 feed {sl1}
hashjoin[Sid, Sid-sl]
filter [.Sid = .Sid-s1]
projectextend [; Sid: .Sid_sl,
AdjSectU: .AdjSectUp._sl]
consune ;

let AdjacentSectionsUpH4 =
(AdjacentSectionsUpH2 feed)
(AdjacentSectionsUpH3 feed)
concat
projectextend [Sid; AdjSectUp: .AdjSectU]
consune ;

let AdjacentSectionsDownH2 =
AdjacentSectionsDownH1 feed
NoRestrictions feed
hashjoin[Sid, Sid_f]

filter [.Sid = .Sid_f]
projectextend [Sid; AdjSectD: .AdjSectDown — .Sid-_t]
consune ;

let AdjacentSectionsDownH3 =
AdjacentSectionsDownH1 feed project [Sid]
sortby [Sid]
AdjacentSectionsDownH2 feed project [Sid]
sortby [Sid]
mer gedi f f
AdjacentSectionsDownH1 feed {sl}
hashjoin[Sid, Sid_sl]
filter [.Sid = .Sid-s1]
projectextend [; Sid: .Sid_sl,
AdjSectD: .AdjSectDown_sl]
consume ;

let AdjacentSectionsDownH4 =
(AdjacentSectionsDownH2 feed)
(AdjacentSectionsDownH3 feed)
concat
projectextend [Sid; AdjSectDown: .AdjSectD]
consume ;

let ReverseAdjacentSectionsUpH2 =
ReverseAdjacentSectionsUpH1 feed
NoRestrictions feed
hashj oin[Sid, Sid-t]

filter [.Sid = .Sid-t]
projectextend [Sid; RevAdjSectU: .RevAdjSectUp — .Sid_f]
consune ;

let ReverseAdjacentSectionsUpH3 =
ReverseAdjacentSectionsUpH1 feed project [Sid]
sortby [Sid]
ReverseAdjacentSectionsUpH2 feed project [Sid]
sortby [Sid]
mer gedi f f
ReverseAdjacentSectionsUpH1 feed {sl1}
hashjoin[Sid, Sid_sl]
filter [.Sid = .Sid_s1]
projectextend [; Sid: .Sid_sl,
RevAdjSectU: .RevAdjSectUp._sl]
consune ;

let ReverseAdjacentSectionsUpH4 =
(ReverseAdjacentSectionsUpH2 feed)
(ReverseAdjacentSectionsUpH3 feed)
concat
proj ectextend [Sid; RevAdjSectUp: .RevAdjSectU]
consume ;

let ReverseAdjacentSectionsDownH2 =
ReverseAdjacentSectionsDownH1 feed
NoRestrictions feed
hashj oi n[Sid, Sid-t]

filter [.Sid = .Sid-t]
projectextend [Sid; RevAdjSectD: .RevAdjSectDown — .Sid-_f]
consune ;

let ReverseAdjacentSectionsDownH3 =
ReverseAdjacentSectionsDownH1 feed project [Sid]
sortby [Sid]
ReverseAdjacentSectionsDownH2 feed project [Sid]
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sortby [Sid]
mer gedi f f
ReverseAdjacentSectionsDownH1 feed {sl}
hashjoin[Sid, Sid_sl]
filter [.Sid = .Sid_s1]
projectextend [; Sid: .Sid_sl,
RevAdjSectD: .RevAdjSectDown_sl]
consume ;

let ReverseAdjacentSectionsDownH4 =
(ReverseAdjacentSectionsDownH2 feed)
(ReverseAdjacentSectionsDownH3 feed)

concat

proj ectextend [Sid; RevAdjSectDown: .RevAdjSectD]
consume ;
# leave only existing connections in adjacency lists

let OnlyRestrictions =
ConnectRestrictionsWithJunctions feed
filter [.RelTagValv contains ”only”]
consune ;

let AdjacentSectionsUpH5 =

AdjacentSectionsUpH4 feed

OnlyRestrictions feed

hashjoin[Sid, Sid_f]

filter [.Sid = .Sid_f]

projectextend [Sid; AdjSectU: restrict (. AdjSectUp, .Sid-t)]
consune ;

let AdjacentSectionsUpH6 =
AdjacentSectionsUpH4 feed project [Sid]
sortby [Sid]
AdjacentSectionsUpH5 feed project [Sid]
sortby [Sid]
mer gedi f f
AdjacentSectionsUpH4 feed {sl1}
hashjoin[Sid, Sid_sl]
filter [.Sid = .Sid-s1]
projectextend [; Sid: .Sid_sl,
AdjSectU: .AdjSectUp._sl]
consume ;

