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Chapter 1

Overview

The spatio-temporal database community searches for data models that enable the user to save storage space
and speedup query execution on the stored data. One idea in this field is that many moving objects, for example
cars and trains, are restricted in their movement by existing networks, like streets and railway networks. Based
on this idea some network data models and implementations like [4, 10, 16, 17] have been provided in the past.

Both discrete network data models implemented in Secondo DBMS [2, 8, 11] are based on the abstract
network data model presented in [10]. The temporal element in this abstract network data model is a straight
forward development of the time sliced representation of spatio-temporal data types in two dimensional space
provided in [9] for network dependent objects.

The short introduction of the abstract network data model in Chapter 2 should help to understand the
commons and differences between both network implementations provided with the extensible Secondo DBMS.
The description of the data types and operations of the first network implementation can be found in Chapter
3 and the data types and operations of the second network implementation in Chapter 4.

In Chapter 5 we present executable Secondo script files which enable the user to compare the power of
both network implementations by the BerlinMOD Benchmark [1] and use most of the operators described in
the chapters before. In Chapter 5 we present scripts creating network objects from OSM-Data files, provided
by Open-Street-Map Foundation [7], and queries and operations that enable the user to create single moving
position network objects for the networks created of open street map data from data collected by GPS-Devices.

Some of the operators provided with the first and second network implementation are not used in the sample
scripts provided with this guide. They have been implemented to support a planned extension of the BerlinMOD
Benchmark to enable the user to compare different network data models respectively different network data
model implementations with respect to network data model specific challenges like: computation of shortest
and fastest paths; network distance computation; computation of network parts full filling given conditions; trip
planning and trip simulation; traffic estimation; and handling of dynamic changing network properties. The
extension of the second network implementation with these operators is still in progress. In this context we
also implemented some simple operations supporting traffic estimation within the first network implementation
and in a specialized Secondo algebra module called TrafficAlgebra. We describe the operators for traffic
estimation in the first network implementation in Chapter 6.
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Chapter 2

Original Network Data Model

2.1 Introduction

As mentioned before the central idea of the network data model presented in [10] is that movements are restricted
to given networks. Cars use street networks and trains railway networks. It is natural for us to speak about the
position of a place relative to the street network, instead of giving its absolute position in coordinates. In the
abstract network data model provided in [10] all positions are given relative to the routes of the network which
stores all the spatial information of the route curves and junctions. The temporal element is represented by a
time sliced representation of the spatio-temporal elements as described in [9, 10].

In the sequel we give a very short description of the data types in the abstract network data model. Interested
readers are referred to the original paper [10] for detailed information.

2.2 Data Types

The abstract network data model introduces the network (network) itself, single position in the network (gpoint),
and network parts (gline) as data types.

The type system of [9] is extended by a new kind GRAPH consisting of gpoint and gline. This new kind is
also defined as possible basic data type for the TEMPORAL type constructors moving and intime such that the
authors also have defined time-dependent moving data types called moving(gpoint), moving(gline), unit(gpoint),
unit(gline), intime(gpoint) and intime(gline). The time-dependent network data types are not described in detail
in [10], but their definition is straightforward to the definition of the spatial and spatio-temporal data types
in [9].

In the sequel we present a short overview of the static network data types. Interested users are referred to
the original papers where complete formal definitions of all data types and operations are given.

2.2.1 Network

In the abstract network data model the data type network is defined by two sets describing the spatial structure
of the represented (street) network. The first set is called routes and describes, for example, the roads of a
street network (see Table 2.1). The second set is called junctions and describes, following our example, the
crossing point of two roads (see Table 2.2).

Attribute Data Type Explanation

id int route identifier

length real length of the route

curve line spatial geometry of the route

kind {simple, dual} on some roads, for example motorways, we have to distinguish between the
two sides of the road these routes are marked to be dual.

start {smaller, bigger} tells us if the spatial curve starts at the lexicographical smaller or bigger
endpoint

Table 2.1: Attributes of the Entries in the Set of Routes

4



CHAPTER 2. ORIGINAL NETWORK DATA MODEL 5

Attribute Data Type Explanation

routemeas1 (int, real) pair identifying the first route of the junction and describing the position of the
junction on that route1

routemeas2 (int, real) pair identifying the second route of the junction and describing the position of
the junction on that route

cc int connectivity code2 telling which lanes of the roads are connected by this junc-
tion

Table 2.2: Attributes of the Entries in the Set of Junctions

In a more discrete network data model description in [10] the sets of routes and junctions are represented
by two relations, and the attributes kind and start of the routes relation tuples are represented by two Boolean
flags. The flags are set to true if the route is dual respectively the curve starts at the smaller end point.

2.2.2 Single Network Position

The data type gpoint defines a single position in the network. It consists of a route identifier which must exist
in the set of routes of the network, the distance from the routes origin following the route curve, and a side
value. The distance d must hold 0 ≤ d ≤ length of route curve. The side value may be one of {up, down, none}.
Whereas none is always used for simple routes and means reachable from both sides of the route. According to
this up means reachable only driving the road upwards from the origin to the end of the route curve, and down

means reachable only driving the road downwards from the end to the origin of the route curve.
In a more discrete representation the authors of [10] extend the data type gpoint by an integer value identi-

fying the network the gpoint is related to.

2.2.3 Part of the Network

Parts of routes are called route intervals. They are defined by two single network positions on the same
route at the same side and can be written as (rid, d1, d2, side), with 0 ≤ d1 ≤ d2 ≤ length of route and
side ∈ {up, down, none}, whereas the side value is defined almost analogous to Section 2.2.2.

A network part is defined by a set of route intervals related to the same network. [10] introduces the data
type gline as discrete representation of network parts which consists of an integer value which identifies the
network, and a set of route intervals describing the network part represented by this gline.

2.3 Operations

[10] defines syntax and semantics of different sets of operations most of them are defined straight forward to
the operations on spatial and spatio-temporal data types described in [5, 6]. Others are significant to network
objects, they enable the user to access the single attributes of the network data types, convert spatial data
types into network data types and vice verse, compute network parts and paths from one network position to
another, or simulate trips between network positions.

We omit the detailed description of the operations at this point, because we describe the existing network
implementations including the operations on the implemented network data types in detail in Chapter 3 and
Chapter 4.

1Junctions are only defined between two different routes. The first route is always the route with the smaller identifier. The
position of a junction on a route is defined by the distance d of the junction from the routes origin following the route curve, which
must hold the equation 0 ≤ d ≤ length of route curve.

2See [10] for a detailed explanation of the connectivity code definition.



Chapter 3

Network Implementation

3.1 Introduction

In this chapter we describe our first implementation of the abstract network data model from [10] in Secondo.
Parts of this network implementation have been done by one of our students as part of his final thesis [14].

This first implementation is parted into two Secondo algebra modules. The first algebra module called
NetworkAlgebra contains the data type network and the network dependent static data types gpoint, gpoints,
and gline as far as the operations deal with these data types. The second algebra module called TemporalNet-

Algebra contains the network dependent temporal data types mgpoint, ugpoint and igpoint and the operations
dealing with these data types.

In Section 3.2 we describe the implemented data types of both algebra modules and in Section 3.3 the
implemented operations on these data types in Secondo.

3.2 Implemented Data Types

All data types have an additional Boolean parameter, telling us if the object of the data type is well defined or
not. We will not mention this flag in every data type description.

3.2.1 The Network

Different from the data type description in the abstract network data model (see Chapter 2) the implementation
of the data type network consists of:

• three different relations, containing the routes (see Table 3.3), junctions (see Table 3.2), and sections (see
Table 3.1)1 data

• one real value, describing the maximum allowed distance from a curve it should be mapped on in map-

matching operation

• four B-Trees, indexing the route identifier attributes in the four relations

• a two dimensional R-Tree, indexing the ROUTE CURVE attribute of the routes relation

• a unique network identifier (int)2

• two sets connecting pairs of section identifiers and directions (called directed sections) of adjacent directed
sections3

1A section describes the street part between two crossings, or an crossing and the dead end of a street.
2Each network object in a Secondo database system must be labeled with a unique number to get a clear conjunction between

the network dependent objects and the network they belong to.
3Two directed sections are adjacent, if they are connected by a junction.

6



CHAPTER 3. NETWORK IMPLEMENTATION 7

Attribute Data Type Explanation

SECTION SID int unique section identifier

SECTION RID int route identifier of the route the section be-
longs to4

SECTION MEAS1 real distance of the begin of the section from the
routes origin following the route curve

SECTION MEAS2 real distance of the end of the section from the
routes origin following the route curve

SECTION DUAL bool true tells that the lanes of the different direc-
tions in the section are separated

SECTION CURVE sline spatial geometry of the section curve in the
two dimensional plane

SECTION CURVE STARTS SMALLER bool true if the section curve starts at the lexico-
graphical smaller endpoint

SECTION RRC TupleIdentifier5 identifies the tuple in the routes relation the
section is part of

Table 3.1: Attributes of Sections Relation in network

Attribute Data Type Explanation

JUNCTION ROUTE1 ID int route identifier of the first6 route of the junction.

JUNCTION ROUTE1 MEAS real distance of the junction from the origin of the first
route following the route curve

JUNCTION ROUTE2 ID int route identifier of the second route of the junction

JUNCTION ROUTE2 MEAS real distance of the junction from the origin of the sec-
ond route following the route curve

JUNCTION CC int connectivity code7 tells us for which lanes of the
routes are connected by this junction

JUNCTION POS point spatial position of the junction in the two dimen-
sional plane

JUNCTION ROUTE1 RC TupleIdenitfier identifies the tuple of the first route in the routes
relation.

JUNCTION ROUTE2 RC TupleIdenitfier identifies the tuple of the second route in the
routes relation

JUNCTION SECTION AUP RC TupleIdentifier identifies the tuple of the section upwards of the
junction on the first route in the sections relation

JUNCTION SECTION ADOWN RC TupleIdentifier identifies the tuple of the section downwards of the
junction on the first route in the sections relation

JUNCTION SECTION BUP RC TupleIdentifier identifies the tuple of the section upwards of the
junction on the second route in the sections rela-
tion

JUNCTION SECTION BDOWN RC TupleIdentifier identifies the tuple of the section downwards of
the junction on the second route in the sections
relation

Table 3.2: Attributes of Junctions Relation in network

4One problem of this first network implementation is, that in real life a section may belong to more than one route. For example
the motorways A1 and A61 in Germany share the sections between the motorway crossings Bliesheim and Blessem. This can not
be represented in this first network implementation. If a section belongs to more than one route we have to decide before network
creation to which route the section should be assigned to.

5A value of the data type TupleIdentifier identifies a single tuple in the relation it belongs to.
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Attribute Data Type Explanation

ROUTE ID int unique route identifier

ROUTE LENGTH real length of the route curve

ROUTE CURVE sline8 spatial geometry of the route curve in the two dimensional
plane

ROUTE DUAL bool true means that the lanes for the different directions of the
road are separated

ROUTE STARTSSMALLER bool true means the route curve starts at the lexicographical
smaller endpoint

Table 3.3: Attributes of Routes Relation in network

3.2.2 Single Network Position

The data type gpoint describes a single position in a network. It consists of an int value which identifies the
network the route location belongs to, and the route location. The route location is given by the route identifier
(int), the distance (real) from the origin of the route, and a parameter side(side).

The three possible values of side are Down, Up, and None. Up(Down) means a position can only be reached
driving in up-(down-)wards the route curve. None means a position can be reached from both sides of the
route.

3.2.3 Set of Single Network Positions

The data type gpoints consists of a set of gpoint values. It can be used to describe a collection of different places,
for example all book shops in a town.

3.2.4 Network Parts

The data type gline describes a part of the network. The data type gline consists of a network identifier (int),
a set of route intervals9, the total length (real) of all route intervals in the set, and a Boolean flag telling if the
route intervals are stored sorted or not.

We call a set of route intervals sorted if it fulfills the following conditions:

• all route intervals are disjoint.

• all route intervals are sorted by ascending route identifiers.

• if two route intervals have the same route identifier the route interval with the smaller start position is
stored first.

• all start positions are less or equal to the end positions.

This form of sorting has been introduced, because the computation time of many algorithms dealing with gline

values can be reduced, if the set of route intervals is stored sorted. In fact, not for all gline values the set of
route intervals can be stored sorted. If we describe parts of the network, like districts of towns, we can store the
route intervals sorted, because it is regardless in which sequence we read the set of route intervals describing
the network part. But, if the gline value represents a path between two network positions a and b the route

intervals must be stored in the sequence they are used in the path, which is nearly never a sorted sequence of
route intervals.

Many algorithms can take profit from sorted gline values. As described in Section 3.3 we can perform a
binary search on the sorted set of route intervals in O(log r) time, instead of performing a linear scan of the
not sorted set of route intervals in O(r) time. The algorithms check only the sorted flag to decide which sub
algorithm must be used for further evaluation.

6The first route identifier of a junction will always be the lower route identifier of the two routes which are connected by the
junction.

7See [10] for detailed information about the meaning of the different connectivity code values.
8The data type sline consists of a set of HalfSegments representing the curve of the route in the two dimensional plane.
9The internal data type RouteInterval consists of an route identifier (int), and two distance values (real), defining the distance

of the start and end position of the route part from the origin of the route. Different from [10] the both distances are not expected
to be sorted by value and the side value is missing in this first network implementation. This is another reason, why we provided
an second network implementation within Secondo where these problems are omitted.
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Sorting and compressing the set of route intervals needs time. We pay for the advantage of reduced compu-
tation time for many algorithms taking profit from sorted gline values by a higher time complexity of algorithms
creating sorted gline values. We think this additional time is well invested, because it is needed once when we
create a gline value, and we save computation time in nearly all operations dealing with gline values.

3.2.5 Single Moving Network Positions

The temporal version of the data type gpoint is called mgpoint (short form of moving(gpoint)). It is implemented
in the TemporalNetAlgebra. The data type mgpoint represents the complete history of the movement of a single
network position; for example it may represent a car driving around in the related network. The main parameter
of an mgpoint value is a set of ugpoints with disjoint time intervals. The time intervals of the ugpoints in the
set must be disjoint, because nothing in our known world can be at two different places at the same time. The
ugpoints are stored in the mgpoint value sorted by ascending time intervals. This allows us to perform a binary
search on the units of the mgpoint value to find the ugpoint containing a given time instant within the definition
time of the mgpoint.

The data type ugpoint (short for unit(gpoint)) consists of a time interval, and two gpoint values with identical
network identifier, route identifier and side values. The first gpoint describe the start and the second gpoint the
end position of the mgpoint in the network within the given time interval. We assume that the mgpoint moves
from the start to the end position with constant speed in the given time interval. The time interval consists of
a start and a end time instant and two Boolean flags, one for each time instant. The Boolean flag tells us if
the time interval is open or closed at the corresponding time instant. With help of these parameters we could
compute the exact position of a ugpoint value at each time instant within the time interval. Assumed a ugpoint

value passes a query gpoint value within the time interval, we can compute the time instant when the ugpoint

reaches the given gpoint. The position of an mgpoint value at a given time instant is represented by an igpoint.
The data type igpoint (short for intime(gpoint)) consists of a time instant and a gpoint value representing

the position of the mgpoint value at the given time instant.
In our experiments we extended the mgpoint from [10] with some additional parameters to speed up query

execution:

• length (real): The length parameter stores the total distance driven by the mgpoint value.

• trajectory (Sorted set of route intervals)10: Represents the network part ever traversed by an mgpoint.
This reduces the time to decide if an mgpoint ever passed a given place in the network (gpoint or gline)
from O(m) to O(log r) with r ≪ m, because we can perform a binary search on the much lower number r of
route intervals of the trajectory instead of a linear scan of the m units of the mgpoint. We do not maintain
the trajectory value by every operation, therefore we introduced the next parameter trajectory defined.

• trajectory defined (bool): Tells us if the trajectory parameter is well defined or must be recomputed before
we can use it.

• bbox (rect311): The spatio-temporal bounding box of themgpoint was introduced to save our computational
work, because it is very expensive to get exact spatial information in network environment. All spatial
information is only stored in the central network object. Although an mgpoint stays on the same route
with the same speed the mgpoint might move in different spatial directions within a single unit. For
example a car may drive downhill on a winding road. In this case it is not enough to get the spatial
position of the start and end position of the unit to compute the spatial part of the bounding box. The
complete route part passed in a unit must be inherited in the computation of the bounding box. The
bounding box of an mgpoint is the union of the bounding boxes of its units, such that the bounding box
computation is very expensive. For this reason the bbox value is not maintained at every change of an
mgpoint value. It is only computed on demand and stored using the trajectory value of the mgpoint or
stored if we could get it for free12.

3.3 Implemented Operations

In this section we describe the operations provided with the first network implementation in Secondo. We give
for each operation its signature, an example call, the time complexity of the operation, and, if interesting, a
description of the algorithm. The letters used in the formulas describing the time complexity of the operations
have the meaning:

10The Secondo DBMS does not allow us to use a gline value as parameter of an mgpoint. It is a way around to use a sorted set
of route intervals instead.

11Three dimensional rectangle with real coordinates.
12For example, we can get the bbox value by a copy in O(1) time if we translate an mpoint to an mgpoint value.
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• jnet is the number of entries in the junctions relation of a network value.

• rnet is the number of entries in the routes relation of a network value.

• snet is the number of entries in the sections relation of a network value.

• b is the number of bounding gpoints of a gline value13.

• c is the number of candidate routes resulting from a scan of the R-Tree of the routes relation of the network
object.

• h is the number of HalfSegments of a line or sline value.

• m is the number of units of a mgpoint value.

• p is the number of time intervals in a periods value.

• r is the number of route intervals of a gline value or the trajectory of a mgpoint value.

• u is the number of units of an mpoint value.

If more than one object of a data type takes part in an operation we will write meaningful indexes to the letters
to distinguish between the values of the different objects with the same data type.

Many operations are defined for more than one data type. We introduce another set of letters used in the
signatures of the operations:

• A := {gline,mgpoint}.

• B := {gline,mgpoint, ugpoint}.

• C := {mgpoint, ugpoint}.

• D := {gpoint, gpoints, gline}

• T := {instant, periods}.

• X := {gpoint, gline}

• Y := {gpoint,mgpoint}.

• Z := {gpoint, ugpoint}.

This enables us to write operator: A → bool instead of the itemization operator: gline → bool, operator:
mgpoint → bool.

At least we define Tsec to be the tuple type of the sections relation of a network value (see Table 3.1).

3.3.1 Network Construction

int × real × rel × rel → network thenetwork(n, factor, routes, junctions)

The operator thenetwork constructs the new network object with the given network identifier n14 from the
two given relations by Algorithm 1. The two input relations are expected to have the following content, which
corresponds to the routes and junction relations defined in the discrete network data model described in [10]:

• routes: route identifier (int), length of the route (real), geometry of the route curve (sline), and two
Boolean flags dual and startssmaller

• junctions: first route identifier (int), position on first route (real), second route identifier (int), position
on the second route (real), and the connectivity code (int)

The parameter factor is also stored in the resulting network object. It is used in map matching operations
to tell the system how big the allowed tolerance is if a point does not match exact the given route curve15.

13See Section 3.3.4 for an explanation of bounding gpoints.
14If n is already used as network identifier in the database the next free integer value i, i ≥ n is used as network identifier for the

new network instead of n.
15While implementing map matching algorithms it becomes clear, that we must allow some deviation from an exact hit on the

line representing the spatial curve of the road, because GPS-Signals almost do not hit exactly the relatively small line representing
the road. The accepted deviation may not be to big to prevent the algorithm from mapping the track to the wrong road respectively
to test too much candidate routes. Now we get network data from different sources one time the coordinates are given in geographic
coordinates, another time in UTM-System, such that we can not choose a fixed value of deviation for the map matching algorithms.
Because a deviation of 1.0 in UTM-System is a completely other value in meters than in geographic coordinates. To enable map
matching regardless of used spatial information system we introduced the scalefactor parameter to adjust the allowed deviation in
map mapping corresponding to the spatial system the network is defined with.
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Algorithm 1 thenetwork (n, factor, rout, junct)

Require: n ≥ 0 (int), factor (real), two input relations as described before.
1: Create empty network object net with id := n and scalefactor := scale.
2: Copy rout to routes relation of net
3: Construct B-Tree indexing route identifiers in routes relation of net
4: Construct R-Tree indexing route curves in routes relation of net
5: Copy junct to junctions relation of net and add route tuple identifiers from routes relation of net
6: Construct two B-Trees indexing the first / second route identifier in the junctions relation

7: for Each tuple r in routes relation do

8: for Each junction ji at this route do

9: Compute the Up and Down sections

10: Add the sections to the sections relation

11: Add the section identifiers to the junctions relation

12: end for

13: end for

14: Construct B-Tree indexing route identifiers in the sections relation of net
15: for Each junction j of the junctions relation do

16: Find pairs of adjacent sections and fill adjacency lists of net
17: end for

Let ji be the number of junctions on route ri from the routes relation. The number of entries in the sections
relation snet of net is snet := rnet +

∑r

i=1 ji, and the time complexities of the single steps of Algorithm 1 are:

• line 1: O(1)

• line 2: O(rnet)

• lines 3 + 4: O(rnet log rnet)

• line 5: O(jnet)

• line 6: O(jnet log jnet)

• lines 7 - 13: O(snet)

• line 14: O(snet log snet)

• lines 15 - 17: O(jnet)

Such that we get a total time complexity of

O(snet log snet), because rnet, jnet ≤ snet

.