let AdjacentSectionsUp =
(AdjacentSectionsUpH5 feed)
(AdjacentSectionsUpH6 feed)
concat
projectextend [Sid; AdjSectUp: .AdjSectU]
consume ;

let AdjacentSectionsDownH5 =

AdjacentSectionsDownH4 feed

OnlyRestrictions feed

hashjoin[Sid, Sid_f]

filter [.Sid = .Sid_f]

projectextend [Sid; AdjSectD: restrict (.AdjSectDown, .Sid_t)]
consune ;

let AdjacentSectionsDownH6 =
AdjacentSectionsDownH4 feed project [Sid]
sortby [Sid]
AdjacentSectionsDownH5 feed project [Sid]
sortby [Sid]
mer gedi f f
AdjacentSectionsDownH4 feed {sl}
hashjoin[Sid, Sid_sl]
filter [.Sid = .Sid_s1]
projectextend [; Sid: .Sid_sl,
AdjSectD: .AdjSectDown_s1]
consune ;

let AdjacentSectionsDown =
(AdjacentSectionsDownH5 feed)
(AdjacentSectionsDownH6 feed)
concat
proj ectextend [Sid; AdjSectDown: .AdjSectD]
consume ;

let NotLongerAdjacentSections =

(AdjacentSectionsUpH5 feed projectextend|[Sid; AdjSect: .AdjSectU])
(AdjacentSectionsDownHb5 feed projectextend[Sid; AdjSect: .AdjSectD])

concat

OnlyRestrictions feed

hashjoin[Sid, Sid_f]

filter [.Sid = .Sid_f]

proj ectextend [Sid; NotLongerAdj: .AdjSect — .Sid-t]
projectextendstream[Sid; AdjSect: createstream(.NotLongerAdj)]
sortby [AdjSect, Sid]

rdup

groupby [ AdjSect; Sids: group feed projecttransformstream [Sid]

createlist]
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consunme ;

let ReverseAdjacentSectionsUpH5 =
ReverseAdjacentSectionsUpH4 feed
NotLongerAdjacentSections feed {sl}
hashjoin[Sid, AdjSect_s1]

filter [.Sid = .AdjSect_sl]
projectextend [Sid; RevAdjSectU: .RevAdjSectUp — .Sids_s1]
consunme ;

let ReverseAdjacentSectionsUpH6 =
ReverseAdjacentSectionsUpH4 feed project [Sid]
sortby [Sid]
ReverseAdjacentSectionsUpHb5 feed project [Sid]
sortby [Sid]
mer gedi f f
ReverseAdjacentSectionsUpH4 feed {sl}
hashjoin[Sid, Sid_sl]
filter [.Sid = .Sid_s1]
projectextend [; Sid: .Sid_sl,
RevAdjSectU: .RevAdjSectUp._sl]
consume ;

let ReverseAdjacentSectionsUp =
(ReverseAdjacentSectionsUpH5 feed)
(ReverseAdjacentSectionsUpH6 feed)
concat
proj ectextend [Sid; RevAdjSectUp: .RevAdjSectU]
consune ;

let ReverseAdjacentSectionsDownH5 =
ReverseAdjacentSectionsDownH4 feed
NotLongerAdjacentSections feed {sl}
hashjoin[Sid, AdjSect_sl]

filter [.Sid = .AdjSect_sl]
projectextend [Sid; RevAdjSectD: .RevAdjSectDown — .Sids_sl]
consume ;

let ReverseAdjacentSectionsDownH6 =
ReverseAdjacentSectionsDownH4 feed project [Sid]
sort by [Sid]
ReverseAdjacentSectionsDownH5 feed project [Sid]
sortby [Sid]
mer gedi f f
ReverseAdjacentSectionsDownH4 feed {sl}
hashjoin[Sid, Sid-sl]
filter [.Sid = .Sid_s1]
projectextend [; Sid: .Sid_sl,
RevAdjSectD: .RevAdjSectDown_sl|]
consume ;

let ReverseAdjacentSectionsDown =
(ReverseAdjacentSectionsDownH5 feed)
(ReverseAdjacentSectionsDownH6 feed)
concat
projectextend [Sid; RevAdjSectDown: .RevAdjSectD]
consune ;

let AllAdjacentSectionLists =

AdjacentSectionsUp feed {u}

AdjacentSectionsDown feed {d}

hashjoin[Sid_u, Sid_d]

filter [.Sid-u = .Sid_d]

projectextend [;Sid: .Sid-u,
AdjacentSectUp: .AdjSectUp-u,
AdjacentSectDown: .AdjSectDown_d] {a}