3.3.2 Translation from 2D Space into Network Data Model

The Operations in Table 3.4 are used to translate spatial and spatio-temporal data types from the two dimen-
sional plane data model [5,6,9] of the Secondo DBMS into the network data model representation. In [10] these
operations are all called in network with different signatures. All translations will only be successful if the
values of the two dimensional data types are aligned to the given network otherwise the network representation
of the object is not defined.

Signature Example Call

network × point → gpoint point2gpoint(network, point)

network × line → gline line2gline(network, line)

network × mpoint → mgpoint mpoint2mgpoint(network, mpoint)

mapmatching(network, mpoint)

Table 3.4: Operators Translating 2D Spatial to Network Objects

If possible the operation point2gpoint translates a point value into a gpoint value of the given network as
described in Algorithm 2. The algorithm has a worst case time complexity from O(log rnet + c+ h).
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Algorithm 2 point2gpoint(net, p)

Require: net (network), p (point)
1: Use R-Tree of routes relation to get a set of candidate routes cr
2: for each c ∈ cr do

3: if Distance(p, c) = 0 then

4: pos = 0.0
5: for each HalfSegment h of c from origin to end of c do

6: if p is allocated on h then

7: pos+ = Distance(h.start, p)
8: return gpoint(net.Id, c.Id, pos, None)
9: else

10: pos+ = length of h
11: end if

12: end for

13: end if

14: end for

15: return gpoint(undefined)

The operation line2gline translates a line value into a sorted gline value. The algorithm takes every half

segment of the line value and tries to find the start and end of the half segment on the same route using a
variant of point2gpoint Algorithm 2. The computed route intervals are sorted and merged with help of a
RITree16 before the resulting gline value is returned.

The time complexity of line2gline is

O(h log rnet +
h∑

i=0

(ci) +
h∑

j=0

(hj)), because h ≥ rin ∧ rnet ≥ rout.

The first network implementation provides with mpoint2mgpoint and mapmatching two different op-
erators translating an mpoint value into a corresponding mgpoint value. Both operation have the signature
network × mpoint → mgpoint.

The main difference is that the operator mpoint2mgpoint expects the mpoint to move exactly in the
network and to start new units exactly at the junctions of the network. The operator mapmatching is tries
to interpolate network movement between correct detected network positions by trip simulation using shortest
path computation by A∗-Algorithm between the detected correct network positions in the mpoint movement.

The later developed Secondo algebra module MapMatchingAlgebra provides with the operator map-

matchmht a much more sophisticated MapMatching-Algorithm matching GPS-Tracks into the first network
representation. The usage is described in Section 5.4.

The operation mpoint2mgpoint translates an mpoint which is constrained by the network into an mgpoint

value. The single steps of Algorithm 3 have the following time complexities:

• line 1 + 2: O(1)

• line 3: O(log rnet + c+ h), because a variant of point2gpoint is used.

• line 4: The for-loop is executed u times and distinguishes three different cases:

1. line 7: O(1)

2. line 9 - 11: O(1)

3. line 14 - 17: O(max(adjj)) if adjj is the number of routes connected by the crossing jj .

• line 20 - 22: O(1)

We get a worst case time complexity of

O(log rnet + c+

u∑

i=0

(hi) +

u∑

j=0

adjj).

We will have a much smaller computation time in the average case, because the worst case takes only place if
the car changes the route at each unit.

16The internal data type RITree is a binary search tree for route intervals. It is implemented in the NetworkAlgebra of Secondo.
It sorts and merges a set of route intervals in O(rin log rout) time, if rin is the number of inserted route intervals and rout is the
number of resulting route intervals and rin ≥ rout.
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Algorithm 3 mpoint2mgpoint(net, mpoint)

Require: net(network) and mpoint (mpoint)
1: Initialize empty result value mgpoint with net.Id

2: upoint = first unit mpoint

3: Initialize ugpoint with net value of upoint
4: for Each upoint u in mpoint do

5: if Endpoint of u is on same route than ugpoint then

6: if Direction and speed stay the same then

7: Extend ugpoint to include value of u
8: else

9: Add ugpoint to mgpoint

10: Add routeinterval of ugpoint to trajectory

11: ugpoint is net value of u
12: end if

13: else

14: Add ugpoint to mgpoint

15: Add routeinterval of ugpoint to trajectory

16: Search u on adjacent sections
17: ugpoint is net value of upoint
18: end if

19: end for

20: Add ugpoint to mgpoint

21: Copy bounding box of mpoint to mgpoint

22: return mgpoint

Algorithm 4 mapmatching(net, mpoint)

Require: net(network) and mpoin (mpoint)
1: Initialize empty result value mgpoint with net.Id

2: start := ⊥
3: end := ⊥
4: while ∃upoint ∈ mpoint do

5: while start =⊥ do

6: start := point2gpoint(net, upoint.start)
7: end while

8: while end =⊥ do

9: end := point2gpoint(net, upoint.end)
10: end while

11: if start 6=⊥ and end 6=⊥ then

12: if start is on same route as end then

13: Write ugpoint to result route interval of ugpoint to trajectory

14: else

15: sp := shortest pathastar(start, end)
16: for Each route interval of sp do

17: Write ugpoint to result route interval of ugpoint to trajectory

18: end for

19: end if

20: end if

21: start := end

22: end := ⊥
23: end while

24: Copy bounding box of mpoint to mgpoint

25: return mgpoint

The operation mapmatching (see Algorithm 4) uses for the end computation a variant of point2gpoint
which first tries to map the new point to the same route as the last point was matched. If this is successful
the time complexity for this step is O(hi) instead of O(log rnet + ci + hi). The shortest path computation with
help of the A∗-Variant stops immediately if the path is found. In most cases the distance between the two
network positions on different routes is very small, such that this operation is not so expensive and does not
dominate the time costs of searching start and end point in the network. But it may become very expensive if
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both network positions are far away from each other. But in nearly all cases the worst case time complexity of
mapmatching is limited by

O(u log rnet +

u∑

i=0

ci +

u∑

j=0

hj)

.

3.3.3 Translation from Network Data Model into 2D Space

The operations in Table 3.5 translate network data types into spatial data types. In [10] these operations are
called in space.

Signature Example Call

gpoint → point gpoint2point(gpoint)

gline → line gline2line(gline)

mgpoint → mpoint mgpoint2mpoint(mgpoint)

Table 3.5: Operators Tranlsating Network into 2D Spatial Objects

The operation gpoint2point translates a gpoint value into the corresponding point value. The algorithm
uses the B-Tree of the routes relation of the network object, the gpoint belongs to, to get the route curve of the
gpoint. This takes O(log rnet) time. The spatial position of the gpoint on this route is computed by searching
the HalfSegments of this route curve for the position of the gpoint in worst case O(h) time. Together we get a
worst case time complexity of O(h+ log rnet).

The operation gline2line translates a gline value into a spatial line value. The algorithm uses the B-Tree
index on the routes relation to get the corresponding route curve for every route interval of the gline value.
For each route interval ri the corresponding hi segments of the route curve are computed and merged into the
resulting line value.

We need O(log rnet) time to get the route curve and O(hi) time to get the segments of the route interval.
The time complexity of the complete operation is O(r log rnet +

∑r

i=1 hi)

Algorithm 5 mgpoint2mpoint(mgpoint)

Require: mgpoint (mgpoint)
1: for Each ugpoint of mgpoint do

2: if ugpoint stays on the same route as last ugpoint then
3: use variant of gpoint2point to compute the position of end point
4: if start and end point are not on the same HalfSegment then

5: splitugpoint(ugpoint, routecurve, mpoint)
6: else

7: Add upoint to mpoint

8: end if

9: else

10: Use B-Tree Index to get new route curve for the ugpoint

11: Use variant of gpoint2point to compute the start and end point
12: if start and end are not on the same HalfSegment then

13: splitugpoint(ugpoint, routecurve, mpoint)
14: else

15: Add upoint to mpoint

16: end if

17: end if

18: end for

19: return mpoint
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Algorithm 6 splitugpoint(ugpoint, curve, mpoint)

Require: ugpoint (ugpoint), curve (sline) passed within ugpoint. resulting mpoint (mpoint)
1: if Moving Direction = Up then

2: compute the time instant the ugpoint reaches the end of the segment
3: else

4: compute the time instant the ugpoint reaches the start of the segment
5: end if

6: Add upoint to mpoint

7: for Each segment of curve passed completely by ugpoint do

8: if Moving Direction = Up then

9: compute the time instant the ugpoint reaches the end of the segment
10: else

11: compute the time instant the ugpoint reaches the start of the segment
12: end if

13: Add corresponding upoint to mpoint

14: end for

15: if Moving Direction = Up then

16: Add last upoint from section start to the end of ugpoint to mpoint

17: else

18: Add last upoint from section end to the end of ugpoint to mpoint

19: end if

The operation mgpoint2mpoint translates an mgpoint value into the corresponding mpoint value. See
Algorithms 5 and 6 for detailed description. The time complexity of Algorithm 6 depends on the number of
half segments of the route curve passed by the ugpoint. It needs O(h) time.

The single steps of Algorithm 5 need the following times:

• line 1: The FOR-Loop is called m times and needs

– in case of line 3: O(h+ log rnet) plus

∗ in case of line 5: O(h)

∗ in case of line 7: O(1)

– in case of line 10-11: O(h+ log rnet) plus

∗ in case of line 13: O(h)

∗ in case of line 15: O(1)

We get a worst case time complexity of

O(m log rnet +

m∑

i=1

hi)

3.3.4 Extract Attributes

The operators of Table 3.7 return the attributes from the different data types in O(1) time, whereas the time
complexity of the operators in Table 3.6 depends on the complexity of the return value.

Signature Example Call

network → rel routes(network)

junctions(network)

sections(network)

network × int × bool → stream(tuple(sid int, dir bool)) getAdjacentSections(network, sid, up)

getReverseAdjacentSections(network, sid, up)

mgpoint → gline trajectory(mgpoint)

C → periods deftime(mgpoint)

mgpoint → stream(ugpoint) units(mgpoint)

gline → gpoints getBGP(gline)

Table 3.6: Operators Extracting Complex Attributes of Data Types



CHAPTER 3. NETWORK IMPLEMENTATION 16

Signature Operator Explanation

A → int no components Returns the number of route intervals respectively units of the ar-
gument.

A → bool isempty Returns true if the argument is not defined or has no components.

B → real length Returns the length of the gline respectively driven distance of the
mgpoint or ugpoint

mgpoint→igpoint initial Returns the first position and start time of the mgpoint value.

initial Returns the last position and end time of the mgpoint value.

ugpoint → real unitrid Returns the route identifier of the ugpoint value.

unitstartpos Returns the start position of the ugpoint value.

unitendpos Returns the end position of the ugpoint value.

unitstarttime Returns the start time instant of the ugpoint value as real value.

unitendtime Returns the end time instant on the ugpoint value as real value.

ugpoint → instant startunitinst Returns the start time instant of the ugpoint value.

endunitinst Returns the end time instant on the ugpoint value.

igpoint → gpoint val Returns the gpoint of the igpoint value

igpoint → instant inst Returns the time instant of the igpoint value

Table 3.7: Operators Extracting Attributes of Data Types in O(1) Time

The operators routes (O(rnet)), junctions (O(jnet)), and sections (O(snet)) get a network object as
parameter and return the values of the internal relations of the given network. The time complexity of the
operators is given in brackets.

The operators getAdjacentSections and getReverseAdjacentSections get as parameters a network

value, an identifier (int) which identifies the query section, and a Boolean value telling if we want to search
in Up(true) or Down(false) direction of the section. The tuples in the return stream identify the (reverse)
adjacent sections17 of the query section by identifier and direction. The query section is searched by a binary
search in the (reverse) adjacency list and the x result sections are returned. The time complexity of the
operations is O(x+ log snet).

The operation trajectory returns the trajectory of the mgpoint as sorted gline value representing all the
places ever traversed by the mgpoint. If the trajectory attribute of the mgpoint is defined the route intervals

are returned as gline value in O(r) time. Otherwise the trajectory attribute is computed and returned as gline
value by a linear scan of the units of the mgpoint value in O(rout+m log rout) time. The latter time complexity
value could be reduced to O(m) if we store the computed route intervals immediately to the resulting gline

value without sorting and merging. As mentioned in Section 3.2.4, we think that the overhead in computation
time for sorting and merging is well invested.

The operation deftime is defined for mgpoint and ugpoint. It returns the periods representing the definition
time of the the mgpoint value respectively the ugpoint value. This takes O(1) time for ugpoint values and O(m)
time for mgpoint values.

The operation units returns the units of the mgpoint value as stream of ugpoint values in O(m) time.
The operation getBGP returns the bounding gpoints18 of the given gline value as gpoints value. The time

complexity of the operation is O(r).

3.3.5 Bounding Boxes

In network environment we know two different types of bounding boxes. On the one hand the spatial and
spatio-temporal bounding boxes (see Table 3.8) as they are known from the data model of [6] for spatial and
spatio-temporal data types. And on the other hand network and network-temporal bounding boxes (see Table
3.9), which abuse the route identifiers and positions on the routes as x- and y-coordinates of the “network
bounding rectangle”.

17The adjacent sections are the directed sections which can be reached from the query section passing it in Up respectively Down

direction. The reverse adjacent sections are the directed sections which must be passed to reach the query section.
18Bounding gpoints define the network positions, which must be passed by everyone who wants to reach the inside of the gline

from the outside of the gline and vice versa. We are interested in these points, because they can be used to reduce the complexity
of shortest path and Network Distance computing between gline values.
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3.3.5.1 Spatial and Spatio-Temporal Bounding Boxes

Signature Example Call

network → rect2 netbbox(network)

ugpoint → rect3 unitboundingbox(ugpoint)

mgpoint → rect3 mgpbbox(mgpoint)

Table 3.8: Operators Generating Spatial- and Spatio-Temporal Bounding Boxes

The operation netbbox returns the spatial bounding box of the network value. This is the same as the bounding
box of the R-Tree of the routes relation of network and can be returned in O(1) time.

The operations unitboundingbox and mgpbbox return the spatio-temporal bounding boxes of ugpoint
respectively mgpoint values as three dimensional rectangles with coordinates:

• x1 = min(x-coordinate of the bounding box)

• x2 = max(x-coordinate of the bounding box)

• y1 = min(y-coordinate of the bounding box)

• y2 = max(y-coordinate of the bounding box)

• z1 =start time instant as real

• z2 =end time instant as real

The spatial part of the unit bounding box is defined as the spatial bounding box of the route interval passed
by the ugpoint value. The temporal part (z-coordinates) of the unit bounding box is given by the real values
representing the start and the end time instant of the time interval of the ugpoint value.

To compute the spatio-temporal bounding box of a ugpoint the operation unitboundingbox needs access
to the half segments of the corresponding route curve. It uses the B-Tree index of the routes relation of the
network the ugpoint belongs to, to get the route curve in O(log rnet) time. The worst case time complexity for
unitboundingbox is O(h+ log rnet).

The spatio-temporal bounding box of amgpoint value is defined by the union of the spatio-temporal bounding
boxes of its ugpoints. The simple computation would take O(m log rnet+

∑m

i=1 hi) time, which is very expensive.
As mentioned before in Section 3.2.5 we introduced the parameter bbox to the mgpoint to store the spatio-
temporal bounding box of an mgpoint value, if it has been computed once, until the mgpoint value changes.
Otherwise we use the trajectory parameter of the mgpoint value to get the spatial part of the bounding box in
much less time.

Algorithm 7 mgpbbox(mgpoint)

Require: mgpoint(mgpoint)
1: if bbox exists then
2: return bbox

3: else

4: if trajectory is not defined then

5: trajectory(mpoint)
6: end if

7: Compute union of bounding boxes of route intervals in trajectory

8: Extend the resulting box by start and end time of the mgpoint

9: return bbox

10: end if

The single steps of mgpbbox (see Algorithm 7) have a time complexity of:

• line 1: O(1)

• line 2: O(1)

• line 4: O(1)

• line 5: O(m log rout + rout)
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• line 7: O(
∑rout

i=1 hri)

• line 8: O(1)

• line 9: O(1)

In the worst case we get a time complexity of O(m log rout +
∑rout

i=1 hri), which is still better than the simple
version, because rout ≪ m ∧ rout ≪ rnet.

3.3.5.2 Network and Network-Temporal Bounding Boxes

A network(-temporal) bounding box is a two (three) dimensional rectangle with coordinates (x1, x2, y1, y2)
respectively (x1, x2, y1, y2, z1, z2), where the both x-coordinates are defined by the route identifier and are
always identical, the y-coordinates are given by the positions on the route, and the z-coordinates are defined as
real values representing the start (z1) respectively the end (z2) time instant of the time interval of the ugpoint.

Signature Example Call

gpoint → rect gpoint2rect(gpoint)

gline → stream(rect) routeintervals(gline)

ugpoint → rect3 unitbox(ugpoint)

ugpoint → rect unitbox2(ugpoint)

Table 3.9: Operators Generating Network- and Network-Temporal Bounding Boxes

The operation gpoint2rect computes the network bounding box of a gpoint value in O(1) time. The y-
coordinates are defined as y1 = position− 0.000001 respectively y2 = position+0.000001. The small real value
is added to avoid problems with the computational inaccuracy of real values especially at route start and end
points.

The operation routeintervals returns a stream of network bounding boxes, one for each route interval of
the gline value. The y-coordinates are defined to be y1 = min(start position, end position) and y2 = max(start
position, end position). The operation needs O(r) time.

The operation unitbox2 returns the network bounding box of the ugpoint value in O(1) time. The y-
coordinates are given by y1 = min(start position, end position) and y2 = max(start position, end position).

The operation unitbox returns the network-temporal bounding box of the ugpoint value in O(1) time. The
operation extends the two dimensional rectangle of unitbox2 with the z-coordinates defined by the real values
of the start and end time instants of the ugpoint.

3.3.6 Property Tests

The operations in this section (see Table 3.1019) check if the arguments fulfill given conditions and return true

if this is the case. A special case is the operation inside for mgpoint, because the argument and the return
value are moving data types.

Signature Example Call

X ×X → bool a = b

Y × Y → bool intersects(a, b)

mgpoint ×X → bool mgpoint passes b

gpoint × gline → bool a inside gline

mgpoint × gline → mbool mgpoint inside gline

mgpoint ×T → bool mgpoint present b

Table 3.10: Operators Checking Properties

The operation = compares the arguments and returns true if they are equal, false otherwise. For two
gpoint values the check is done in O(1) time. For two gline values we have to compare all route intervals of
both gline values in the positiv case, in the negativ case false is returned immediately if a difference between

19The data type of the first parameter must be equal to the data type of the second parameter if X or Y occur twice in a
signature.



CHAPTER 3. NETWORK IMPLEMENTATION 19

the two gline values is detected to save computation time. If both gline are sorted the comparison of the two
sets of route intervals needs O(r) time. If only one gline value is sorted we need O(r log r) time. If none of the
gline values is sorted we need O(r2) time.

The operation intersects checks if the two arguments intersect respectively meet at least at one position in
the network.

For two gline values the algorithm checks if there is a pair of route intervals (one from gline1 and one from
gline2 ) that intersects. Because sorted gline values can reduce computation time the algorithm distinguishes
three cases:

1. If both gline values are sorted, a parallel scan through the route intervals of both gline values is performed
in O(r1 + r2) time.

2. If only one gline value is sorted, a linear scan of the unsorted gline is performed. For each route interval

of the unsorted gline a binary search for an overlapping route interval is performed on the route intervals

of the sorted gline value. This takes O(ri log rj) time, with i, j ∈ {1, 2}, i 6= j.

3. If both gline values are not sorted, a linear scan of the first gline value is performed, and for each route

interval a linear scan for overlapping route intervals on the second gline value is performed in O(r1r2).

In all three cases true is returned and computation stops immediately if a intersecting pair of route intervals

has been found.
For two mgpoint values the algorithm works almost analogous to intersection (see 3.3.11) but if two

intersecting units are found true is returned immediately. In the worst case that no intersection is found the
time complexity is equal to the time complexity of intersection.

The operation passes checks if the mgpoint ever passes the given network position (gpoint) or part (gline).
The algorithm uses the trajectory parameter of the mgpoint. If the trajectory is not defined the trajectory is
first computed using trajectory(mgpoint). In this case we must add the time complexity trajectory to the
time complexity of passes. In the sequel we assume that the trajectory is already defined.

If the second argument is a gpoint a binary search for a route interval that contains the gpoint is performed
on the trajectory parameter. This will take O(log r) time.

If the second argument is a gline the algorithm distinguishes two cases:

1. If the gline is sorted a parallel scan of the route intervals of the gline value and the trajectory of the
mgpoint is performed to detect an intersecting pair of route intervals one from gline and one from mgpoint.
The time complexity is O(rmgpoint + rgline)

2. If the gline is not sorted a linear scan of the route intervals of the gline value is performed. And for
every route interval a binary search for an intersecting route interval is performed on the trajectory of
the mgpoint. The time complexity is O(rgline log rmgpoint).

In both cases true is returned immediately if a pair of intersecting route intervals is detected.
The operation inside checks if the gpoint respectively mgpoint value is inside the gline value.
If the second argument is a gpoint the algorithm distinguishes two cases:

1. If the gline is sorted a binary search for a route interval containing the gpoint is performed in O(log r)
time.

2. If the gline is not sorted a linear scan of the route intervals of the gline is performed to find a route
interval containing the gpoint in O(r) time.

If the second argument is an mgpoint the result of inside gline is an mbool20 is returned. The mbool is true
every time interval the mgpoint moves inside the gline and false for the other time intervals of the definition
time of the mgpoint. The algorithm checks for every unit of the mgpoint if there is any intersection with the
route intervals of the gline. Based on these values the resulting mbool is computed. Again we distinguish
between sorted and unsorted gline

• If the gline is sorted a binary search on the route intervals is performed and the operation takes O(m log r)
time.

• If the gline is not sorted a linear scan on the route intervals is performed and the operation takes O(mr)
time.

20(Short form of moving(bool)). An mbool value changes its value within time. See [6] for more details.
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The operation present checks the time intervals of the mgpoint value and returns true if the mgpoint value
is defined at the given time instant or at least a part of the given period of time.

If the second argument is a instant value the algorithm performs a binary search on the units of the mgpoint

for the given time instant in O(logm) time.
If the second argument is a periods value the algorithm performs a parallel scan of the units of the mgpoint

value and the units of the periods value and returns true if an intersecting time interval is found. The worst
case time complexity is O(m+ p).

3.3.7 Merging Data Objects

A×A → A a union b

The operation union merges two argument objects into one result object of the same data type in the same
network.

Algorithm 8 describes the operation for two gline values. The time complexity is O(r1 + r2) if both gline

values are sorted and O((r1 + r2) log rout) in all other cases.

Algorithm 8 union(gline1, gline2)

Require: gline1, gline2 of data type gline

1: if Both gline are sorted then

2: Perform parallel scan of the route intervals of both gline

3: if current pair of route intervals intersect then
4: merge route intervals into one
5: if upcoming route intervals intersect the resulting route interval then

6: extend merged route interval

7: end if

8: Add merged route interval to result and continue scan
9: else

10: Add smaller route interval to resulting gline and continue scan
11: end if

12: else

13: Fill the route intervals of both gline in a common RITree to compute resulting gline

14: end if

15: return resulting gline

If we do not want to store the resulting gline sorted we could simply add every route interval of both gline

values into the new gline in O(r1 + r2) time. As mentioned before in Section 3.2.4, we think that the additional
time for merging and sorting is well invested at this point.

For two mgpoint the algorithm performs a parallel scan through the units of both mgpoint and writes the
units of the mgpoints in ascending order of their time intervals to the resulting mgpoint. If there are overlapping
time intervals the algorithm checks, if both ugpoint values define the same places for the same times. If this is
the case one of them is written to the result and the other one is ignored. If the ugpoint values are different
the computation stops immediately and the result is marked to be undefined. The worst case time complexity
of this operation is O(m1 +m2).

3.3.8 Path Computing

X ×X → gline shortest path(a, b)
D ×D → gline shortest pathastar(a, b)

The operation shortest path computes the shortest path between the arguments using Dijkstras Algorithm of
shortest paths [3], whereas the operation shortest pathastar uses the A∗-Algorithm [12] for the computation.
Because of the bad performance of Dijkstras Algorithm shortest path is only implemented for pairs of gpoint
and gline, whereas shortest pathastar supports all possible combinations of static network data types.

For two gpoint values the worst case time complexity of shortest path is O(snet + jnet log jnet) see [3].
For two gline values the operation shortest path computes first the bounding gpoint values of both gline

values using getBGP (see Section 3.3.4) followed by the computation of the shortest paths for each possible
pair of bounding gpoint values one from gline1 and one from gline2 using Dijkstras Algorithm of shortest
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paths. The shortest detected path is returned as result value. The time complexity for this operation is
O(r1 + r2 + b1b2(snet + jnet log jnet)).

Different from operation shortest path the operation shortest pathastar uses the A∗-Variant of Dijkstras
Algorithm. The A∗-Algorithm is known to have better run times in almost all cases than Dijkstras Algorithm,
because it touches fewer sections than Dijkstras Algorithm. This can be checked in Secondo comparing the
results of the operation spsearchvisited (described below) for both algorithms.

All possible combinations of static network data types are reduced to compute the shortest path with A∗-
Algorithm between two sets of gpoints. This is done in O(1) for gpoint and gpoints values. In case of a gline

value the bounding gpoints are computed using the operation getBGP before the shortest path A∗-Algorithm
for two gpoints values is used.

Our variant of the A∗-Algorithm for two sets of gpoints does not compute the shortest path for all pairs
of gpoint one from gpoints1 and one from gpoints2. It initializes the priority queue for A∗ with all gpoint
of gpoints1 and uses this single priority queue to compute the shortest path to the destination set gpoints2.
The computation stops, if the first time a gpoint from gpoints2 is the minimum of the priority queue. A few
additional operations ensure that the path we found first is really the shortest path between the two position
sets. In our experiments we compared the brute force attempt of shortest path with our shortest pathastar

variant. The speed up for two sets of network positions is enormous. We measured a run time of 0.17 seconds
for shortest pathastar computation, while the brute force attempt took 4.199 seconds in the middle for the
same input and result.

As mentioned before we introduced an operation spsearchvisited to enable the user to compare the different
shortest path algorithms. The operation has the signature: D ×D× bool → stream(tuple(Tsec)). The result is
a stream with the tuples of the internal section table, which have been visited within the shortest path search.
If both arguments are of data type gpoint respectively gline the Boolean value can be used to select if Dijkstras
Algorithm (true) or the A∗-Algorithm (false) should be performed for shortest path search. For all other
combinations of argument data types only the A∗-Algorithm is implemented, such that only false is possible
as Boolean input value. The time complexity of spsearchvisited is analogous to the used Algorithm for path
computation.

The operation shortestpathtree was introduced to support network distance computation between a static
gpoint and anmgpoint value. The signature of the operation is gpoint × network→ stream(tuple(sid int, distance
real, direction bool)). The operation computes the shortest path from one source gpoint to all other places in
the network using Dijkstras-Algorithm in O(snet + jnet log jnet) time. It returns a stream of tuples. Each
tuple represents a network section in the shortest path tree of the network with origin gpoint. The sections
are represented by their identifier, their distance from the source gpoint value and a Boolean flag telling, if the
section is passed in Up or Down direction within the shortest path tree.

3.3.9 Distance Computing

There is a big difference between the Euclidean Distance and the Network Distance of two places a and b. The
Euclidean Distance is given by the length of the beeline between the two places regardless from existing paths
in the network between the two locations and it is the same equal if we estimate the distance from a to b or
form b to a. On the contrary the Network Distance is given by the length of the shortest path between a and b

in the network. According to this, and contrary to the Euclidean Distance, the Network Distance from a to b

might be another than the Network Distance from b to a. Because there might be one way routes in the shortest
path from a to b, which cannot be used in the shortest path from b to a or vice verse.

3.3.9.1 Euclidean Distances

X ×X → real distance(a, b)
mgpoint × mgpoint → mreal21 distance(mgpoint1, mgpoint2 )

Although Euclidean Distances do not make much sense in a network environment, we implemented the
distance operation which computes the Euclidean Distance between two gpoint, gline, or mgpoint values for
network objects for convenience.

All following algorithms for Euclidean Distance computing do first a translation of the network data types
into equivalent two dimensional data types using the operators of Section 3.3.3 before they use the existing
distance operation of this equivalent two dimensional data types to compute the Euclidean Distance between
the network data types. Therefore the time complexity is always given by the sum of the translation time
and the time for the distance computation. In all cases the translation time dominates the time for distance

21We have moving data types as arguments such that the result is also a moving data type. See [6] for detailed explanation of
mreal.
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computing, such that the time complexity for the distance computation between two network objects is the
same than for the translation of the network objects.

3.3.9.2 Network Distances

As mentioned before the Network Distance is given by the length of the shortest path between the two arguments,
whereas the first argument is the source and the second argument the target of the shortest path. This definition
is necessary, because the shortest path from the first to the second argument may differ from the shortest path
from the second to the first argument.

We distinguish between two cases. The first simpler case computes Network Distances only between static
network positions. The result is, in this case, always a single real value. In the second case we estimate Network
Distances where at least one of the data objects is an mgpoint. In this cases the result is an mreal.

For the static case analogous to the shortest path computation we know to different operators netdistance
and netdistancenew.

3.3.9.2.1 Static Network Positions

X ×X → real netdistance(a, b)
D ×D → gline netdistancenew(a, b)

The operator netdistance uses the Dijkstras Algorithm implemented in operation shortest path, whereas
the operator netdistancenew uses the A∗-Algorithm version as described in Section 3.3.8 for operation short-

est pathastar. The time complexity of the operations is dominated by the shortest path computation, such
that the time complexity of the operation is given by the shortest path algorithm used. Algorithm 9 computes
the minimum Network distance between two gline values.

Algorithm 9 netdistance(gline1,gline2)

1: BGP1 = getBGP(gline1)
2: BGP2 = getBGP(gline2)
3: minDist = ∞
4: for Each pair of p1 ∈ BGP1 and p2 ∈ BGP2 do

5: if p1 inside gline2 ∨ p2 inside gline1 then

6: return 0.0
7: else

8: actDist = length(shortestpath(p1,p2))
9: if actDist < minDist then

10: minDist = actDist

11: end if

12: end if

13: end for

14: return minDist

3.3.9.2.2 Moving Network Positions

Z × Z → ureal netdistance(a, b)
Y × Y → mreal netdistance or netdistancenew(a, b)

The computation of moving Network Distances is not exact yet. Exact computation would take much more
computation time and very complex operations, because the shortest path from object a to object b may change
more than one time within one unit completely such that we would get more than one shortest path and resulting
unit per unit.

The operation netdistance uses the A∗-Algorithm to estimate the Network Distance. The initial distance
value for the resulting ureal value of the netdistance operation between a gpoint and a ugpoint is defined by
the Network Distance between the gpoint and the start position of the ugpoint respectively vice verse. The end
distance value of the result is computed by addition respectively subtraction of the distance between start and
end position of ugpoint to start distance value22. The start and end values are used to compute the parameters
of a ureal value representing the development of the distance value in the time interval defined by the ugpoint.

22If the length of the ugpoint values is added or subtracted depends on the direction of the movement of the ugpoint value relative
to the shortest path.
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For the Network Distance between two ugpoint values the start distance value is the Network Distance
between the two start positions of the both ugpoint values. The end value is estimated by adding/subtracting
the lengths of both ugpoint values almost analogous to the gpoint to ugpoint case.

To compute the Network Distance between a gpoint and amgpoint or vice verse we compute first the (reverse)
shortest path tree of the gpoint. After that we do a linear scan of the units of the mgpoint and compute the
sections passed by this unit. We get the length of the shortest path from/to the start and end of this unit
to the gpoint by a look up of the results of the shortest path tree computation. These length values are used
to compute corresponding ureal values for the resulting mreal value representing the moving network distance
between the moving and the static network position.

In all cases the time complexity is dominated by the time complexity of shortest path respectively shortest
path tree computation.

The operation netdistancenew tries to save computation time by first estimating the set of sections ever
passed by the mgpoint and then stopping the (reverse) shortest path tree computation when all passed sections
have been reached. The rest of the algorithm is analogous to netdistance for mgpoint and gpoint values.
The main difference is the time complexity of the (reverse) shortest path tree computation. Depending on the
movement and the distance of the movement of the mgpoint relatively to the gpoint the average computation
time is much better than in case of netdistance for the same query objects.

3.3.10 Network Part Around a Single Network Position

The three operations circlen, in circlen and out circlen with signature gpoint × real → gline and syntax
op(gpoint, dist) return a gline value. In case of out circlen the gline represents the parts of the network
around the given gpoint which can be reached within the Network Distance given by dist from the gpoint. In
case of in circlen the gline represents the parts of the network from which the gpoint can be reached within
dist. And circlen returns the union of the results of out circlen and in circlen.

The values are computed by building the (reverse) shortest path tree of gpoint until the given distance is
smaller than the next distance coming from the priority queue.

3.3.11 Restricting Single Moving Network Positions

Signature Example Call

mgpoint × instant → igpoint mgpoint atinstant periods

mgpoint × periods → mgpoint mgpoint atperiods periods

mgpoint ×X → mgpoint mgpoint at a

mgpoint × mgpoint → mgpoint intersection(mgpoint1, mgpoint2 )

mgpoint × real → mgpoint simplify(mgpoint, real)

Table 3.11: Operators Restricting Single Moving Network Positions

The operations in this section (see Table 3.11) restrict mgpoint values to given times or places or reduce the
number of units of the mgpoint.

The operation atinstant restricts the mgpoint to the given time instant. It performs a binary search on
the units of the mgpoint to find the unit containing the given time instant. If a corresponding unit is found the
result is computed and returned, otherwise an undefined igpoint value is returned. The time complexity of the
operation is O(logm).

The operation atperiods restricts the mgpoint to the given periods of time. It performs a parallel scan of
the periods and the mgpoint value. The (parts) of units which are inside the periods value are written to the
resulting mgpoint. The time complexity is O(m+ p).

The operation at restricts the mgpoint to the times and places given as gpoint or gline value.
For a gpoint value the operation at performs a linear scan on the units of the mgpoint and checks for every

unit if the mgpoint passes the gpoint. If this is the case a ugpoint for the time the mgpoint was at the gpoint is
computed and added to the resulting mgpoint. The computation takes O(m) time.

For a gline value the operation at performs a linear scan on the units of the mgpoint. For each unit of the
mgpoint we check if it passes any route interval of the gline. For sorted gline values a binary search on the route
intervals and for unsorted gline values a linear scan of the route intervals is performed. If the route interval

and the unit of the mgpoint intersect the times and places of the intersection are computed as ugpoint value
and added to the resulting mgpoint. The time complexity of the operation is O(m log r) for sorted and O(mr)
for unsorted gline values.
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The operation intersection returns the times and places where both argument mgpoints have been at the
same time. The algorithm first computes the refinement partitions23 of the both mgpoint. Then it performs a
parallel scan through the refinement partitions of both mgpoint and checks for every pair of units if there is an
intersection. If this is the case a ugpoint with the intersection value is computed and written to the resulting
mgpoint. Let s be the number of units of the refinement partitions. The time complexity of the algorithm is
O(m1 +m2 + s).

The operation simplify reduces the number of units of the mgpoint, by merging the units, where the mgpoint

moves on the same route, in the same direction, and the speed difference between two units is smaller as defined
by the given real value. The operation performs a linear scan on the units of the mgpoint and checks the
condition for every unit. This takes O(m) time. Detailed information about the simplification can be found
in [14].

3.3.12 Create Moving Value From Single Unit

ugpoint → mgpoint ugpoint2mgpoint(ugpoint)

The operation ugpoint2mgpoint constructs a mgpoint value from an single ugpoint value in O(1) time.

3.3.13 Static Network Position Values of Junctions

gpoint → stream(gpoint) polygpoints(gpoint)

A problem of the network dat/a model is that junctions belong to more than one route. That means, different
from the spatial case, one junction has more than one network representation. Operators like passes or inside
do not check if the query gpoint is a junction and probably has more than one representation, because the
interpretation of passing a network junction in [10] is slightly different from passing a point in the two dimensional
space. So if, for example, an mgpoint passes a junction on the one route and the gpoint representing the junction
is given related to another route we get false as result. This is correct in the network data model but does not
fit to the passes interpretation of the data model of free movement in two dimensional space.

We introduced the operation polygpoints to bypass this problem in the BerlinMOD Benchmark [1]. This
operation returns for every given gpoint a stream of gpoint. This stream contains only the gpoint itself if the
gpoint is not a junction, and the gpoint itself and all aliases for this gpoint representing the same place in space
if the gpoint is a junction.

The algorithm polygpoints first copies the argument gpoint to the output stream in O(1) time. Then it
checks if the gpoint represents a junction by selecting all junctions from the junctions relation which are on the
route with the route identifier of the gpoint with help of the junctions relation B-Tree in O(log jnet + k) time.
This k junctions are checked if they are identified by the gpoint. In the worst case this takes O(k) time. If
this is the case all other gpoint values identifying the same junction on other routes are returned in the output
stream. The complete algorithm has a worst case complexity of O(log jnet + k).

23Refinement partition means that the units of both mgpoint are parted, such that in the end the units of both mgpoint have
the same time intervals for the times they both exist.



Chapter 4

JNetwork Implementation

4.1 Introduction

As mentioned before we provide two implementations of the network data model of [10] in Secondo DBMS.
The second implementation was developed because the tests with the first implementation of the network data
model (see Chapter 3) in Secondo showed that our expectations are fulfilled. The network data model needs
less storage space than the spatial data model implemented in Secondo; and the query run times compared
with the BerlinMOD Benchmark are also much better for the network data model. But within the same tests
we detected several problems of the first network implementation:

• The number of available sections is limited by the main memory at network creation time, such that we
could not import bigger amounts of street data as single network object.

• The side value in RouteInterval was not implemented and could not be added easily because the imple-
mentation is not really well object oriented, such that the maintenance of the code becomes very expensive
and difficult. For the extension of the RouteInterval we would have to change thousand lines of code at
every place the RouteInterval occurs.

• Some data information is stored twice for example in the network relations the spatial route curve is stored
once in the routes and once in the sections relation, this could be reduced to save storage space without
loss of information.

• The idea to use the implemented generic mapping functions directly does not work for moving network
data types, such that we could save data space by using one route interval for the spatial part of each
moving unit instead of two network positions which consists except of the position value of the same data
content.

Based on these experiences we implemented the network data model a second time in an improved version
which supports the missing functionality, saves more storage space and has at least the same or better query
run times (see Figure 5.1) than the first network implementation described in Chapter 3. Different from the
first implementation the static and the temporal data types and the operations on this data types are provided
in one single Secondo algebra module called JNetAlgebra.

Analogous to the description of the first implementation we describe the data types of the second imple-
mentation in Section 4.2 and the operations on these data types in Section 4.3.

4.2 Implemented Data Types

Beside the central jnetwork object (see Section 4.2.2) and the jnetwork depending data types (see Section 4.2.3)
we introduced some helpful other Secondo attribute data types (see Section 4.2.1). These additional data
types are used as part of network data types and as input to create jnetworks and jnetwork dependent objects.

All data types described in the sequel have an additional Boolean flag telling if the current data type value
is well defined or not. We will not mention this flag again at every data type.

4.2.1 Basic Data Types

The data type jdirection encapsulates the enumeration of side values Up, Down and Both1 to be useable as
attribute data type into relations. It is used in the other data types to realize the side value as described in [10].

1We found it more logical to say a position is reachable from both sides of a road than to use none for the same sense, like it is
done in the original abstract data model and in the first implementation.

25
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The definition of the data type rloc (short form of route location) is based on the definition of the abstract
data type RLoc in [10]. It consists of a route identifier (int), the distance of the location from the origin of the
route curve (real) following the route curve, and a side value (jdirection) describing from which side of the road
the location can be reached on the route.

The data type jrint (short form of route interval in this second network data model implementation) is based
on the abstract route interval definition of [10]. It consists of a route identifier (int), two distance values (real),
and a side value (jdirection). The two distance values describe the route part covered by the jrint. The first
distance value is always smaller or equal to the second distance value. This is possible because the side value
tells, depending on the usage in which direction the route part is used respectively, at which side of the road
the route part is allocated.

The data type ndg (short for net distance group) consists of four int values and one real value. The four
integer values identify the source junction, the target junction, the next junction, and the next section on the
path from the source to the target junction by their identifiers. The real value describes the Network Distance
(length of the shortest path) from the source junction to the target junction in the network.

The data type junit consists of a time interval2 and a jrint value. Telling on which route the car drives in
which direction from which position to which position in the given time interval at the same speed. It is used
within the data types mjpoint and ujpoint to describe the movement in a single time interval. We can use this
information to compute the exact position of the car at any time instant within the time interval. If the car
passes a given route location within this junit the exact time the car reaches the given route location can be
computed.

The next data types listint, listrloc, listjrint, and listndg organize sets of int, rloc, jrint, and ndg as sorted
main memory independent lists. These sorted lists enable us to perform binary searches for values in the set
that is not limited by the available main memory.

4.2.2 JNetwork

The central network data type of the JNet Implementation is the data type jnet which consists of:

• The database name of the network object as string value3

• A real value storing the allowed deviation for map matching algorithms4

• Relation with junctions data (see Table 4.1)

• Relation with routes data (see Table 4.3)

• Relation with sections data (see Table 4.2)

• Ordered Relation with network distance data (see Table 4.4)

• R-Tree for the section relation indexing the Curve attribute

• R-Tree for the junctions relation indexing the Pos attribute

• Three B-Trees indexing the identifiers of the junctions, routes and sections in the corresponding relations.