ReverseAdjacentSectionsUp feed {ru}

ReverseAdjacentSectionsDown feed {rd}

hashj oin[Sid-ru, Sid-rd]

filter [.Sid-ru = .Sid-rd]

projectextend [;Sid: .Sid-ru,
ReverseAdjacentSectUp: .RevAdjSectUp._ru,
ReverseAdjacentSectDown: .RevAdjSectDownrd] {r}

hashjoin[Sid_a, Sid_r]

filter [.Sid_a = .Sid-r]

projectextend [; Sid: .Sid-a,
AdjSectUp: .AdjacentSectUp_a,
AdjSectDown: .AdjacentSectDown_a ,
RevAdjSectUp: .ReverseAdjacentSectUp-r,
RevAdjSectDown: .ReverseAdjacentSectDown_r]

sorthby [Sid]

consunme ;

# Sections relation for jnet creation

let InSections =
RoadPartSectionsTmpl feed
project [Sid, SectCurve, StartJid, EndJid, Side, VMax, Lenth]
SectionRoutelntervals feed {rl}
hashjoin[Sid, Sid_rl]
filter [.Sid = .Sid_r1]
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proj ectextend [Sid, SectCurve, StartJid, EndJid, Side, VMax,
Lenth; Routelnter: .IntervalList_rl]
AllAdjacentSectionLists feed {1}
hashjoin[Sid, Sid-1]
filter [.Sid = .Sid_1]
projectextend [Sid, SectCurve, StartJid, EndJid, Side, VMax, Lenth,
Routelnter; AdjSectUp: .AdjSectUp-l,
AdjSectDown: .AdjSectDown._1,
RevAdjSectUp: .RevAdjSectUp._1,
RevAdjSectDown: .RevAdjSectDown.l]

sortby [Sid]
rdup

consunme ;

# build network

query createjnet ("MHTTestJNetwork” , 0.000001, InJunctions, InSections, InRoutes);
# script finished close database
close database;

quit;

5.4 Match GPS-Tracks to Networks Generated from Open Street
Map Data

The MapMatchingAlgebra algebra module provides operators creating single moving network positions from
data collected by GPS-devices related to networks imported from open street map as described in Section
using Multiple Hypothesis Technique [15].

The operator mapmatchmht was implemented by one of our students as part of his final thesis [13]. It
enables us to create mgpoint from GPS data files. The operator mapmatchmht supports the following signa-
tures:
network x mpoint [x real] — mgpoint
network x ftext [x real] — mgpoint
network x stream(inputtuple) [x real] — mgpoint

The optional real parameter can be used to overwrite the tolerance value stored in the network object for
the current map matching operation. The ftext identifies the file with the GPS-data. The inputtuple in the
third signature consists of a tuple with the attributes: Lat: real, Lon: real, Time: instant, Fiz: int, Sat: int,
Hdop: real, Vdop: real, Pdop: real, Course: real, Speed: real. Each inputtuple describes a line of the data set
of an GPS track.

Assumed we have a network object created by the script NetworkFromFull0OSMImport.SEC and an GPS-
Track stored in the file gps.data we can create an mgpoint from this data sources in the same database the
network object is allocated by using the SECONDO command:

let testMGP1 = mapmat chmht (netobj, ’gps.data’);

Analogous we can convert an existing mpoint to his network representation:

let testMGP2 = mapmat chmht (netobj, mpointdata);

Or use a stream of tuples with GPS data created by the operator gpximport as data source by typing:

let testMGP3 = mapmat chmht (netobj, gpximport (’gpx.data’));

In all cases we could use a real value as third parameter to overwrite the tolerance factor given in the network
object, for example:

let testMGP1Tol = mapmatchmht (netobj, ’gps.data’, 0.0001);

The operator jmapmatchmht works almost analogous to mapmatchmht for the second network imple-
mentation. The supported signatures are:
Jnet X mpoint — mjpoint
Jnet x ftext — mgjpoint
jnet x stream(inputtuple)— mjpoint