Attribute Data Type Explanation

Id int unique junction identifier

Pos point spatial position of junction in two dimensional space

ListJuncPos listrloc list of network positions of this junction5

ListInSections listint list of section identifiers from which the junction can be reached

ListOutSections listint list of section identifiers over which the junction can be leaved

Table 4.1: Junctions Relation of Data Type JNetwork

2See Section 3.2.5 for detailed information about time interval definition in Secondo.
3We use the database name of the network object as string value instead of the int identifier used in the first implementation to

enable a faster access to the jnet object for the network dependent objects.
4The sense of this value is manly the same than explained for the scalefactor attribute of network in the first implementation

see Footnote 15 on Page 10.
5One spatial position has different network locations if the position is at a junction. See Section 3.3.13 for detailed problem

description.
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Attribute Data Type Explanation

Id int unique section identifier

Curve sline spatial curve representing the section curve in two dimensional
space

StartJunctionId int junction identifier of the junction at the start point of the section
route curve

EndJunctionId int junction identifier of the junction at the end point of the section
route curve

Direction jdirection tells in which direction(s) the section can be used

VMax real maximum allowed speed on this section

Length real length of the section curve

ListSectRouteIntervals listjrint list of route intervals represented by this section6

ListAdjSectionsUp listint list of adjacent sections driving section up

ListAdjSectionsDown listint list of adjacent sections driving section down

ListRevAdjSectionsUp listint list of reverse adjacent sections for driving section in up direction.

ListRevAdjSectionsDown listint list of reverse adjacent sections for driving section in down direc-
tion.

Table 4.2: Sections Relation of Data Type JNetwork

Attribute Data Type Explanation

Id int unique route identifier

ListJunctions listint list of identifiers of junctions belonging to this route

ListSections listint list of identifiers of sections belonging to this route

Length real total length of route curve

Table 4.3: Routes Relation of Data Type JNetwork

Attribute Data Type Explanation

Source int junction identifier of source junction

Target int identifier of target junction

NextJunction int identifier of next junction in path from source to target

NextSection int identifier of next section on path from source to target

NetworkDistance real Network Distance from source to target junction

Table 4.4: Network Distance Relation of Data Type JNetwork

4.2.3 JNetwork Dependent Data Types

The most jnetwork dependent data types extend just one of the basic data types with a jnetwork identifier
(string) connecting the described value with an existing jnet object in the database. For jnetwork dependent
objects we check at creation if the jnetwork object the data type should be related to exists and if the given
location exists in the connected jnetwork object.

We use the string with the database name of the jnetwork object as connection instead of an int value like it
is done in the first implementation, because this speeds up the access to the jnet object in the operations that
need access to information stored in the jnetwork object. We pay for this advantage with little additional time
needed to compare two string values compared with the time needed to compare two int values. We think that
this time is well invested.

The data type jpoint describes a single static position in the jnetwork by connecting a route location (rloc)
to a jnetwork identifier.

6One section curve may be part of different roads. See Footnote 4 on Page 7 for explanation.
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The data type jpoints connects the jnetwork identifier with a sorted set of rloc values. The route locations
are sorted by route identifier, side value and the distance from the origin of the route. This enables us to
perform a binary search on the set to find a given position in the set. An value of this data type may be used
to represent the addresses of all butchers in the town.

Different from the first network implementation we provide two different data types (jline and jpath) repre-
senting network parts in the second network implementation. Both data types consist of the jnetwork identifier
and a set of route intervals (jrint). The difference is the sequence the set of route intervals is stored. The data
type jpath describes a path in the jnetwork and the route intervals are stored sorted by their usage in the path
from the first point to the last point of the path. The data type jline describes arbitrary parts of the jnetwork
and the route intervals are stored sorted by route identifier, side value and shorter distance from the origin of
the route curve. The data type jline corresponds to the sorted gline of the first implementation, whereas the
jpath is more like the unsorted gline. Using two different data types at this place frees us from handling different
cases for sorted and unsorted values in each operation dealing with network parts. If needed jpath values can
be easily translated into jline values using tojline operation as described in Section 4.3.15.

The data type mjpoint represents the history of movement of a single position (for example one car) in the
jnetwork. It consists of the jnetwork identifier, a set of JUnit values with not overlapping time intervals, a set of
jrint describing the network part ever visited by an mjpoint value, and the total length of the driven distances
(real). The set of junit values is stored sorted by ascending time intervals7.

The data type ujpoint consists of a jnetwork identifier and a single junit value. It describes the movement
in this time interval.

The data type ijpoint consists of a time instant and a jpoint. It describes the position of a moving jnetwork
position at the given time instant.

4.3 Implemented Operations

In the sequel we describe the implemented operations in the second implementation of the network data model.
Analogous to the chapter before we present for each operator its signature, an example call and information
about the used algorithms and if interesting the time complexity of the algorithms.

As before we define some abbreviations for the signatures and time complexity descriptions:

• jjnet is the number of junctions in the junctions relation of a jnet value

• rjnet is the number of routes in routes relation of a jnet value

• sjnet is the number of sections in sections relation of a jnet value

• a is the number of sections of the route, and aj the number of route intervals of section j

• c is the number of candidate sections a point value may be mapped to.

• e is the number of elements in a stream, and ej is the number of list elements of the j-th stream element
if the stream element is a list data type

• h is the number of HalfSegments in a line or sline value

• l is the number of list elements in a list data type

• m is the number of units of a mjpoint value

• p is number of time intervals in a periods value

• r is the number of route intervals of a jline value

• t is the number of jrint values in the trajectory of a mjpoint

• u is the number of units of a mpoint value

• B := {int, rloc, jrint, ndg}

• ListB := {listint, listrloc, listjrint, listndg}

• M := {mjpoint,ujpoint}

7This implementation does not fit the generic model of moving in [5]. In the generic system of moving the data part should
consist of two jpoint values instead of a jrint. The first network implementation showed that we can not use the implemented
generic operators for network data types directly such that we have to do specific network implementation for all operators even if
we use the generic data model for moving. We decided to use our implementation to save storage space without loss of information.



CHAPTER 4. JNETWORK IMPLEMENTATION 29

• N := {ujpoint, jpoint, jrint}

• P := {jpoint, jpoints, jline}

• S := {jpoint, jline}

• T := {instant, periods}

• X := {jdirection, rloc, jrint,ndg, jpoint, jline, ListB}

• Y := {mjpoint, jline}

4.3.1 Network Creation

The operator createjnet creates a single jnetwork object from these five arguments, which are almost analogous
to the corresponding attributes in the resulting jnet value:

1. object name for the new jnetwork in the database (string)

2. tolerance value for map matching (real)

3. relation (rel) with the junctions data (see Table 4.1)

4. relation (rel) with the sections data (see Table 4.2)

5. relation (rel) with the routes data (see Table 4.3)

The operation checks if the network identifier is available as object name for the current database. If this is the
case, the given network object is created and stored in the database with the given object name and true is
returned, otherwise the object is not created and false is returned.

The check of the network object name and the insertion of the result object in the database is done in O(1)
time. The three relations are copied in O(rjnet + sjnet + jjnet) time. The network distance relation of the
resulting jnet value is initialized in O(jnet log jnet) time. The three B-Trees and the two R-Trees of the jnet

value are created in O(jjnet log jjnet), O(sjnet log sjnet), respectively O(rjnet log rjnet) time. The whole jnetwork
creation is done in O(jnet log jnet) time, because 1 ≤ rjnet ≤ sjnet < jjnet < jnet log jjnet.

4.3.2 Creation Of Data Types

The operators in Table 4.5 are used to create objects of the given data types from attribute values.

Signature Example Call

int × real × jdirection → rloc createrloc(routeid, distance, side)

int × real × real × jdirection → jrint createrint(routeid, start, end, side)

int × int × int × int × real → ndg createndg(source, target, nextjunc, nextsect,
distance)

stream(B) → ListB stream (a) createlist

stream(ListB) → ListB stream (a) createlist

jnet × rloc → jpoint createjpoint(jnet, rloc)

jnet × listrloc → jpoints createjpoints(jnet, listrloc)

jnet × listjrint → jline createjline(jnet, listjrint)

jpoint × instant → ijpoint createijpoint(jpoint, instant)

jnet × jrint × instant × instant × bool × bool → ujpoint createujpoint(jnet, jrint, starttime, endtime.
lc, rc)

ujpoint → mjpoint createmjpoint(ujpoint)

Table 4.5: Operators Creating Data Types

All basic data types are created in O(1) time from given attribute values.
The list data types are created from a stream of input data types respectively a stream of lists of input data

types. The time complexity for list creation is O(e log e), if the stream elements are simple basic data types and
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O((e +
∑e

j=1 ej) log(e +
∑e

j=1 ej)), if the stream elements are lists of basic data types, because the lists store
the elements sorted.

The result of the operators creating network dependent data types is only defined, if the network positions
described by the arguments exist in the given network, otherwise the result of the creation process is undefined.

For each rloc value and each jrint value the operators search the B-Tree of the routes relation if the route
identifier is valid and the given distance values are between zero and the route length. The operations creatj-
point and createujpoint need O(log r) time. The operations createjpoints and createjline need O(l log r)
time. Only the operations createijpoint and createmjpoint need O(1) time, because their arguments have
already been checked to exist in the jnetwork.

4.3.3 Translation of 2D Data Types into JNetwork Data Types

The operator tonetwork translates spatial and spatio-temporal data types into corresponding jnetwork data
types if possible. If there is no corresponding jnetwork position the return value is undefined.

Signature Example Call

jnet × point → jpoint tonetwork(jnet, point)

jnet × line → jline tonetwork(jnet, line)

jnet × mpoint → mjpoint tonetwork(jnet, mpoint)

Table 4.6: Signatures and Example Calls for Operator tonetwork

The algorithm of the operation tonetwork for a point value works almost analogous to the operation
point2gpoint described in Algorithm 2. The main difference is that now the R-Tree of the sections relation of
the jnet is used instead of the R-Tree of the routes relation of the network. The operation needs O(log sjnet+c+h)
time.

The operation tonetwork for spatial line values computes for both end points of each HalfSegment of
the line value the corresponding route interval using the operation tonetwork for point values. The time
complexity of the operation is O(h log sjnet +

∑h

i=0 c+
∑h

j=0 hcj).
The operation tonetwork for mpoint is described in Algorithm 10 and sub algorithms. The operation has

a worst case time complexity of

O(u log sjnet +
u∑

i=0

c+
u∑

j=0

hcj +
u∑

k=0

zk)),

whereas zk is the time needed for trip simulation k. If the units of the mpoint can be well matched to jnet zk
will be in O(1) in the most cases. If the units of the mpoint can not be well matched to jnet zk might become
up to O(sjnet + jjnet log jjnet) in worst case because of the A∗-Algorithm of shortest path computing.

Algorithm 10 tonetwork(jnet, mp)

Require: A jnetwork object jnet and a mpoint value mp

1: Linear Scan of mp units u until first point related to network is found by tonetwork(jnet, u.startpoint)
remember jpoint value of position as a and starttime

2: for Each remaining unit u of mpoint do

3: Continue scan with u.endpoint until second point related to network is found by tonetwork(jnet,
u.endpoint) remember jpoint value of position as b and endtime

4: result+ = simulateT rip(jnet, a, b, starttime, endtime)
5: a = b und starttime = endtime

6: end for

7: return result

4.3.4 Translation of JNetwork Data Types into 2D Data Types

The operator fromnetwork translates jnetwork and jnetwork-temporal data types into corresponding spatial
and spatio-temporal data types.
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Algorithm 11 simulateTrip(jnet, a, b, starttime, endtime)

Require: jnet (jnetwork), a, b (rloc), starttime, endtime (instant)
1: sp = shortestPath(a, b)
2: for Each route interval ri ∈ sp do

3: Compute relative length compared with length sp

4: Compute corresponding time interval
5: Write unit to result

6: end for

7: return result

Algorithm 12 shortestPath(jnet, a, b)

Require: jnet (jent), a, b(rloc)
1: if a and b are on the same route and a direct connection exists in jnet then

2: return jrint(a,b) as path
3: else

4: if Section of a and section of b have a common crossing c then

5: return jrint(a,c), jrint (c,b) as path
6: else

7: return Result of A∗-Algorithm for shortest path (a, b)
8: end if

9: end if

Signature Example Call

jpoint → point fromnetwork(point)

jline → line fromnetwork(jline)

mjpoint → mpoint fromnetwork(jpoint)

Table 4.7: Signatures and Example Calls for Operator fromnetwork

The operation fromnetwork for jpoint is described in Algorithm 13. The operation has a time complexity
of O(log r + c+ h).

Algorithm 13 fromnetwork(jp)

Require: jp (jpoint)
1: Search B-Tree of routes relation for route r of jp
2: for Each section s of the sectionlist of r do

3: if s contains jp then

4: return Spatial position of jp on section curve
5: end if

6: end for

The operation fromnetwork for jline values is described in Algorithm 14. The time complexity is O(n log r+∑n

i=0 c+
∑n

j=0 hcj)).
The operation fromnetwork for mjpoint is described in Algorithm 15. The FOR-Loop will be called u

times. If line 2 is evaluated to true line 3-6 have a time complexity of O(log r + c+ h). The operation in line
9 has a time complexity of O(1). Line 11+12 have a worst case time complexity of O(h). We get a total time
complexity of O(n log r +

∑n

i=0 c+
∑n

j=0 hcj)) for the worst case, but computation will be faster in most cases
because the route is not changed every unit and the most units are very short such that the most units must
not be divided up into pieces.

4.3.5 Extract Attributes

The operators of Table 4.8 return the simple attributes from the different data types in O(1) time, whereas the
operators of Table 4.9 return the more complex attributes.
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Algorithm 14 fromnetwork(jline)

Require: jline (jline)
1: for Each route interval i of jline do

2: Search B-Tree routes for route r of i
3: for Each section s of the sectionlist of r do

4: if s intersects i then
5: Add half segments belonging to the intersection to the result

6: end if

7: end for

8: end for

9: return result

Algorithm 15 fromnetwork(mjpoint)

Require: mjpoint (mjpoint)
1: for Each unit u of mjpoint do

2: if u is on another route than unit before then

3: Search B-Tree routes for route r of u
4: Compute route curve c from section curves of r
5: Compute spatial pos of u.startpos on c

6: Remember position detection values on c

7: end if

8: if u.endpos is on the same HalfSegment of c than u.startpos then

9: Add simple corresponding unit to result

10: else

11: Split u at the points the passed HalfSegment of c changes.
12: add resulting split units to result

13: end if

14: end for

15: return result

Operator Signature Explanation

isempty Y → bool Returns true if argument is defined and the set of units respectively route
intervals is empty.

initial mjpoint→ijpoint Returns start position and time of the mjpoint value.

length mjpoint → real Returns the total driven length of an mjpoint value.

val ijpoint → jpoint Returns the network position of the ijpoint value.

inst ijpoint → instant Returns the time instant of the ijpoint value.

Table 4.8: Operators Returning Data Type Attributes in O(1)
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Signature Example Call

jnet → rel routes(jnet)

junctions(jnet)

sections(jnet)

distances(jnet)

jnet × int × jdirection → jlistint getAdjacentSections(jnet, sectid, direction)

getReverseAdjacentSections(jnet, sectid, direction)

mjpoint → jline trajectory(mjpoint)

ListB → stream(B) createstream(a)

mjpoint → stream(ujpoint) units(mjpoint)

jline → stream(jrint) units(jline)

jline → jpoints getBGP(jline)

Table 4.9: Operators Returning Complex Attributes of Data Types

The operations junctions (O(jjnet)), sections (O(sjnet)), routes (O(rjnet)), and distances (O(j2jnet))
8

return the content of the internal relations of the jnet value. The time complexity of the operations depends
on the number of entries in the relations.

The operations getAdjancentSections and getReverseAdjacentSections return the list with the iden-
tifiers of the sections which are (reverse) adjacent9 to the given section in the given direction in O(l+ log sjnet)
time.

The operation trajectory returns the trajectory of the mjpoint value as jline value in O(r) time.
The operator createstream returns the elements of a list data type as stream in O(l) time.
The operation units returns the units of a mjpoint respectively the route intervals of an jline as stream of

ujpoint respectively jrint in O(m) respectively O(r) time.
The operation getBGP returns the bounding jpoints10 of the given jline like described in Algorithm 16.

Algorithm 16 getBGP(jline)

Require: jline

1: for Each route interval ri of jline do

2: Get list of covered sections from jnet of jline for ri
3: for Each Covered section cs do

4: if End of ri is inside cs then

5: Write jpoint for ri end to resulting jpoints

6: else

7: Get adjacent sections as at cs end points
8: if ∃as : as 6∈ jline then

9: Write jpoint for end point of cs to resulting jpoints

10: end if

11: end if

12: end for

13: end for

14: return jpoints

Algorithm 16 has a worst case time complexity of

O(r log rjnet + (l + log sjnet + l log r)
r∑

i=1

ci) = O(r log rjnet + (l log r + log sjnet)
r∑

i=1

ci),

because the steps have the following time complexities:

• line 1: The for-loop will be called r times. The operations inside take:

– line 2: O(c+ log rjnet)

8The worst case time complexity is O(j2
jnet

), but this holds only if all Network Distances have already been computed, which
will nearly never be the case.

9See Footnote17 at Page 16 for description of (reverse) adjacent sections.
10See Footnote 18 on Page 16 for the explanation of bounding points of a network part.
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– line 3: The for-loop will be called for each candidate c received by line 2. The operations inside take:

∗ line 4-6: O(1)

∗ line 7: O(l + log sjnet)

∗ line 8: O(l log r)

∗ line 9: O(1)

• line 14: O(1)

4.3.6 Bounding Boxes

Almost analogous to the first network implementation we distinguish between spatio-temporal bounding boxes
(bbox) and network (netbox) and network-temporal (tempnetbox) bounding boxes (see Section 3.3.5). Again
the network bounding boxes use the route identifier as x-coordinates and the route position(s) as y-coordinates.
For all temporal data types the z-coordinates are defined by the start and end time instant. All coordinates are
given as real values.

Signature Example Call

M → rect3 bbox(a)

N → rect2 netbox(a)

ujpoint → rect3 tempnetbox(ujpoint)

Table 4.10: Operators Returning Bounding Boxes

The time complexity of the operations netbox and tempnetbox, which compute the jnetwork respectively
jnetwork-temporal bounding box of the argument is O(1).

The operation bbox computes the spatio-temporal bounding box of the argument.
For ujpoint values the algorithm for bbox searches the B-Tree of the routes relation of the jnet in O(log r)

time to get the routes section list. Then it uses the sections in the section list to compute the spatial simple line
value for the route interval given in the ujpoint in O(

∑a

j=1 aj). At last the bounding box of this line value is
extended by the temporal values of the ujpoint and returned in O(1) time. The total worst case time complexity
for computing the bbox of an ujpoint is O(log r +

∑a

j=1 aj).
For mjpoint values we compute the union of the spatial bounding boxes of the route intervals in the trajectory

of the mjpoint to compute the spatial bounding box of the mjpoint. For each route interval we need O(log r +
suma

j=1aj) as explained above at bbox(ujpoint), such that we get a total time complexity of O(i(log r +
suma

j=1aj)) for the computation of the spatio-temporal bounding box of an mjpoint value.

4.3.7 Merge Data Types

Y × Y → Y a union b

The operation union expects two values of the same data type belonging to the same jnetwork object, and
computes an single value of this data type from the two argument data types if this is possible.

For two jline values the operation union is always defined. The route intervals of both jline values are
added to the resulting jline value in a parallel scan of both sets of route intervals. If overlapping route intervals
are detected within the scan they are merged into one. The operation has a time complexity of O(n1 + n2).

For two mjpoint values the result of the operation union is undefined if both mjpoint values have overlapping
junit values describing different positions for the same time instant. In all other cases the result is defined and
a parallel scan of the two sets of junits is performed to copy the junits of both mjpoint in correct sequence to
the resulting mjpoint in O(m1 +m2) time.

4.3.8 Restrict Data Types

The data types of Table 4.11 restrict the data types by times or places or remove elements from lists.
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Signature Example Call

mjpoint × instant → ijpoint mjpoint atinstant instant

mjpoint × periods → mjpoint mjpoint atperiods periods

mjpoint × S → mjpoint mjpoint at a

ListB × B ∪ ListB → ListB a - b

restrict(a,b)

Table 4.11: Restrict Data Types

The operation atinstant performs a binary search after the unit of the mjpoint containing the given time
instant. If a corresponding unit can be found, the corresponding ijpoint is returned, otherwise the return value
is undefined. The time complexity of the operation is O(logm).

The operation atperiods performs a parallel linear scan of both arguments. It restricts the units of the
mjpoint to the time intervals defined by periods. The time complexity is O(m+ p).

The operation at restricts the mjpoint to the times it was at the described jnetwork position(s). For both
second argument types a linear scan of the units of the mjpoint is performed to find the times it passes the
given places.

In case of a single network position jpoint the time complexity is O(m).
For a network part (jline) for each unit of the mjpoint a binary search for an intersecting route interval within

the set of route intervals of the jline is performed, therefore the time complexity in this case is O(m log r).
The operation - returns the values of the input list without the values of the second argument, and the

operation restrict returns only the elements of the input list that are also in the values of the second argument.
If the second argument is a single value this can be done in O(log l) time, because we perform a binary search
on the list values. If the second argument is even a list the time complexity is O(l1 + l2), because a parallel
scan of both lists is performed to compute the result value.

4.3.9 Comparison Operators

For all data types X the comparison operations =, <, >, ≤, ≥, and 6= are defined. For the simple data
types jdirection, rloc, jrint, and jpoint the need O(1) time. For the list data types (ListB) the worst case time
complexity of the operations is O(l) and for the data type jline O(r), we do not need to distinguish between the
first and second argument of ListB or jline values, because if the list length or the number of route intervals is
different the values are different.

4.3.10 Property Tests

The operations of Table 4.12 check if the first argument fulfills properties defined by the operation and the
second argument.

Signature Example Call

jpoint × jline → bool jpoint inside jline

mgpoint × S → bool mjpoint passes a

mgpoint × mjpoint → bool mjpoint1 intersects mjpoint2

mjpoint × T → bool mjpoint1 present a

Table 4.12: Restrict Data Types

The operation inside performs a binary search in the set of route intervals of the jline to decide if the given
jpoint is inside the network part described by the jline. The binary search needs O(log r) time.

The operation passes performs a binary search on the set of route intervals of the trajectory for the given
mjpoint in O(log r) or a parallel scan of the route intervals in the trajectory of the mjpoint and the route
intervals of the jline in O(r1 + r2) time to decide, if the mjpoint passes the given network position(s) at least
once or not.

The operation intersects checks if the two mjpoint are at least once at the same place at the same time. The
algorithm first performs a parallel scan of the units of the two mjpoint to compute the refinement partitions11

11Building the refinement partitions means splitting up the units of both mjpoint such that the refinement partitions of both
mjpoint have the same number of units and the units of both refined mjpoint have the same time intervals.
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of both mjpoint in O(m1 + m2) time. After that we check for each pair of units of the refinement partitions
if the positions of both mjpoint within this time interval intersect or not. If an intersecting unit is found the
computation is stopped immediately and true is returned. If no intersecting pair of units is found the time
complexity of the whole algorithm is O(m1 +m2 +mr).

The operation present checks if the mjpoint is defined at the given time. In case of a single time instant as
time argument a binary search for a defined unit including this time instant is performed in O(logm) time. In
case of a periods value as time argument a parallel scan through both arguments is performed. The scan stops
immediately if an intersecting pair of time intervals is found and true is returned. In the worst case that no
intersection is found this needs O(m+ p) time.

4.3.11 Path Computing

P × P → jpath shortest path(a, b)

The operation shortest path computes the shortest path in the jnetwork from the first argument to the second
argument using A∗-Variant of Dijkstras Algorithm. The two arguments must not be of the same data type,
but the result is only defined if both arguments belong to the same jnetwork. We omitted to implement a pure
Dijkstra Version of the shortest path operation because the run times of A∗-Variant are better than of Dijkstras
Algorithm (see Section 3.3.8). We always try to find out if the shortest path has been computed before by an
look up of the network distance table of the jnetwork. If the network distance is already known, the computation
is done by following the path from a to b in the network distance table.

4.3.12 Network Distances

P × P → real netdistance(a, b)
jpoint → stream(tuple(jid int, dist real)) shortestpathtree(jpoint)

reverseshortestpathtree(jpoint)

The operation netdistance computes the length of the shortest path in the jnetwork from the first to the
second argument12. The two arguments must not be of the same data type, but the result is only defined if
both arguments belong to the same jnetwork. If the network distance has been computed before, we do not
need to compute the complete path, we can just get the network distance by a look up of the network distance
table.

The operation shortestpathtree computes the network distances from the given jpoint to all junctions of the
corresponding jnetwork using Dijkstras-Algorithm of shortest paths. The operations reverseshortestpathtree
computes the distances from all junctions of the corresponding jnetwork to the given jpoint using Dijkstras-
Algorithm of shortest paths. The result of both operations is a stream of tuples. Each tuple consisting of a
junction identifier and the network distance of this junction. The results of both operations differ if their are
oneways in the jnetwork otherwise the results should be the same.

4.3.13 Network Parts Around a Single Network Position

The three operations circle, incircle and outcircle with signature jpoint × real → jline and syntax op(gpoint,
dist) return a jline value. In case of outcircle the jline represents the parts of the network around the given
jpoint which can be reached within the Network Distance given by dist from the jpoint. In case of incircle the
jline represents the parts of the network from which the jpoint can be reached within dist. And circle returns
the union of the results of outcircle and incircle.

The values are computed almost analogous to the building the (reverse) shortest path tree of jpoint. The
difference is the result format and the stop of the computation if the given distance is smaller than the next
distances coming from the priority queue.

4.3.14 Alternative Route Locations for Junctions

jpoint → stream(jpoint) altrlocs(jpoint)

12For detailed explanation of Network Distance see Section 3.3.9.2.



CHAPTER 4. JNETWORK IMPLEMENTATION 37

Algorithm 17 altrlocs(jpoint)

Require: jpoint

1: get section list sl of route tuple for rid of jpoint
2: for each section s ∈ sl do

3: get route interval list ril of section s

4: for each route interval ri ∈ ril do

5: if rloc of jpoint inside ri then

6: if rloc is junction then

7: return all jpoint values describing this junction
8: else

9: return jpoint

10: end if

11: end if

12: end for

13: end for

The operation altrlocs (see Algorithm 17) corresponds to the operation polygpoints from the first imple-
mentation (see Section 3.3.13). The time complexity is O(log r) for line 1 of the algorithm. The search for the
correct route interval containing the route location in lines 2 - 6 has a worst case complexity of O(

∑a

j=1 aj). In
case of line 9 the stream creation takes O(1) time. In case of line 7 all c junction descriptions are returned in
O(c) time to the stream. We get a worst case complexity of O(c+ log r +

∑a

j=1 aj) for the altrlocs operation.

4.3.15 Transformation of Paths into Network Parts

jpath → jline tojline(jpath)

The operation tojline resorts the route intervals of the jpath and stores the result as jline value in O(r log r)
time.



Chapter 5

Scripts Using Network

Implementations

5.1 Introduction

In this chapter we give some examples for the usage of the operations of both network implementations described
in the sections before.

In Section 5.2 we provide scripts in Secondo executable language translating the data generated by the
BerlinMOD Benchmark [1] data generator into the network representations. We also provide scripts with the
queries of the BerlinMOD Benchmark for both network implementations.

In Section 5.3 we provide scripts which generate network representations from the information about street
networks included in the OSM-Datafiles provided in the web by [7]. At last in Section 5.4 we present some
example queries using the operators provided by the MapMatchingAlgebra to translate GPS-Tracks into moving
network data types on networks generated from open street map data files.

5.2 BerlinMOD Benchmark

Before we can start to translate the BerlinMOD Benchmark data into network representation and run our
network queries we have to generate the data provided with the BerlinMOD Benchmark presented in [1]1. We
have to run the data generation script (BerlinMOD DataGenerator.SEC), which needs the three source data
files (streets.data, homeRegions.data, and workRegions.data).

The file names and storage position of the data files relative to the secondo/bin-Directory on your computer
has to be inserted into line 69-71 in the file BerlinMOD DataGenerator.SEC. In line 83 of this file you can set
the parameter SCALEFACTOR to control the amount of generated data generated by the script. As described
in [1].

The script can be started by calling
SecondoTTYBDB -i BerlinMOD DataGenerator.SEC

from the command line in the secondo/bin-Directory, or by starting SecondoTTYBDB first and then
entering:

@BerlinMOD DataGenerator.SEC
at the Secondo prompt.
The script generates a new database called berlinmod and fills it with the data described in [1].
After this preparation step we can start to translate the generated data using the executable scripts described

in this document, and run our network BerlinMOD Benchmark queries on the translated data later on.

5.2.1 Translation of Source Data

Both network implementations provide different network representations and network creation operators, such
that we have to provide own scripts for each of the network implementations to translate the BerlinMOD
Benchmark data into the corresponding network representation.

In Section 5.2.1.1 we comment the operations for the translation into the data types of the first network
implementation and in Section 5.2.1.2 we do the same for the second network implementation.

1The scripts and data files of the BerlinMOD Benchmark are published in the web at
http://dna.fernuni-hagen.de/secondo/BerlinMOD.
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5.2.1.1 Network

The script in the file Network CreateObjects.SEC translates the data set of the BerlinMOD Benchmark into
the data types of the first network implementation.

# This f i l e performs t r an s l a t e s the s p a t i a l and spat io−temporal data ob j e c t s
# o f the BerlinMOD benchmark in the Secondo DBMS in to t h e i r network data
# model r ep r e s en ta t i on and bu i l d s the accord ing indexes .
#
# I t i s assumed that the re i s a database berl inmod with the data ob j e c t s
# created by the BerlinMOD DataGenerator . SEC s c r i p t .
#
# Open Database Berlinmod

open database berl inmod ;

# Build a Network From St r e e t s Data .
#
# Because BerlinMOD s t r e e t s data l a ck s on in f o rmat i on s about s t r e e t c r o s s i n g s
# we use d e f a u l t va lue s f o r the c onne c t i v i t y codes enab l ing a l l connec t ions in
# a c r o s s i ng

let B Routes =
s t r e e t s feed

projectextendstream [ ; GeoData : . GeoData polylines [ TRUE ] ]
addcounter [ Id , 1 ]
projectextend [ Id ; Lengt : size ( . GeoData ) ,

Geometry : fromline ( . GeoData ) ,
Dual : TRUE ,
S t a r tSma l l e r : TRUE ]

consume ;

let B Junctions =
B Routes feed { r1}
B Routes feed { r2}
symmjoin [ ( . I d r1 < . . I d r 2 ) and ( . Geometry r1 intersects . . Geometry r2 ) ]
projectextendstream [ Id r1 , Geometry r1 , Id r2 ,

Geometry r2 ; CROSSING POINT: components ( crossings ( . Geometry r1 ,
. Geometry r2 ) ) ]

projectextend [ ; R1Id : . Id r1 ,
R1meas : atpoint ( . Geometry r1 , .CROSSING POINT, TRUE ) ,
R2Id : . Id r2 ,
R2meas : atpoint ( . Geometry r2 , .CROSSING POINT, TRUE ) ,
CC: 65535 ]

consume ;

let BNETWORK =
thenetwork (1 ,

1 . 0 ,
B Routes ,
B Junctions ) ;

# Trans late Trips i n to Network Repre sentat ion

let dataSNcar =
dataScar feed

projectextend [ Licence , Model , Type ; Trip : mpoint2mgpoint(BNETWORK, . Trip ) ]
consume ;

let dataMNtrip =
dataMtrip feed

projectextend [ Moid ; Trip : mpoint2mgpoint(BNETWORK, . Trip ) ]
consume ;

# Trans late QueryPoint Set i n to Newtork Repre sentat ion

let QueryPointsNet =
QueryPoints feed

projectextend [ Id ; Pos : point2gpoint (BNETWORK, . Pos ) ]
projectextendstream [ Id ; Pos : polygpoints ( . Pos , BNETWORK) ]

consume ;

let QueryPoints1Net =
QueryPoints feed head [ 1 0 ]

projectextend [ Id ; Pos : point2gpoint (BNETWORK, . Pos ) ]
projectextendstream [ Id ; Pos : polygpoints ( . Pos , BNETWORK) ]

consume ;

# Trans late QueryRegions i n to Network Repre sentat ion

let r o u t e s l i n e =
components ( routes (BNETWORK) feed

projectextend [ ; Curve : toline ( . Curve ) ]
aggregateB [ Curve ; fun (L1 : line , L2 : line ) union new (L1 , L2 ) ; [ const line value ( ) ] ] )

transformstream
extend [ NoSeg : no segments ( . Elem ) ]
sortby [ NoSeg desc ]

extract [ Elem ] ;
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let QRlines =
QueryRegions feed
projectextend [ Id ; Lr : intersection new ( . Region , r o u t e s l i n e ) ]

consume ;

let QueryRegionsNet =
QRlines feed
projectextend [ Id ; Region : line2gline (BNETWORK, . Lr ) ]

consume ;

# Bui ld Indexes on Network Repre sentat ion
#
# B−Tree indexes f o r l i c e n c e s in dataScar , and dataMtrip , and f o r moIds in
# dataMcar and dataMNtrip .

derive dataSNcar Licence btree = dataSNcar createbtree [ L i c ence ] ;

derive dataMcar Licence btree = dataMcar createbtree [ L i c ence ] ;

derive dataMcar Moid btree = dataMcar createbtree [ Moid ] ;

derive dataMNtrip Moid btree = dataMNtrip createbtree [ Moid ] ;

# Temporal Network Pos i t i on Indexes (TNPI) and Network Pos i t i on Indexes (NPI )
# fo r dataMNtrip and dataSNcar

derive dataSNcar BoxNet t imespace =
dataSNcar feed
extend [TID : tupleid ( . ) ]
projectextendstream [ TID ; UTrip : units ( . Trip ) ]
extend [ Box : unitbox ( . UTrip ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

derive dataMNtrip BoxNet timespace =
dataMNtrip feed
extend [TID : tupleid ( . ) ]
projectextendstream [ TID ; UTrip : units ( . Trip ) ]
extend [ Box : unitbox ( . UTrip ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

derive dataSNcar TrajBoxNet =
dataSNcar feed
extend [TID : tupleid ( . ) ]
projectextendstream [ TID ; Box : routeintervals( trajectory ( . Trip ) ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

derive dataMNtrip TrajBoxNet =
dataMNtrip feed
extend [TID : tupleid ( . ) ]
projectextendstream [ TID ; Box : routeintervals( trajectory ( . Trip ) ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

# Spatio−Temporal Index f o r dataMNtrip

derive dataMNtrip SpatioTemp =
dataMNtrip feed
extend [TID : tupleid ( . ) ]
projectextend [TID ; Box : mgpbbox ( . Trip ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

# Often used Query Object Re l a t i on s

let QueryLicences1 = QueryLicences feed head [ 1 0 ] consume ;

let QueryLicences2 = QueryLicences feed head [ 2 0 ] filter [ . Id > 10 ] consume ;

let QueryPeriods1 = QueryPeriods feed head [ 1 0 ] consume ;

let QueryInstant1 = QueryInstants feed head [ 1 0 ] consume ;

let QueryRegions1Net = QueryRegionsNet feed head [ 1 0 ] consume ;

# Creation Fin i shed Close Database

c l o s e database ;

5.2.1.2 JNetwork

The script in the file JNetwork CreateBMODObjects.SEC translates the data set of the BerlinMOD Benchmark
into the data types of the second network implementation.

# This f i l e performs t r an s l a t e s the s p a t i a l and spat io−temporal data ob j e c t s
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# of the BerlinMOD benchmark in the Secondo DBMS in to t h e i r network data
# model r ep r e s en ta t i on and bu i l d s the accord ing indexes .
#
# I t i s assumed that the re i s a database berl inmod with the data ob j e c t s
# created by the BerlinMOD DataGenerator . SEC s c r i p t .
#
# Open Database Berlinmod

open database berl inmod ;

# Build a JNetwork From S t r e e t s Data
#
# c o l l e c t roads data

let RoadsTmp =
s t r e e t s feed

projectextend [ GeoData ; VMax: ifthenelse ( .Vmax > 0 . 0 , .Vmax, 0 . 0 1 ) ]
projectextendstream [VMax; RoadCurve : . GeoData polylines [ FALSE ] ]
projectextend [VMax; RoadC : fromline ( . RoadCurve ) ]
projectextend [VMax; Lenth : size ( . RoadC) , RoadCurve : .RoadC ]
sortby [ Lenth desc , VMax asc , RoadCurve asc ]
addcounter [ Rid , 1 ]
project [ Rid , RoadCurve , VMax, Lenth ]

consume ;

# Compute jnetwork junc t i on s based on roads data

let RoadEndPoints =
RoadsTmp feed

projectextend [ Rid , RoadCurve ; StartPoint : getstartpoint ( . RoadCurve ) ,
EndPoint : getendpoint ( . RoadCurve ) ]

consume ;

let RoadCrossings =
RoadsTmp feed

project [ Rid , RoadCurve ] { r1}
RoadsTmp feed

project [ Rid , RoadCurve ] { r2}
itSpatialJoin [ RoadCurve r1 , RoadCurve r2 , 4 , 8 ]

filter [ . Rid r1 < . Rid r2 ]
filter [ . RoadCurve r1 intersects . RoadCurve r2 ]
projectextendstream [ Rid r1 , Rid r2 , RoadCurve r1 ,

RoadCurve r2 ; CROSSING: components ( crossings ( . RoadCurve r1 ,
. RoadCurve r2 ) ) ]

projectextend [ ; R1id : . Rid r1 ,
R1Pos : atpoint ( . RoadCurve r1 , .CROSSING) ,
R2id : . Rid r2 ,
R2Pos : atpoint ( . RoadCurve r2 , .CROSSING) ,
Spat ia lPos : .CROSSING]

consume ;

let JunctionsTmp =
( ( RoadEndPoints feed

projectextend [ ; Pos : . S tartPoint ] )
( RoadEndPoints feed

projectextend [ ; Pos : . EndPoint ] )
concat )

( RoadCrossings feed
projectextend [ ; Pos : . Spat ia lPos ] )

concat
sortby [ Pos ]
rdup
addcounter [ Jid , 1 ]
project [ Jid , Pos ]

consume ;

# connect roads with the j unc t i on s on the road

let RoadsTmp2 =
RoadsTmp feed
JunctionsTmp feed
itSpatialJoin [ RoadCurve , Pos , 4 , 8 ]

filter [ . Pos inside . RoadCurve ]
projectextend [ Rid , VMax, Lenth , RoadCurve ,

Jid ; Spat ia lPos : . Pos ,
RoadPos : atpoint ( . RoadCurve , . Pos ) ]

consume ;

let RoadsTmp3 =
RoadsTmp2 feed

filter [ iscycle ( . RoadCurve ) ]
filter [ . RoadPos = 0 . 0 ]
projectextend [ Rid , VMax, Lenth , RoadCurve , Jid ,

Spat ia lPos ; RoadPos : size ( . RoadCurve ) ]
consume ;

let RoadsTmp4 =
RoadsTmp2 feed

filter [ iscycle ( . RoadCurve ) ]
filter [ . RoadPos = size ( . RoadCurve ) ]
projectextend [ Rid , VMax, Lenth , RoadCurve , Jid , Spat ia lPos ; RoadPos : 0 . 0 ]
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consume ;

let RoadsTmp5 =
( ( RoadsTmp3 feed )

( RoadsTmp4 feed )
concat )

( RoadsTmp2 feed )
concat
sortby [ Rid , RoadPos , Jid , Spat ia lPos , VMax, Lenth , RoadCurve ]
rdup

consume ;

let RoadJuncList =
RoadsTmp5 feed

project [ Rid , Jid ]
sortby [ Rid , Jid ]
rdup
groupby [ Rid ; JuncLi st : group feed projecttransformstream [ J id ] createlist ]

consume ;

let JuncRLocList =
RoadsTmp5 feed

projectextend [ J id ; RLoc : createrloc ( . Rid ,
. RoadPos ,
[ const jdirection value (Both ) ] ) ]

sortby [ Jid , RLoc ]
rdup
groupby [ J id ; RLocList : group feed projecttransformstream [ RLoc ] createlist ]

consume ;

# compute s e c t i o n s

let SectTmp =
RoadsTmp5 feed

project [ Rid , RoadCurve , Spat ia lPos ]
sortby [ Rid , RoadCurve , Spat ia lPos ]
groupby [ Rid , RoadCurve ; S p l i tP o i n t s : group feed

projecttransformstream [ Spat ia lPos ]
collect points [ TRUE ] ]

projectextendstream [ Rid ; SectCurve : splitslineatpoints ( . RoadCurve ,
. S p l i tP o i n t s ) ]

extend [ S tar tPoint : getstartpoint ( . SectCurve ) ,
EndPoint : getendpoint ( . SectCurve ) ,
Lenth : size ( . SectCurve ) ,
JDir : [ const jdirection value (Both ) ] ]

JunctionsTmp feed { j 1}
itSpatialJoin [ S tar tPoint , Pos j1 , 4 , 8 ]

filter [ . S tar tPoint = . Pos j1 ]
projectextend [ Rid , SectCurve , EndPoint , Lenth , JDir ; S ta r tJ i d : . J i d j 1 ]

JunctionsTmp feed { j 2}
itSpatialJoin [ EndPoint , Pos j2 , 4 , 8 ]

filter [ . EndPoint = . Pos j2 ]
projectextend [ Rid , SectCurve , Lenth , JDir , S ta r tJ i d ; EndJid : . J i d j 2 ]

RoadsTmp5 feed { r1}
hashjoin [ Rid , Rid r1 ]

filter [ . Rid = . Rid r1 ]
filter [ . S t a r tJ i d = . J id r1 ]
projectextend [ Rid , SectCurve , Lenth , JDir , S tartJ id ,

EndJid ; VMax: . VMax r1 ,
StartPos : . RoadPos r1 ]

RoadsTmp5 feed { r2}
hashjoin [ Rid , Rid r2 ]

filter [ . Rid = . Rid r2 ]
filter [ . EndJid = . J id r2 ]
projectextend [ Rid , SectCurve , Lenth , JDir , S tartJ id , EndJid , VMax,

StartPos ; EndPos : . RoadPos r2 ]
sortby [ Rid , StartJ id , EndJid , Lenth , VMax, JDir , SectCurve , StartPos , EndPos ]
filter [ . StartPos < . EndPos ]
rdup
addcounter [ Sid , 1 ]

consume ;