Assumed we have a jnet object created by the script NetworkFromFull0SMImport.SEC and a GPS-Track
stored in the file gps.data we can create an mjpoint from this data sources in the same database the jnetwork
object is allocated by using the SECONDO command:

let testMJP1 = jmapmatchmht (jnetobj, ’gps.data’);

Analogous we can convert an existing mpointdata object of data type mpoint to his jnetwork representation:
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let testMJP2 = jmapmatchmht (jnetobj, mpointdata);

Or use a stream of tuples with GPS data created by the operator gpzimport as data source by typing:
let testMJP3 = jmapmatchmht (jnetobj, gpxinmport (’gpx.data’));
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Chapter 6

Traffic Estimation

6.1 Introduction

In the context of the first network implementation it was planned to support traffic estimation for historic moving
information in the network data mode[l. Therefore, we implemented in the TemporalNetAlgebra an additional
data type (see Section [6:2) and some operations (see Section [£.31]) collecting and transforming the information
of the individual movement into an intermediate data format which can be used for traffic estimation. Further
we implemented a additional SECONDO algebra module TrafficAlgebra providing operations for traffic and
traffic flow analysis on the data types of the TemporalNetAlgebra (see Section [6.3.2)).

In the last section of this chapter we present some examples showing the usage of the presented operations.

6.2 Data Type for Traffic Information Estimation
The data type mgpsecunit (see Table[6.2]) was introduced to support traffic estimation and indexing of mgpoint

values. The data type mgpsecunit reduces the complex information given in a mgpoint value to the values which
are useful for traffic estimation.

secld int identifier of a network section

partNo int part number on this sectiond.

direct int moving direction of the source mgpoint value within this section part
avgSpeed | real average speed of the source mgpoint value within this section (part)

time periods | time interval the the source mgpoint value moved within this section (part)

Table 6.1: Attributes of Traffic Data Type

6.3 Operations for Traffic Estimation

The first set of operators presented in Section transforms the historical movement information of a set
of mgpoint into a stream of mgpsecunit values (see Section [63.1). This stream respectively the information
provided by this stream can be used by a set of operators for the analysis of the traffic flow or estimation of
section (parts) affected by heavy traffic, like described in Section [£3.2]

6.3.1 Compress Data for Traffic Estimation

The operations of Table transform the input values into streams of corresponding mgpsecunits values. The
algorithm is almost the same for all three operations. The information of the units of the incoming mgpoint

n fact the missing side value within the implementation of the data type route interval prevents us from the complete
implementation of this idea. Without side values within route intervals we are not able to estimate if the heavy traffic is on the
up or the down side of the Highway.

2For traffic estimation it is useful to divide long sections into smaller parts. For example a section belonging to a motorway may
have a total length of 16 km, but there is only a traffic jam of 2 km inside this section. To solve this problem we have the possibility
to split the network sections longer than a given length value into parts of this user defined maximum length. The splitting starts
at the smaller point of the section and the first part has the number 1. The length of the last part might be shorter than the given
maximum length value.
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values are extracted and merged to a set of mgpsecunita for each mgpoint value. Merging means that as long as
the mgpoint moves on the same section (part) in the same direction the information provided by the different
units is used to write a single mgpsecunit value with defining the section part passed by the mgpoint and the
average speed of the mgpoint at this section (part). At last the result is returned as stream of mgpsecunits.
The time complexity is O(m) for each incoming mgpoint. For a set of & mgpoint values we get a total time
complexity of O(3°7_ ma).

Operator Signature

mgpsecunits | rel(tuple((a1 x1)(a2 2)...(a2 x2))) Xa;x network x real — stream(mgpsecunit)

mgpsecunits2 | mgpoint X real — stream(mgpsecunit)

mgpsecunits3 | stream(mgpoint) X real — stream(mgpsecunit)

Table 6.2: Operators Merging Moving Information for Traffic Estimation

6.3.2 Traffic Estimation

The operation mgpsu2tuple converts a stream of mgpsecunit values into a stream of tuples with the attributes
of the data type mgpsecunit]. The time complexity is given by the number of stream elements. The trans-
formation into a relation enables the user to resort the tuples by attribute values using the standard sortby
operation of SECONDO. The sorted stream of tuples can be used as input for the traffic estimation operations
in Table

Operator Signature

trafficflow rel(tuple(mgpsecunit)) — rel(tuple(int, int, int, mint))

trafficflow2 | stream(mgpsecunit) — rel(tuple(int, int, int, mint))

traffic stream(mgpsecunit) — rel(tuple(int, int, int, mreal, mint))

traffic2 stream(mgpoint) — rel(tuple(int, int, int, mreal, mint))

heavytraffic | rel(tuple(int, int, int, mreal, mint)) x real x int — rel(tuple(int, int, int, mreal, mint))

Table 6.3: Traffic Estimating Operators

The operators trafficlow and trafficlow2 compute the number of cars in the defined section part and
direction as mint value, whereas the operators traffic and traffic2 additionally return the average speed of the
cars as mreal value.