# compute s e c t i o n l i s t s

let RoadSectList =
SectTmp feed

project [ Rid , Sid ]
sortby [ Rid , Sid ]
groupby [ Rid ; L i s tS e c t : group feed projecttransformstream [ S id ] createlist ]

consume ;

let Se c tRou t e In t e rva l s =
SectTmp feed

projectextend [ S id ; RInt : createrint ( . Rid , . StartPos , . EndPos , . JDir ) ]
sortby [ Sid , RInt ]
groupby [ S id ; L i stRInt : group feed projecttransformstream [ RInt ] createlist ]

consume ;

let JuncInAndOutList =
( SectTmp feed

projectextend [ S id ; Jid : . S ta r tJ i d ] )
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( SectTmp feed
projectextend [ S id ; Jid : . EndJid ] )

concat
sortby [ Jid , S id ]
rdup
groupby [ J id ; L i st InOutSec t : group feed projecttransformstream [ S id ] createlist ]

consume ;

# c r e a t e input r e l a t i o n s f o r jnetwork c r e a t i on

let InJunc =
JunctionsTmp feed
JuncRLocList feed { r1}
hashjoin [ Jid , J i d r1 ]

filter [ . J id = . J id r1 ]
projectextend [ Jid , Pos ; ListRLoc : . RLocLi st r1 ]

JuncInAndOutList feed { s l }
hashjoin [ Jid , J i d s l ]

filter [ . J id = . J i d s l ]
projectextend [ Jid , Pos , ListRLoc ; L i s t InSe c t : . L i s t InOutSe c t s l ,

ListOutSect : . L i s t InOutSe c t s l ]
sortby [ Jid , Pos , ListRLoc , L i s t InSe c t , ListOutSect ]
rdup

consume ;

let InSec t =
SectTmp feed
Se c tRou t e In te rva l s feed { r i }
hashjoin [ Sid , S i d r i ]

filter [ . S id = . S i d r i ]
projectextend [ Sid , SectCurve , StartJ id , EndJid , JDir , VMax,

Lenth ; L i stRint : . L i s tR In t r i ]
InJunc feed { j 1}
hashjoin [ S tar tJ id , J i d j 1 ]

filter [ . S t a r tJ i d = . J i d j 1 ]
projectextend [ Sid , SectCurve , StartJ id , EndJid , JDir , VMax, Lenth ,

L i stRint ; ListAdjSectDown : . L i stOutSec t j1 ,
ListRevAdjSectUp : . L i s t I n S e c t j 1 ]

InJunc feed { j 2}
hashjoin [ EndJid , J i d j 2 ]

filter [ . EndJid = . J i d j 2 ]
projectextend [ Sid , SectCurve , StartJ id , EndJid , JDir , VMax, Lenth ,

L i stRint , ListAdjSectDown ,
ListRevAdjSectUp ; ListAdjSectUp : . L i stOutSec t j2 ,

ListRevAdjSectDown : . L i s t I n S e c t j 2 ]
project [ Sid , SectCurve , StartJ id , EndJid , JDir , VMax, Lenth , L i stRint ,

ListAdjSectUp , ListAdjSectDown , ListRevAdjSectUp , ListRevAdjSectDown ]
sortby [ Sid , StartJ id , EndJid , SectCurve , JDir , VMax, Lenth , L i stRint ,

ListAdjSectUp , ListAdjSectDown , ListRevAdjSectUp , ListRevAdjSectDown ]
rdup

consume ;

let InRoad =
RoadsTmp feed
RoadJuncList feed { j 1 }
hashjoin [ Rid , Rid j1 ]

filter [ . Rid = . Rid j1 ]
projectextend [ Rid , Lenth ; L i stJunc : . JuncL i s t j 1 ]

RoadSectList feed { s1}
hashjoin [ Rid , Rid s1 ]

projectextend [ Rid , ListJunc , Lenth ; L i s tS e c t : . L i s t S e c t s 1 ]
project [ Rid , ListJunc , L i stSec t , Lenth ]
sortby [ Rid , ListJunc , L i stSec t , Lenth ]
rdup

consume ;

# c r e a t e jnetwork

query createjnet ( ”JBNet” ,
1 . 0 ,
InJunc ,
InSect ,
InRoad ) ;

# Trans late QueryPoint Set i n to JNewtork Repre sentat ion

let QueryPointsJNet =
QueryPoints feed

projectextend [ Id ; Pos : tonetwork ( JBNet , . Pos ) ]
consume ;

let QueryPointsJNetAl l =
QueryPointsJNet feed

projectextendstream [ Id ; NPos : altrlocs ( . Pos ) ]
projectextend [ Id ; Pos : . NPos ]

consume ;

let QueryPoints1JNet =
QueryPoints feed head [ 1 0 ]

projectextend [ Id ; Pos : tonetwork ( JBNet , . Pos ) ]
consume ;
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let QueryPoints1JNetAll =
QueryPoints1JNet feed

projectextendstream [ Id ; NPos : altrlocs ( . Pos ) ]
projectextend [ Id ; Pos : . NPos ]

consume ;

# Trans late QueryRegions i n to JNetwork Repre sentat ion

let r o u t e s l i n e j =
components ( sections ( JBNet ) feed

projectextend [ ; Curve : toline ( . Curve ) ]
aggregateB [ Curve ; fun (L1 : line , L2 : line )

union new (L1 , L2 ) ; [ const line value ( ) ] ] )
transformstream
extend [ NoSeg : no segments ( . Elem ) ]
sortby [ NoSeg desc ]

extract [ Elem ] ;

let QRl ine s j =
QueryRegions feed

projectextend [ Id ; Lr : intersection new ( . Region , r o u t e s l i n e j ) ]
consume ;

let QueryRegionsJNet =
QRl ine s j feed
projectextend [ Id ; Region : tonetwork (JBNet , . Lr ) ]

consume ;

# Trans late Trips i n to JNetwork Repre sentat ion

let dataSJcar =
dataScar feed

projectextend [ Licence , Model , Type ; Trip : tonetwork (JBNet , . Trip ) ]
consume ;

let dataMJtrip =
dataMtrip feed

projectextend [ Moid ; Trip : tonetwork ( JBNet , . Trip ) ]
consume ;

# Bui ld Indexes on JNetwork r ep r e s en ta t i on
#
# B−Tree indexes f o r l i c e n c e s in dataScar , and dataMtrip , and f o r moids in
# dataMcar and dataMJtrip .

derive dataSJca r L i c en c e b t r e e = dataSJcar createbtree [ L i c ence ] ;

derive dataMcar Licence btree = dataMcar createbtree [ L i c ence ] ;

derive dataMcar Moid btree = dataMcar createbtree [ Moid ] ;

derive dataMJtrip Moid btree = dataMJtrip createbtree [ Moid ] ;

# Temporal JNetwork Pos i t i on Indexes (TNPI) and JNetwork Pos i t i on Indexes (NPI)
# fo r dataMNtrip and dataSNcar

derive dataSJcar BoxNet t imespace =
dataSJcar feed

extend [ TID : tupleid ( . ) ]
projectextendstream [ TID ; UTrip : units ( . Trip ) ]
extend [ Box : tempnetbox ( . UTrip ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

derive dataMJtrip BoxNet t imespace =
dataMJtrip feed

extend [ TID : tupleid ( . ) ]
projectextendstream [ TID ; UTrip : units ( . Trip ) ]
extend [ Box : tempnetbox ( . UTrip ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

derive dataSJcar BoxNet =
dataSJcar feed

extend [ TID : tupleid ( . ) ]
projectextendstream [ TID ; UTrip : units ( . Trip ) ]
extend [ Box : netbox ( . UTrip ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

derive dataMJtrip BoxNet =
dataMJtrip feed

extend [ TID : tupleid ( . ) ]
projectextendstream [ TID ; UTrip : units ( . Trip ) ]
extend [ Box : netbox ( . UTrip ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;
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derive dataSJcar TrajBoxNet =
dataSJcar feed

extend [ TID : tupleid ( . ) ]
projectextendstream [ TID ; RInt : units ( trajectory ( . Trip ) ) ]
projectextend [ TID ; Box : netbox ( . RInt ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

derive dataMJtrip TrajBoxNet =
dataMJtrip feed

extend [ TID : tupleid ( . ) ]
projectextendstream [ TID ; RInt : units ( trajectory ( . Trip ) ) ]
projectextend [ TID ; Box : netbox ( . RInt ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

# Spatio−Temporal Index f o r dataMJtrip

derive dataMJtrip SpatioTemp =
dataMJtrip feed

extend [ TID : tupleid ( . ) ]
projectextend [ TID ; Box : bbox ( . Trip ) ]
sortby [ Box asc ]

bulkloadrtree [ Box ] ;

# Often used Query Object Re l a t i on s

let QueryLicences1 = QueryLicences feed head [ 1 0 ] consume ;

let QueryLicences2 = QueryLicences feed head [ 2 0 ] filter [ . Id > 10 ] consume ;

let QueryPeriods1 = QueryPeriods feed head [ 1 0 ] consume ;

let QueryInstant1 = QueryInstants feed head [ 1 0 ] consume ;

let QueryRegions1JNet = QueryRegionsJNet feed head [ 1 0 ] consume ;

# Fin i shed Close Database

c l o s e database ;

5.2.2 Executable Query Sets

We provide for both network implementations executable Secondo scripts with the 17 queries for the object
and the trip based approach of the BerlinMOD Benchmark.

5.2.2.1 Network

The script in the file Network OBA-Queries.SEC executes the 17 queries of the object based approach of the
BerlinMOD Benchmark using the first network implementation.

# Network qu e r i e s f o r the ob j e c t based approach o f the BerlinMOD Benchmark .
#
# The s c r i p t assumes that the re i s a database berl inmod with a network data
# model r ep r e s en ta t i on o f the BerlinMOD Benchmark data .
#
# This database can be generated by the s c r i p t ’ BerlinMOD DataGenerator . SEC ’ .
# The network data model r ep r e s en ta t i on and acc rod ing indexes can be generated
# with the s c r i p t ’ Network CreateObjects . SEC’
#
# Start S c r i p t Opening the Database

open database berl inmod ;

# Query 1 : What are the models o f the v e h i c l e s with l i c e n s e p l a t e numbers from
# QueryLicence ?

let OBANres001 =
QueryLicences feed { l }

loopjoin [ dataSNcar Licence btree dataSNcar exactmatch [ . L i c e n c e l ] ]
project [ Licence , Model ]

consume ;

# Query 2 : How many v e h i c l e s e x i s t that are passenger c a r s ?

let OBANres002 =
dataSNcar feed

filter [ . Type = ”passenger ” ]
count ;

# Query 3 : Where have the v e h i c l e s with l i c e n s e s from QueryLicence1 been at
# each in s t an t from QueryInstant1?
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let OBANres003 =
QueryLicences1 feed { l }

loopjoin [ dataSNcar Licence btree dataSNcar exactmatch [ . L i c e n c e l ] ]
project [ Licence , Trip ]

QueryInstant1 feed { i }
product

projectextend [ Licence , I n s t an t i ; Pos : val ( . Trip atinstant . I n s t a n t i ) ]
consume ;

# Query 4 : Which l i c e n s e p l a t e numbers be long to v e h i c l e s that have passed the
# po in t s from QueryPoints ?

let OBANres004 =
QueryPointsNet feed

projectextend [ Id , Pos ; Prect : gpoint2rect ( . Pos ) ]
loopjoin [ dataSNcar TrajBoxNet windowintersectsS [ . Prect ]

sort rdup dataSNcar gettuples ]
filter [ . Trip passes . Pos ]
project [ Id , L icence ]
sortby [ Id asc , L i c ence asc ]
krdup [ Id , L icence ]

consume ;

# Query 5 : What i s the minimum d i s t anc e between p lace s , where a v e h i c l e with a
# l i c e n s e from QueryLicences1 and a ve h i c l e with l i c e n s e s from
# QueryLicence2 have been?

let OBANres005tmp1 =
QueryLicences1 feed { l 1 }

loopsel [ dataSNcar Licence btree dataSNcar exactmatch [ . L i c en c e l 1 ]
projectextend [ L i c ence ; TrajLine : gline2line ( trajectory ( . Trip ) ) ] ]

consume ;

let OBANres005tmp2 =
QueryLicences2 feed { l 2 }

loopsel [ dataSNcar Licence btree dataSNcar exactmatch [ . L i c en c e l 2 ]
projectextend [ L i c ence ; TrajLine : gline2line ( trajectory ( . Trip ) ) ] ]

consume ;

let OBANres005 =
OBANres005tmp1 feed {c1}
OBANres005tmp2 feed {c2}
product

projectextend [ L i c ence c1 ,
L i c en c e c 2 ; Di stance : round ( distance ( . TrajLine c1 ,

. Tra jL ine c2 ) , 3 ) ]
sortby [ L i c ence c1 , L i c en c e c 2 ]

consume ;

# de l e t e temporary ob j e c t s

d e l e t e OBANres005tmp1 ;
d e l e t e OBANres005tmp2 ;

# Query 6 : What are the p a i r s o f l i c e n s e p l a t e numbers o f ” t rucks ” , that have
# been as c l o s e as 10m or l e s s to each other ?

let OBANres006tmp1 =
dataSNcar feed

filter [ . Type = ” truck” ]
projectextend [ L i c ence ; Ptr ip : mgpoint2mpoint ( . Trip ) , BBox : mgpbbox ( . Trip ) ]
projectextend [ Licence , Ptr ip ; Box : rectangle3 ( minD ( . BBox , 1 ) − 5 . 0 ,

maxD ( . BBox , 1 ) + 5 . 0 ,
minD ( . BBox , 2 ) − 5 . 0 ,
maxD ( . BBox , 2 ) + 5 . 0 ,
minD ( . BBox , 3 ) ,
maxD ( . BBox , 3 ) ) ]

consume ;

let OBANres006 =
OBANres006tmp1 feed {a}
OBANres006tmp1 feed {b}
symmjoin [ ( . Box a intersects . . Box b ) and

( . L i c en c e a < . . L i c ence b ) and
( everNearerThan ( . Ptr ip a , . . Ptr ip b , 1 0 . 0 ) ) ]

project [ L i c ence a , L icence b ]
sortby [ L i c en c e a asc , L i c ence b asc ]
krdup [ L i c ence a , L icence b ]

consume ;

# de l e t e temporary ob j e c t

d e l e t e OBANres006tmp1 ;

# Query 7 : What are the l i c e n s e p l a t e numbers o f the ” passenger ” c a r s that
# have reached po in t s from QueryPoints f i r s t o f a l l ” passenger ” c a r s
# during the complete ob se rva t i on per iod ?

let OBANres007tmp1 =
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QueryPointsNet feed
projectextend [ Id , Pos ; Prect : gpoint2rect ( . Pos ) ]
loopsel [ fun ( t : TUPLE ) dataSNcar TrajBoxNet windowintersectsS [ attr ( t , Prect ) ]

sort rdup dataSNcar gettuples
filter [ . Type = ”passenger ” ]
projectextend [ L i c ence ; Id : attr ( t , Id ) ,

I n s t an t : inst ( initial ( . Trip at attr ( t , Pos ) ) ) ] ]
filter [ not ( isempty ( . I n s t an t ) ) ]
sortby [ Id asc , I n s t an t asc ]

consume ;

let OBANres007 =
OBANres007tmp1 feed

groupby [ Id ; FirstTime : group feed min [ I n s t an t ] ] { b}
OBANres007tmp1 feed {a}
symmjoin [ . . Id a = . Id b ]

filter [ . I n s t an t a <= . FirstTime b ]
project [ Id a , L i c en c e a ]
sortby [ Id a , L i c en c e a ]

consume ;

# de l e t e temporary ob j e c t

d e l e t e OBANres007tmp1 ;

# Query 8 : What are the o v e r a l l t r ave l ed d i s t an c e s o f the v e h i c l e s with
# l i c e n s e p l a t e numbers from QueryLicences1 during the pe r i od s from
# QueryPeriods1 ?

let OBANres008 =
QueryLicences1 feed { l }

loopsel [ dataSNcar Licence btree dataSNcar exactmatch [ . L i c en c e l ] ]
QueryPeriods1 feed

filter [ not ( isempty ( . Period ) ) ] {p}
product

projectextend [ Licence ,
Per iod p ; Di stance : round ( length ( . Trip atperiods . Pe r iod p ) , 3 ) ]

sortby [ Licence , Per iod p ]
consume ;

# Query 9 : What i s the l onge s t d i s t an c e that was t r ave l ed by a v e h i c l e during
# each o f the pe r i od s from QueryPeriods ?

let OBANres009 =
dataSNcar feed {c}
QueryPeriods feed

filter [ not ( isempty ( . Period ) ) ] { p}
product

projectextend [ Id p , Period p ,
L i c en c e c ; Di st : round ( length ( . Tr ip c atperiods . Pe r iod p ) , 3 ) ]

sortby [ Id p asc , Pe r iod p asc , D i st desc ]
groupby [ Id p , Per iod p ; Di stance : group feed max [ D i st ] ]
project [ Id p , Period p , Di stance ]
project [ Per iod p , Di stance ]

consume ;

# Query 10 : When and where did the v e h i c l e s with l i c e n s e p l a t e numbers from
# QueryLicences1 meet other v e h i c l e s ( d i s t an c e < 3m) and what are
# the l a t t e r l i c e n s e s ?

let OBANres010 =
dataSNcar feed

projectextend [ L i c ence ; TripA : mgpoint2mpoint ( . Trip ) , BBox : mgpbbox ( . Trip ) ]
projectextend [ Licence , TripA ;Box : rectangle2 ( ( minD ( . BBox , 1 ) − 1 . 5 ) ,

( maxD ( . BBox , 1 ) + 1 . 5 ) ,
( minD ( . BBox , 2 ) − 1 . 5 ) ,
( maxD ( . BBox , 2 ) + 1 . 5 ) ) ] { c1}

QueryLicences1 feed
loopsel [ dataSNcar Licence btree dataSNcar exactmatch [ . L i c ence ] ]
projectextend [ Licence , Trip ; BBox : mgpbbox ( . Trip ) ]
projectextend [ Licence , Trip ; TripA : mgpoint2mpoint ( . Trip ) ,

Box : rectangle2 ( ( minD ( . BBox , 1 ) − 1 . 5 ) ,
( maxD ( . BBox , 1 ) + 1 . 5 ) ,
( minD ( . BBox , 2 ) − 1 . 5 ) ,
( maxD ( . BBox , 2 ) + 1 . 5 ) ) ] {c2}

symmjoin [ . Box c1 intersects . . Box c2 ]
filter [ . L i c en c e c 1 # . L i c en c e c 2 ]
filter [ everNearerThan ( . TripA c1 , . TripA c2 , 3 . 0 ) ]
projectextend [ L i c ence c1 ,

L i c en c e c 2 ; Pos : . Tr ip c2 atperiods deftime ( ( distance ( . TripA c1 , . TripA c2 )
< 3 . 0 ) at TRUE ) ]

filter [ not ( isempty ( . Pos ) ) ]
project [ L i c ence c2 , L icence c1 , Pos ]
sortby [ L i c en c e c 2 asc , L i c en c e c 1 asc ]

consume ;

# Query 11 : Which v e h i c l e s passed a po int from QueryPoints1 at one o f the
# in s t an t s from QueryInstant1?

let OBANres011 =
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QueryInstant1 feed { i }
QueryPoints1Net feed

projectextend [ Id , Pos ; Prect : gpoint2rect ( . Pos ) ] { p}
product

projectextend [ Id p , Pos p , I n s t an t i ; Box : box3d ( . Prect p , . I n s t a n t i ) ]
loopsel [ fun ( t : TUPLE ) dataSNcar BoxNet t imespace windowintersectsS [ attr ( t , Box ) ]

sort rdup dataSNcar gettuples
filter [ . Trip passes ( attr ( t , Pos p ) ) ]
projectextend [ L i c ence ; Id : attr ( t , Id p ) , In s t an t : attr ( t , I n s t a n t i ) ] ]

sortby [ Id , Licence , In s t an t ]
consume ;

# Query 12 : Which v e h i c l e s met at a po int from QueryPoints1 at an in s t an t from
# QueryInstant1?

let OBANres012tmp1 =
QueryInstant1 feed { i }
QueryPoints1Net feed

projectextend [ Id , Pos ; Prect : gpoint2rect ( . Pos ) ] { p}
product

loopsel [ fun ( t : TUPLE )
dataSNcar BoxNet t imespace windowintersectsS [ box3d (attr ( t , Prec t p ) ,

attr ( t , I n s t a n t i ) ) ]
sort rdup dataSNcar gettuples
filter [ . Trip passes ( attr ( t , Pos p ) ) ]
projectextend [ L i c ence ; Id p : attr ( t , Id p ) ,

Pos p : attr ( t , Pos p ) ,
I n s t a n t i : attr ( t , I n s t a n t i ) ] ]

sortby [ Id p asc , I n s t a n t i asc , L i c ence asc ]
consume ;

let OBANres012 =
OBANres012tmp1 feed {c1}
OBANres012tmp1 feed {c2}
symmjoin [ ( . L i c en c e c 1 < . . L i c en c e c 2 ) and

( . I d p c1 = . . Id p c2 ) and
( . I n s t a n t i c 1 = . . I n s t a n t i c 2 ) ]

project [ Id p c1 , Pos p c1 , I n s t an t i c 1 , L icence c1 , L i c en c e c 2 ]
sortby [ I d p c1 asc , I n s t an t i c 1 asc , L i c en c e c 2 asc ]

consume ;

# de l e t e temporary ob j e c t s

d e l e t e OBANres012tmp1 ;

# Query 13 : Which v e h i c l e s t r ave l ed with in one o f the r e g i on s from
# QueryRegions1 during the pe r i od s from QueryPeriods1 ?

let OBANres013 =
dataSNcar feed {c}
QueryRegions1Net feed

filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Tr ip c passes . . Reg ion r ]

projectextend [ L i c ence c , Id r , Reg ion r ; Trip : . Tr ip c at . Reg ion r ]
QueryPeriods1 feed filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Trip present . . Pe r iod p ]

projectextend [ Id r , Per iod p ; L icence : . L i c ence c ,
Trip : . Trip atperiods . Pe r iod p ]

filter [ no components ( . Trip ) > 0 ]
project [ Id r , Period p , L icence ]
sortby [ I d r asc , Pe r iod p asc , L i c ence asc ]

consume ;

# Query 14 : Which v e h i c l e s t r ave l ed with in one o f the r e g i on s from
# QueryRegions1 at one o f the i n s t an t s from QueryInstant1?

let OBANres014 =
dataSNcar feed
QueryInstant1 feed
product

projectextend [ Licence , In s t an t ; PosX : val ( . Trip atinstant . I n s t an t ) ]
projectextendstream [ Licence , In s t an t ; Pos : polygpoints ( . PosX ,BNETWORK) ]

QueryRegions1Net feed filter [ not ( isempty ( . Region ) ) ]
symmjoin [ . Pos inside . . Region ]

project [ Id , Instant , L icence ]
sortby [ Id asc , I n s t an t asc , L i c ence asc ]
krdup [ Id , Instant , L icence ]

consume ;

# Query 15 : Which v e h i c l e s passed a po int from QueryPoints1 during a per iod
# from QueryPeriods1 ?

let OBANres015 =
QueryPoints1Net feed

projectextend [ Id , Pos ; Prect : gpoint2rect ( . Pos ) ] {p}
QueryPeriods1 feed

filter [ not ( isempty ( . Period ) ) ] { t}
product

projectextend [ Id p , Pos p , Pe r i od t ; Box : box3d ( . Prect p , . P e r i od t ) ]
loopsel [ fun ( t : TUPLE )

dataSNcar BoxNet t imespace windowintersectsS [ attr ( t , Box ) ]
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sort rdup dataSNcar gettuples
filter [ ( . Trip atperiods ( attr ( t , Pe r i od t ) ) ) passes ( attr ( t , Pos p ) ) ]
projectextend [ ; Id : attr ( t , Id p ) ,

Period : attr ( t , Pe r i od t ) ,
L icence : . L i c ence ] ]

sortby [ Id asc , Per iod asc , L i c ence asc ]
krdup [ Id , Period , L icence ]

consume ;

# Query 16 : L i s t the p a i r s o f l i c e n s e s f o r v e h i c l e s the f i r s t from
# QueryLicences1 , the second from QueryLicences2 , where the
# corre spond ing v e h i c l e s are both pre sent wi th in a r e g i on from
# QueryRegions1 during a per iod from QueryPeriod1 , but do not meet
# each other the re and then .

let OBANres016 =
QueryLicences1 feed { l }

loopjoin [ dataSNcar Licence btree dataSNcar exactmatch [ . L i c en c e l ] ] {c}
QueryPeriods1 feed

filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Tr ip c present . . Pe r iod p ]

projectextend [ Id p , Per iod p ; L icence : . L i c ence c ,
Trip : . Tr ip c atperiods . Pe r iod p ]

filter [ no components ( . Trip ) > 0 ]
QueryRegions1Net feed

filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Trip passes . . Reg ion r ]

projectextend [ Licence , Id r , Region r , Id p ,
Per iod p ; Trip : . Trip at . Reg ion r ]

filter [ no components ( . Trip ) > 0 ]{ a}
QueryLicences2 feed { l }

loopjoin [ dataSNcar Licence btree dataSNcar exactmatch [ . L i c en c e l ] ] {c}
QueryPeriods1 feed

filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Tr ip c present . . Pe r iod p ]

projectextend [ Id p , Per iod p ; L icence : . L i c ence c ,
Trip : . Tr ip c atperiods . Pe r iod p ]

filter [ no components ( . Trip ) > 0 ]
QueryRegions1Net feed filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Trip passes . . Reg ion r ]

projectextend [ Licence , Id r , Region r , Id p ,
Per iod p ; Trip : . Trip at . Reg ion r ]

filter [ no components ( . Trip ) > 0 ]{b}
symmjoin [ ( . I d r a = . . I d r b ) and ( . I d p a = . . Id p b ) ]

filter [ . L i c en c e a # . Licence b ]
filter [ not ( . Tr ip a intersects . Trip b ) ]
project [ I d r a , Per iod p a , L icence a , L icence b ]
sortby [ I d r a , Per iod p a , L icence a , L icence b ]

consume ;

# Query 17 : Which po in t s from QueryPoints have been v i s i t e d by a maximum
# number o f d i f f e r e n t v e h i c l e s ?

let OBANres017tmp1 =
dataSNcar feed {c}
QueryPointsNet feed {p}
symmjoin [ . Tr ip c passes . . Pos p ]

project [ Id p , L i c en c e c ]
sortby [ Id p , L i c en c e c ]
krdup [ Id p , L i c en c e c ]
groupby [ Id p ; Hi t s : group feed count ]

consume ;

let OBANres017 =
OBANres017tmp1 feed

filter [ . H i t s = (OBANres017tmp1 feed max [ H i t s ] ) ]
project [ Id p , Hi t s ]

consume ;

#de l e t e temporary ob j e c t

d e l e t e OBANres017tmp1 ;

# Save runtime in format ion

let QRT NET OBA = SEC2COMMANDS feed consume ;

# To save runtime in format ion on hard d i sk uncomment next l i n e
# save QRT NET OBA to ’NetworkOBARunTimes .DAT’ ;

# Fin i sh Sc r i p t and Close Database

c l o s e database ;

The script in the file Network TBA-Queries.SEC executes the 17 queries of the trip based approach of the
BerlinMOD Benchmark using the first network implementation.

# Network qu e r i e s f o r the t r i p based approach o f the BerlinMOD Benchmark .
#
# The s c r i p t assumes that the re i s a database berl inmod with a network data
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# model r ep r e s en ta t i on o f the BerlinMOD Benchmark data .
#
# This database can be generated by the s c r i p t ’ BerlinMOD DataGenerator . SEC ’ .
# The network data model r ep r e s en ta t i on and acc rod ing indexes can be generated
# with the s c r i p t ’ Network CreateObjects . SEC’
#
# Start S c r i p t Opening the Database

open database berl inmod ;

# Query 1 : What are the models o f the v e h i c l e s with l i c e n s e p l a t e numbers from
# QueryLicence ?

let TBANres001 =
QueryLicences feed { l }

loopjoin [ dataMcar Licence btree dataMcar exactmatch [ . L i c e n c e l ] ]
project [ Licence , Model ]

consume ;

# Query 2 : How many v e h i c l e s e x i t that are passenger c a r s ?

let TBANres002 =
dataMcar feed

filter [ . Type = ”passenger ” ]
count ;

# Query 3 : Where have the v e h i c l e s with l i c e n s e s from QueryLicence1 been at
# each in s t an t from QueryInstant1?

let TBANres003 =
QueryLicences1 feed { l }

loopsel [ dataMcar Licence btree dataMcar exactmatch [ . L i c en c e l ] { l l } ]
loopjoin [ dataMNtrip Moid btree dataMNtrip exactmatch [ . Mo id l l ] ]

QueryInstant1 feed { i }
symmjoin [ . Trip present . . I n s t a n t i ]

projectextend [ I n s t an t i , L i c e n c e l l ; Pos : val ( . Trip atinstant . I n s t a n t i ) ]
sortby [ I n s t an t i , L i c e n c e l l ]

consume ;

# Query 4 : Which l i c e n s e p l a t e numbers be long to v e h i c l e s that have passed the
# po in t s from QueryPoints ?

let TBANres004 =
QueryPointsNet feed

projectextend [ Id , Pos ; Elem : gpoint2rect ( . Pos ) ]
loopjoin [ dataMNtrip TrajBoxNet windowintersectsS [ . Elem ]

sort rdup dataMNtrip gettuples ]
filter [ . Trip passes . Pos ]
project [ Moid , Id ]
loopsel [ fun ( t : TUPLE ) dataMcar Moid btree dataMcar exactmatch [ attr ( t , Moid ) ]

projectextend [ L i c ence ; Id : attr ( t , Id ) ] ]
sortby [ Id asc , L i c ence asc ]
krdup [ Id , L icence ]

consume ;

# Query 5 : What i s the minimum d i s t anc e between p lace s , where a v e h i c l e with a
# l i c e n s e from QueryLicences1 and a ve h i c l e with L i c en se s from
# QueryLicence2 have been?

let TBANres005 =
QueryLicences1 feed project [ L i c ence ] {LL1}

loopsel [ fun ( t : TUPLE )
dataMcar Licence btree dataMcar exactmatch [ attr ( t , Licence LL1 ) ] {CAR}
loopsel [ dataMNtrip Moid btree dataMNtrip exactmatch [ . Moid CAR ] ]

projectextend [ ; Traj : trajectory ( . Trip ) ]
aggregateB [ Traj ; fun (L1 : gline , L2 : gline ) L1 union L2 ; [ const gline value ( ) ] ]
feed namedtransformstream [ Traxj ]
extend [ L i c ence : attr ( t , Licence LL1 ) ] ]

projectextend [ L i c ence ; Trax : gline2line ( . Traxj ) ] { c1}
QueryLicences2 feed project [ L i c ence ] {LL2}

loopsel [ fun ( s : TUPLE )
dataMcar Licence btree dataMcar exactmatch [ attr ( s , Licence LL2 ) ] {CAR}

loopsel [ dataMNtrip Moid btree dataMNtrip exactmatch [ . Moid CAR ] ]
projectextend [ ; Traj : trajectory ( . Trip ) ]
aggregateB [ Traj ; fun (L3 : gline , L4 : gline ) L3 union L4 ; [ const gline value ( ) ] ]
feed namedtransformstream [ Traxj ]
extend [ L i c ence : attr ( s , Licence LL2 ) ] ]

projectextend [ L i c ence ; Trax : gline2line ( . Traxj ) ] { c2}
product

projectextend [ L i c ence c1 ,
L i c en c e c 2 ; Di stance : round ( distance ( . Trax c1 , . Trax c2 ) , 3 ) ]

sortby [ L i c ence c1 , L i c en c e c 2 ]
consume ;

# Query 6 : What are the p a i r s o f l i c e n s e p l a t e numbers o f ” t rucks ” , that have
# been as c l o s e as 10m or l e s s to each other ?

let TBANres006tmp1 =
dataMcar feed

filter [ . Type = ” truck” ]
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project [ Licence , Moid ] {c}
loopjoin [ dataMNtrip Moid btree dataMNtrip exactmatch [ . Moid c ] ]

projectextend [ ; L i c ence : . L i c ence c , BBox : mgpbbox ( . Trip ) , Ptr ip : mgpoint2mpoint ( . Trip ) ]
projectextend [ Licence , Ptr ip ; Box : rectangle3 ( ( minD ( . BBox , 1 ) − 5 . 0 ) ,

( maxD ( . BBox , 1 ) + 5 . 0 ) ,
( minD ( . BBox , 2 ) − 5 . 0 ) ,
( maxD ( . BBox , 2 ) + 5 . 0 ) ,
minD ( . BBox , 3 ) ,
maxD ( . BBox , 3 ) ) ]

consume ;

let TBANres006 =
TBANres006tmp1 feed {c1}
TBANres006tmp1 feed {c2}
symmjoin [ ( . Box c1 intersects . . Box c2 ) and ( . L i c en c e c 1 < . . L i c en c e c 2 ) ]

filter [ everNearerThan ( . Ptr ip c1 , . Ptr ip c2 , 1 0 . 0 ) ]
project [ L i c ence c1 , L i c en c e c 2 ]
sortby [ L i c en c e c 1 asc , L i c en c e c 2 asc ]
krdup [ L i c ence c1 , L i c en c e c 2 ]

consume ;

# de l e t e temporary ob j e c t s

d e l e t e TBANres006tmp1 ;

# Query 7 : What are the l i c e n s e p l a t e numbers o f the ” passenger ” c a r s that
# have reached po in t s from QueryPoints f i r s t o f a l l ” passenger ” c a r s
# during the complete ob se rva t i on per iod ?

let TBANres007tmp1 =
QueryPointsNet feed

projectextend [ Id , Pos ; Prect : gpoint2rect ( . Pos ) ]
loopsel [ fun ( t : TUPLE ) dataMNtrip TrajBoxNet windowintersectsS [ attr ( t , Prect ) ]

sort rdup dataMNtrip gettuples
filter [ . Trip passes ( attr ( t , Pos ) ) ]
loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid ]

filter [ . Type = ” passenger ” ]
project [ L i c ence ] {X} ]

projectextend [ Licence X ; TimeAtPos : inst ( initial ( . Trip at attr ( t , Pos ) ) ) ,
Id : attr ( t , Id ) ] ]

sortby [ Id asc , TimeAtPos asc ]
consume ;

let TBANres007 =
TBANres007tmp1 feed

groupby [ Id ; FirstTime : group feed min [ TimeAtPos ] ] { b}
TBANres007tmp1 feed {a}
symmjoin [ ( . . Id a = . Id b ) ]

filter [ . TimeAtPos a <= . FirstTime b ]
project [ Id a , L icence X a ]
sortby [ Id a asc , L i c ence X a asc ]
krdup [ Id a , L icence X a ]

consume ;

# de l e t e temporary ob j e c t

d e l e t e TBANres007tmp1 ;

# Query 8 : What are the o v e r a l l t r ave l ed d i s t an c e s o f the v e h i c l e s with
# l i c e n s e p l a t e numbers from QueryLicences1 during the pe r i od s from
# QueryPeriods1 ?

let TBANres008 =
QueryLicences1 feed { l }

loopjoin [ dataMcar Licence btree dataMcar exactmatch [ . L i c en c e l ] ]
project [ Licence , Moid ]
loopsel [ fun ( t : TUPLE ) dataMNtrip Moid btree dataMNtrip exactmatch [ attr ( t , Moid ) ]

projectextend [ Trip ; L icence : attr ( t , L i c ence ) ] ]
QueryPeriods1 feed
symmjoin [ . Trip present . . Per iod ]

projectextend [ Licence , Period , Id ; Di stance : length ( . Trip atperiods . Per iod ) ]
sortby [ Id asc , L i c ence asc , D i stance desc ]
groupby [ Id , Period , L icence ; Di st : round ( group feed sum [ D i stance ] , 3 ) ]
project [ Licence , Period , Di st ]
sortby [ Licence , Period , Di st ]

consume ;

# Query 9 : What i s the l onge s t d i s t an c e that was t r ave l ed by a v e h i c l e during
# each o f the pe r i od s from QueryPeriods ?

let TBANres009 =
dataMNtrip feed {c}
QueryPeriods feed

filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Tr ip c present . . Pe r iod p ]

projectextend [ Moid c , Period p ,
Id p ; Di stance : length ( . Tr ip c atperiods . Pe r iod p ) ]

sortby [ Id p asc , Pe r iod p asc , Moid c asc , D i stance desc ]
groupby [ Id p , Period p , Moid c ; Di st : group feed sum [ D i stance ] ]
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groupby [ Id p , Per iod p ; Dista : round ( group feed max [ D i st ] , 3 ) ]
filter [ . Dista > 0 . 0 ]
project [ Per iod p , Dista ]
sortby [ Per iod p , Dista ]

consume ;

# Query 10 : When and where did the v e h i c l e s with l i c e n s e p l a t e numbers from
# QueryLicences1 meet other v e h i c l e s ( d i s t an c e < 3m) and what are
# the l a t t e r l i c e n s e s ?

let TBANres010 =
QueryLicences1 feed

project [ L i c ence ] {V1}
loopsel [ fun ( t : TUPLE )

dataMcar Licence btree dataMcar exactmatch [ attr ( t , Licence V1 ) ]
project [ Moid ]
loopjoin [ dataMNtrip Moid btree dataMNtrip exactmatch [ . Moid ] remove [ Moid ] ] {V3}
extend [ T3bbx : mgpbbox ( . Trip V3 ) ]
extend [ PtripA : mgpoint2mpoint ( . Trip V3 ) ]
loopjoin [ fun (u : TUPLE )

dataMNtrip SpatioTemp
windowintersectsS [ rectangle3 ( minD ( attr (u , T3bbx) , 1 ) − 3 . 0 ,

maxD ( attr (u , T3bbx) , 1 ) + 3 . 0 ,
minD ( attr (u , T3bbx) , 2 ) − 3 . 0 ,
maxD ( attr (u , T3bbx) , 2 ) + 3 . 0 ,
minD ( attr (u , T3bbx ) , 3 ) ,
maxD ( attr (u , T3bbx ) , 3 ) ) ]

sort rdup dataMNtrip gettuples
filter [ . Moid # a t t r (u , Moid V3 ) ]
projectextend [ Moid ; PtripB : mgpoint2mpoint ( . Trip ) ]
filter [ everNearerThan(attr (u , PtripA ) , . PtripB , 3 . 0 ) ]
projectextend [ Moid ; Times : deftime ( ( distance ( attr (u , PtripA ) ,

. PtripB )
< 3 . 0 ) at TRUE ) ]

filter [ not ( isempty ( . Times ) ) ]
loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid ]

project [ L i c ence ] ] ]
projectextend [ ; QueryLicence : attr ( t , Licence V1 ) ,

OtherLicence : . Licence ,
Pos : . Trip V3 atperiods . Times ]

filter [ not ( isempty ( . Pos ) ) ] ]
sortby [ QueryLicence asc , OtherLicence asc ]
groupby [ QueryLicence ,

OtherLicence ; Al lPos : group feed
aggregateB [ Pos ; fun (M1: mgpoint , M2: mgpoint )

M1 union M2; [ const mgpoint value ( ) ] ] ]
project [ QueryLicence , OtherLicence , Al lPos ]
sortby [ QueryLicence , OtherLicence , Al lPos ]

consume ;

# Query 11 : Which v e h i c l e s passed a po int from QueryPoints1 at one o f the
# in s t an t s from QueryInstant1?

let TBANres011 =
QueryInstant1 feed { i }
QueryPoints1Net feed

projectextend [ Id , Pos ; Prect : gpoint2rect ( . Pos ) ] { p}
product

loopsel [ fun ( t : TUPLE )
dataMNtrip BoxNet timespace windowintersectsS [ box3d ( attr ( t , Prec t p ) ,

attr ( t , I n s t a n t i ) ) ]
sort rdup dataMNtrip gettuples
filter [ . Trip passes ( attr ( t , Pos p ) ) ]
projectextend [ Moid ; Id : attr ( t , Id p ) ,

In s t an t : attr ( t , I n s t a n t i ) ] ] { a}
loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid a ] ]

project [ Id a , Instant a , L icence ]
sortby [ Id a asc , I n s t an t a asc , L i c ence asc ]
krdup [ Id a , Instant a , L icence ]

consume ;

# Query 12 : Which v e h i c l e s met at a po int from QueryPoints1 at an in s t an t from
# QueryInstant1?

let TBANres012tmp1 =
QueryPoints1Net feed

projectextend [ Id , Pos ; Prect : gpoint2rect ( . Pos ) ] { p}
QueryInstant1 feed { i }
product

projectextend [ Id p , Pos p , I n s t a n t i ; Box : box3d ( . Prect p , . I n s t an t i ) ]
loopsel [ fun ( t : TUPLE ) dataMNtrip BoxNet timespace windowintersectsS [ attr ( t , Box ) ]

sort rdup dataMNtrip gettuples
filter [ . Trip passes ( attr ( t , Pos p ) ) ]
projectextend [ Moid ; Id : attr ( t , Id p ) ,

In s t an t : attr ( t , I n s t a n t i ) ] ] { a}
loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid a ] ]

projectextend [ Moid , L icence ; Id : . Id a , In s t an t : . I n s t an t a ]
consume ;

let TBANres012 =
TBANres012tmp1 feed {A}
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TBANres012tmp1 feed {B}
symmjoin [ ( . Id A = . . Id B ) and

( . Instant A = . . Instant B ) and
( . Moid A < . . Moid B ) ]

project [ Id A , Instant A , Licence A , Licence B ]
sortby [ Id A asc , In stant A asc , Licence B asc ]

consume ;

# de l e t e temporary ob j e c t

d e l e t e TBANres012tmp1 ;

# Query 13 : Which v e h i c l e s t r ave l ed with in one o f the r e g i on s from
# QueryRegions1 during the pe r i od s from QueryPeriods1 ?

let TBANres013 =
dataMNtrip feed {c}
QueryRegions1Net feed

filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Tr ip c passes . . Reg ion r ]

projectextend [ Moid c , I d r ; Trip : . Tr ip c at . Reg ion r ]
QueryPeriods1 feed filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Trip present . . Pe r iod p ]

loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid c ] ]
project [ Licence , Id r , Per iod p ]
sortby [ L i c ence asc , I d r asc , Pe r iod p asc ]
krdup [ Licence , Id r , Per iod p ]

consume ;

# Query 14 : Which v e h i c l e s t r ave l ed with in one o f the r e g i on s from
# QueryRegions1 at one o f the i n s t an t s from QueryInstant1?

let TBANres014 =
QueryRegions1Net feed

filter [ not ( isempty ( . Region ) ) ]
projectextendstream [ Id , Region ; Brect : routeintervals ( . Region ) ] { r}