The operator heavytraffic shrinks the traffic relation produced by traffic and traffic2 to the times and
places where the average speed is slower than the query parameter real or the number of cars is higher than the
query parameter int.

6.4 Examples for Traffic Estimation

We can manipulate the data generation script of the BerlinMOD Benchmark to generate data for traffic esti-

mation. Different from the BerlinMOD Benchmark approach we need many cars on a single day. Therefore, we

manipulate the parameters for SCALEFCARS and SCALEFDAYS in lines 143 and 144 of the script. The num-

ber of generated cars will be 2000« SCALEFCARS and the number of observation days 28 x SCALEFDAY S.
The generated data can be translated into network representation by:

#open database
open database berlinmod;
# Build a network from street data.

let B.ROUTES =
streets feed
proj ectextendstream[; geoData: .geoData polylines[TRUE]]
addcounter [id ,1]
projectextend [id; lengt : size(.geoData),
geometry: fromine(.geoData),
dual: TRUE,
startSmaller : TRUE]

3mgpsu2tuple: stream(mgpsecunit) — stream(tuple(sid int, part int, direction int, speed real, starttime instant, endtime
instant, leftclosed bool, rightclose bool))
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consunme ;

let B_JUNCTIONS =
BROUTES feed {rl}
BROUTES feed {r2}
symmoin [(.id-rl < ..id-r2) and (.geometry_rl intersects ..geometry_r2)]
proj ectextendstream/id-rl, geometry_rl, id-r2,
geometry_r2; CROSSING_POINT: components (crossings (.geometry-_rl,
.geometry_r2))]
projectextend [; rlid: .id-rl,
rlmeas: atpoint (.geometry_-rl, .CROSSING_POINT, TRUE),
r2id: .id-r2,
r2meas: atpoint (.geometry_-r2, .CROSSING_POINT, TRUE),
cc: 65535]
consunme ;

let BNETWORK = thenetwork (1, 1.0, B.ROUTES, B_JUNCTIONS );
# Translate Moving Objects in Network Representation

let dataSNcar =

dataScar feed

proj ectextend [Licence, Model, Type; Trip: mpoint2mgpoi nt (BNETWORK, .Trip)]
consune ;

On this database we can perform traffic estimating queries like:

let ql =
dataSNcar mgp2mgpsecunits|[Trip ,BNETWORK,1000.0]
trafficflow2;

let q2 =
dataSNcar mgp2mgpsecunits|[Trip ,BNETWORK,1000.0]
transformstream
project [Elem]
sort by [Elem asc]
trafficflow;

let 3 =
dataSNcar mgp2mgpsecunits|[Trip ,BNETWORK,1000.0]
namedtransformstream MGPSec]|
proj ect [MGPSec]
sortby [MGPSec asc]
trafficflow;

let q4 =
dataSNcar feed
projecttransformstream| Trip |
mgp2mgpsecuni ts3[1000.0]
trafficflow2;

let g5 =
dataSNcar feed
projecttransformstream| Trip ]
mgp2mgpsecuni ts3[1000.0]
transformstream project [Elem]
sort by [Elem asc]

trafficflow;

let g6 =
dataSNcar feed
projecttransformstream| Trip |
mgp2mgpsecuni ts3[1000.0]
namedtransformstream MGPSec]|
proj ect [MGPSec]
sort by [MGPSec asc]
trafficflow;

let q7 =
dataSNcar mgp2mgpsecunits|[Trip ,BNETWORK,1000.0]
traffic;

let 8 =
dataSNcar feed
projecttransformstream| Trip ]
mgp2mgpsecuni ts3[1000.0]
traffic;

let q9 =
dataSNcar feed
projecttransformstream| Trip |
traffic2[1000.0];
let htl = q9 heavytraffic [8.777,2];

let ht2 = q9 heavytraffic [2.333,2];
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