QueryInstant1 feed { i }
product

projectextend [ Id r , Region r , I n s t an t i ; Box : box3d ( . Brec t r , . I n s t a n t i ) ]
loopsel [ fun ( t : TUPLE ) dataMNtrip BoxNet timespace windowintersectsS [ attr ( t , Box ) ]

sort rdup dataMNtrip gettuples
filter [ ( val ( . Trip atinstant ( attr ( t , I n s t an t i ) ) ) ) inside ( attr ( t , Reg ion r ) ) ]
projectextend [ Moid ; In s t an t : attr ( t , I n s t an t i ) , Id : attr ( t , I d r ) ] ] { a}

loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid a ] ]
projectextend [ L i c ence ; Id : . Id a , In s t an t : . I n s t an t a ]
sortby [ Id asc , I n s t an t asc , L i c ence asc ]
krdup [ Id , Instant , L icence ]

consume ;

# Query 15 : Which v e h i c l e s passed a po int from QueryPoints1 during a per iod
# from QueryPeriods1 ?

let TBANres015 =
QueryPoints1Net feed

projectextend [ Id , Pos ; Prect : gpoint2rect ( . Pos ) ] {p}
QueryPeriods1 feed

filter [ not ( isempty ( . Period ) ) ] { t}
product

loopsel [ fun ( t : TUPLE )
dataMNtrip BoxNet timespace windowintersectsS [ box3d ( attr ( t , Prec t p ) ,

attr ( t , Pe r i od t ) ) ]
sort rdup dataMNtrip gettuples
filter [ ( . Trip atperiods ( attr ( t , Pe r i od t ) ) ) passes ( attr ( t , Pos p ) ) ]
projectextend [ Moid ; Period : attr ( t , Pe r i od t ) , Id : attr ( t , Id p ) ] ] { a}

loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid a ] ]
projectextend [ L i c ence ; Id : . Id a , Period : . Per iod a ]
sortby [ Id asc , Per iod asc , L i c ence asc ]
krdup [ Id , Period , L icence ]
project [ Licence , Id , Period ]

consume ;

# Query 16 : L i s t the p a i r s o f l i c e n s e s f o r v e h i c l e s the f i r s t from
# QueryLicences1 , the second from QueryLicences2 , where the
# corre spond ing v e h i c l e s are both pre sent wi th in a Region from
# QueryRegions1 during a per iod from QueryPeriod1 , but do not meet
# each other the re and then .

let TBANres016 =
QueryLicences1 feed { l }

loopjoin [ dataMcar Licence btree dataMcar exactmatch [ . L i c en c e l ] ] {a}
loopjoin [ dataMNtrip Moid btree dataMNtrip exactmatch [ . Moid a ] ]

QueryPeriods1 feed
filter [ not ( isempty ( . Period ) ) ] { p}

symmjoin [ . Trip present . . Pe r iod p ]
projectextend [ Id p , Per iod p ; L icence : . L i c ence a ,

Trip : . Trip atperiods . Pe r iod p ]
filter [ no components ( . Trip )>0]

QueryRegions1Net feed filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Trip passes . . Reg ion r ]

projectextend [ Licence , Id p , Period p , I d r ; Trip : . Trip at . Reg ion r ]
filter [ no components ( . Trip ) > 0 ]{ a}
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QueryLicences2 feed { l }
loopjoin [ dataMcar Licence btree dataMcar exactmatch [ . L i c en c e l ] ] { a}

loopjoin [ dataMNtrip Moid btree dataMNtrip exactmatch [ . Moid a ] ]
QueryPeriods1 feed

filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Trip present . . Pe r iod p ]

projectextend [ Id p , Per iod p ; L icence : . L i c ence a ,
Trip : . Trip atperiods . Pe r iod p ]

filter [ no components ( . Trip )>0]
QueryRegions1Net feed filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Trip passes . . Reg ion r ]

projectextend [ Licence , Id p , I d r ; Trip : . Trip at . Reg ion r ]
filter [ no components ( . Trip ) > 0 ]{b}

symmjoin [ ( . I d r a = . . I d r b ) and ( . I d p a = . . Id p b ) ]
filter [ . L i c en c e a # . Licence b ]
filter [ not ( . Tr ip a intersects . Trip b ) ]
project [ I d r a , Id p a , L icence a , L icence b ]
sortby [ I d r a asc , I d p a asc , L i c en c e a asc , L i c ence b asc ]
krdup [ I d r a , Id p a , L icence a , L icence b ]

consume ;

# Query 17 : Which po in t s from QueryPoints have been v i s i t e d by a maximum
# number o f d i f f e r e n t v e h i c l e s ?

let TBANres017tmp1 =
QueryPointsNet feed

projectextend [ Id , Pos ; Elem : gpoint2rect ( . Pos ) ]
loopsel [ fun ( t : TUPLE ) dataMNtrip TrajBoxNet windowintersectsS [ attr ( t , Elem ) ]

sort rdup dataMNtrip gettuples
filter [ . Trip passes ( attr ( t , Pos ) ) ]
projectextend [ Moid ; Id p : attr ( t , Id ) ] ]

sortby [ Id p asc , Moid asc ]
krdup [ Id p , Moid ]
groupby [ Id p ; Hi t s : group feed count ]

consume ;

let TBANres017 =
TBANres017tmp1 feed

filter [ . H i t s = (TBANres017tmp1 feed max [ H i t s ] ) ]
project [ Id p , Hi t s ]

consume ;

# de l e t e temporary ob j e c t

d e l e t e TBANres017tmp1 ;

# Save query runtimes

let QRT NET TBA = SEC2COMMANDS feed consume ;

# Uncomment the next l i n e i f you want to save run time in format ion on d i sk
# save QRT NET TBA to ’NetworkTBARunTimes .DAT’ ;

# Fin i sh Sc r i p t and Close Database

c l o s e database ;

5.2.2.2 JNetwork

The script in the file JNetwork OBA-Queries.SEC executes the 17 queries of the object based approach of the
BerlinMOD Benchmark using the second network implementation.

# This f i l e performs the OBA−Quer i e s o f the BerlinMOD benchmark on the
# JNetwork Repre sentat ion Secondo DBMS. Created by ’ BerlinMOD DataGenerator . SEC’
# and ’ JNetwork CreateBMODObjects . SEC’

open database berl inmod ;

# Query 1 : What are the models o f the v e h i c l e s with l i c e n s e p l a t e numbers from
# QueryLicence ?

let OBAJNres001 =
QueryLicences feed { l }

loopjoin [ d a taSJca r L i c en c e b t r e e dataSJcar exactmatch [ . L i c en c e l ] ]
project [ Licence , Model ]

consume ;

# Query 2 : How many v e h i c l e s e x i s t that are passenger c a r s ?

let OBAJNres002 =
dataSJcar feed

filter [ . Type = ”passenger ” ]
count ;

# Query 3 : Where have the v e h i c l e s with l i c e n s e s from QueryLicence1 been at
# each in s t an t from QueryInstant1?
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let OBAJNres003 =
QueryLicences1 feed { l }

loopjoin [ d a taSJca r L i c en c e b t r e e dataSJcar exactmatch [ . L i c en c e l ] ]
QueryInstants feed { i } head [ 1 0 ]
product

projectextend [ ; L i c ence : . L i c en c e l ,
I n s t an t : . I n s t an t i ,
Pos : val ( . Trip atinstant . I n s t a n t i ) ]

consume ;

# Query 4 : Which l i c e n s e p l a t e numbers be long to v e h i c l e s that have passed the
# po in t s from QueryPoints ?

let OBAJNres004 =
QueryPointsJNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 0 0 0 0 1 ) ]

loopjoin [ dataSJcar TrajBoxNet windowintersectsS [ . NBox ]
sort rdup dataSJcar gettuples ]

filter [ . Trip passes . Pos ]
project [ Id , L icence ]
sortby [ Id asc , L i c ence asc ]
krdup [ Id , L icence ]

consume ;

# Query 5 : What i s the minimum d i s t anc e between p lace s , where a v e h i c l e with a
# l i c e n s e from QueryLicences1 and a ve h i c l e with l i c e n s e s from
# QueryLicence2 have been?

let OBAJNres005tmp1 =
QueryLicences1 feed

loopsel [ d a taSJca r L i c en c e b t r e e dataSJcar exactmatch [ . L i c ence ] ]
projectextend [ L i c ence ; Traj : fromnetwork ( trajectory ( . Trip ) ) ]

consume ;

let OBAJNres005 =
QueryLicences2 feed

loopsel [ d a taSJca r L i c en c e b t r e e dataSJcar exactmatch [ . L i c ence ] ]
projectextend [ L i c ence ; Traj : fromnetwork ( trajectory ( . Trip ) ) ] { t2}

OBAJNres005tmp1 feed { t1}
product

projectextend [ ; L i c ence1 : . L i c ence t1 ,
L icence2 : . L i c ence t2 ,
Di st : round ( distance ( . Tra j t1 , . Tra j t 2 ) , 3 ) ]

sortby [ Licence1 , L icence2 ]
consume ;

#de l e t e temporary ob j e c t

d e l e t e OBAJNres005tmp1 ;

# Query 6 : What are the p a i r s o f l i c e n s e p l a t e numbers o f ” t rucks ” , that have
# been as c l o s e as 10m or l e s s to each other ?

let OBAJNres006tmp1 =
dataSJcar feed

filter [ . Type = ” truck” ]
projectextend [ L i c ence ; Ptr ip : fromnetwork ( . Trip ) , BBox : bbox ( . Trip ) ]
extend [ Box : rectangle2 (minD ( . BBox , 1 ) − 5 . 0 , maxD ( . BBox , 1 ) + 5 . 0 ,

minD ( . BBox , 2 ) − 5 . 0 , maxD ( . BBox , 2 ) + 5 . 0 ) ]
consume ;

let OBAJNres006 =
OBAJNres006tmp1 feed {a}
OBAJNres006tmp1 feed {b}
symmjoin [ ( . Box a intersects . . Box b ) and

( . L i c en c e a < . . L i c ence b ) and
( everNearerThan ( . Ptr ip a , . . Ptr ip b , 1 0 . 0 ) ) ]

project [ L i c ence a , L icence b ]
sortby [ L i c en c e a asc , L i c ence b asc ]
krdup [ L i c ence a , L icence b ]

consume ;

# de l e t e temporary ob j e c t

d e l e t e OBAJNres006tmp1 ;

# Query 7 : What are the l i c e n s e p l a t e numbers o f the ” passenger ” c a r s that
# have reached po in t s from QueryPoints f i r s t o f a l l ” passenger ” c a r s
# during the complete ob se rva t i on per iod ?

let OBAJNres007tmp1 =
QueryPointsJNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 0 0 0 0 1 ) ]

loopsel [ fun ( t : TUPLE )
dataSJcar TrajBoxNet windowintersectsS [ attr ( t ,NBox ) ]
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sort rdup dataSJcar gettuples
filter [ . Type = ”passenger ” ]
projectextend [ L i c ence ; Id : attr ( t , Id ) ,

I n s t an t : inst ( initial ( . Trip at attr ( t , Pos ) ) ) ] ]
filter [ not ( isempty ( . I n s t an t ) ) ]
sortby [ Id asc , I n s t an t asc ]

consume ;

let OBAJNres007 =
OBAJNres007tmp1 feed

groupby [ Id ; FirstTime : group feed min [ I n s t an t ] ] { b}
OBAJNres007tmp1 feed {a}
hashjoin [ Id b , Id a ]

filter [ ( . Id a = . Id b ) and ( . I n s t an t a <= . FirstTime b ) ]
project [ Id a , L i c en c e a ]
sortby [ Id a , L i c en c e a ]
rdup

consume ;

# de l e t e temporary ob j e c t

d e l e t e OBAJNres007tmp1 ;

# Query 8 : What are the o v e r a l l t r ave l ed d i s t an c e s o f the v e h i c l e s with
# l i c e n s e p l a t e numbers from QueryLicences1 during the pe r i od s from
# QueryPeriods1 ?

let OBAJNres008 =
QueryLicences1 feed { l }

loopsel [ d a taSJca r L i c en c e b t r e e dataSJcar exactmatch [ . L i c en c e l ] ]
QueryPeriods1 feed

filter [ not ( isempty ( . Period ) ) ] { p}
product

projectextend [ L i c ence ; Period : . Period p ,
Di st : round ( length ( . Trip atperiods . Pe r iod p ) , 3 ) ]

project [ Licence , Period , Di st ]
sortby [ L i c ence asc , Per iod asc ]

consume ;

# Query 9 : What i s the l onge s t d i s t an c e that was t r ave l ed by a v e h i c l e during
# each o f the pe r i od s from QueryPeriods ?

let OBAJNres009 =
dataSJcar feed {c}
QueryPeriods feed

filter [ not ( isempty ( . Period ) ) ] { p}
product

projectextend [ Id p , Period p ,
L i c en c e c ; Di st : round ( length ( . Tr ip c atperiods . Pe r iod p ) , 3 ) ]

sortby [ Id p asc , Pe r iod p asc , D i st desc ]
groupby [ Id p , Per iod p ; Di stance : group feed max [ D i st ] ]
project [ Per iod p , Di stance ]

consume ;

# Query 10 : When and where did the v e h i c l e s with l i c e n s e p l a t e numbers from
# QueryLicences1 meet other v e h i c l e s ( d i s t an c e < 3m) and what are
# the l a t t e r l i c e n s e s ?

let OBAJNres010tmp1 =
QueryLicences1 feed
loopsel [ d a taSJca r L i c en c e b t r e e dataSJcar exactmatch [ . L i c ence ] ]

projectextend [ Licence , Trip ; TripA : fromnetwork ( . Trip ) , BBox : bbox ( . Trip ) ]
projectextend [ Licence , Trip , TripA ; Box : rectangle2 ( ( minD ( . BBox , 1 ) − 1 . 5 ) ,

(maxD ( . BBox , 1 ) + 1 . 5 ) ,
(minD ( . BBox , 2 ) − 1 . 5 ) ,
(maxD ( . BBox , 2 ) + 1 . 5 ) ) ]

consume ;

let OBAJNres010 =
dataSJcar feed

projectextend [ L i c ence ; TripA : fromnetwork ( . Trip ) , BBox : bbox ( . Trip ) ]
projectextend [ Licence , TripA ; Box : rectangle2 ( ( minD ( . BBox , 1 ) − 1 . 5 ) ,

( maxD ( . BBox , 1 ) + 1 . 5 ) ,
( minD ( . BBox , 2 ) − 1 . 5 ) ,
( maxD ( . BBox , 2 ) + 1 . 5 ) ) ] { c1}

OBAJNres010tmp1 feed {c2}
symmjoin [ ( ( . Box c1 intersects . . Box c2 ) and

( . L i c en c e c 1 # . . L i c en c e c 2 ) ) and
( everNearerThan ( . TripA c1 , . . TripA c2 , 3 . 0 ) ) ]

projectextend [ L i c ence c1 ,
L i c en c e c 2 ; Pos : . Tr ip c2 atperiods deftime ( ( distance ( . TripA c1 ,

. TripA c2 )
< 3 . 0 ) at TRUE ) ]

filter [ not ( isempty ( . Pos ) ) ]
project [ L i c ence c2 , L icence c1 , Pos ]
sortby [ L i c en c e c 2 asc , L i c en c e c 1 asc ]

consume ;

# de l e t e temporary ob j e c t
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d e l e t e OBAJNres010tmp1 ;

# Query 11 : Which v e h i c l e s passed a po int from QueryPoints1 at one o f the
# in s t an t s from QueryInstant1?

let OBAJNres011 =
QueryPoints1JNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 0 0 0 0 1 ) ]

loopsel [ fun ( t : TUPLE ) dataSJcar TrajBoxNet windowintersectsS [ attr ( t ,NBox ) ]
sort rdup dataSJcar gettuples
filter [ . Trip passes attr ( t , Pos ) ]
projectextend [ L i c ence ; Id : ( attr ( t , Id ) ) ,

TripN : . Trip at attr ( t , Pos ) ] ]
QueryInstant1 feed { i }
symmjoin [ . TripN present . . I n s t a n t i ]

project [ Licence , Id , I n s t a n t i ]
sortby [ Id , Licence , I n s t a n t i ]

consume ;

# Query 12 : Which v e h i c l e s met at a po int from QueryPoints1 at an in s t an t from
# QueryInstant1?

let OBAJNres012tmp1 =
QueryInstant1 feed { i }
QueryPoints1JNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1 ) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 00001 ) ]{ p}

product
projectextend [ I n s t an t i , Id p , Pos p ; Box : box3d ( . NBox p , . I n s t a n t i ) ]
loopsel [ fun ( t : TUPLE )

dataSJcar BoxNet t imespace windowintersectsS [ attr ( t , Box ) ]
sort rdup dataSJcar gettuples
projectextend [ L i c ence ; Id : attr ( t , Id p ) ,

In s t an t : attr ( t , I n s t a n t i ) ,
Pos : attr ( t , Pos p ) ] ]

sortby [ Id asc , I n s t an t asc , L i c ence asc , Pos asc ]
rdup

consume ;

let OBAJNres012 =
OBAJNres012tmp1 feed {c1}
OBAJNres012tmp1 feed {c2}
symmjoin [ ( ( . L i c en c e c 1 < . . L i c en c e c 2 ) and

( . I d c 1 = . . Id c 2 ) ) and
( . I n s t an t c 1 = . . In s t an t c 2 ) ]

project [ Id c1 , Pos c1 , In s t an t c 1 , L icence c1 , L i c en c e c 2 ]
sortby [ I d c 1 asc , I n s t an t c 1 asc , L i c en c e c 2 asc ]
rdup

consume ;

# de l e t e temporary ob j e c t

d e l e t e OBAJNres012tmp1 ;

# Query 13 : Which v e h i c l e s t r ave l ed with in one o f the r e g i on s from
# QueryRegions1 during the pe r i od s from QueryPeriods1 ?

let OBAJNres013 =
dataSJcar feed {c}
QueryRegions1JNet feed

filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Tr ip c passes . . Reg ion r ]

projectextend [ L i c ence c , Id r , Reg ion r ; Trip : . Tr ip c at . Reg ion r ]
filter [ not ( isempty ( . Trip ) ) ]

QueryPeriods1 feed
filter [ not ( isempty ( . Period ) ) ] { p}

symmjoin [ . Trip present . . Pe r iod p ]
projectextend [ Id r , Per iod p ; L icence : . L i c ence c ,

Trip : . Trip atperiods . Pe r iod p ]
filter [ not ( isempty ( . Trip ) ) ]
project [ Id r , Period p , L icence ]
sortby [ I d r asc , Pe r iod p asc , L i c ence asc ]

consume ;

# Query 14 : Which v e h i c l e s t r ave l ed with in one o f the r e g i on s from
# QueryRegions1 at one o f the i n s t an t s from QueryInstant1?

let OBAJNres014 =
QueryRegions1JNet feed

filter [ not ( isempty ( . Region ) ) ]
projectextendstream [ Id , Region ; Box : units ( . Region ) ]
projectextend [ Id , Region ; BBox : netbox ( . Box ) ] { r}

QueryInstant1 feed { i }
product
loopsel [ fun ( t : TUPLE )
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dataSJcar BoxNet t imespace windowintersectsS [ box3d (attr ( t , BBox r ) ,
attr ( t , I n s t an t i ) ) ]

sort rdup dataSJcar gettuples
filter [ val ( . Trip atinstant attr ( t , I n s t an t i ) ) inside attr ( t , Reg ion r ) ]
projectextend [ L i c ence ; In s t an t : attr ( t , I n s t a n t i ) , I d r : attr ( t , I d r ) ] ]

sortby [ Id r , Instant , L icence ]
krdup [ Id r , Instant , L icence ]
project [ Id r , Instant , L icence ]

consume ;

# Query 15 : Which v e h i c l e s passed a po int from QueryPoints1 during a per iod
# from QueryPeriods1 ?

let OBAJNres015 =
QueryPoints1JNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 0 0 0 0 1 ) ] {p}

QueryPeriods1 feed filter [ not ( isempty ( . Period ) ) ] { t}
product
loopsel [ fun ( t : TUPLE )

dataSJcar BoxNet t imespace windowintersectsS [ box3d ( attr ( t , NBox p ) ,
attr ( t , Pe r i od t ) ) ]

sort rdup dataSJcar gettuples
filter [ . Trip passes attr ( t , Pos p ) ]
filter [ ( . Trip at attr ( t , Pos p ) ) present attr ( t , Pe r i od t ) ]
projectextend [ L i c ence ; Id pos : attr ( t , Id p ) , Times : attr ( t , Pe r i od t ) ] ]

project [ Id pos , Times , L icence ]
sortby [ Id pos asc , Times asc , L i c ence asc ]
krdup [ Id pos , Times , L icence ]

consume ;

# Query 16 : L i s t the p a i r s o f l i c e n s e s f o r v e h i c l e s the f i r s t from
# QueryLicences1 , the second from QueryLicences2 , where the
# corre spond ing v e h i c l e s are both pre sent wi th in a r e g i on from
# QueryRegions1 during a per iod from QueryPeriod1 , but do not meet
# each other the re and then .

let OBAJNres016 =
QueryLicences1 feed { l }

loopjoin [ d a taSJca r L i c en c e b t r e e dataSJcar exactmatch [ . L i c en c e l ] ] {c}
QueryPeriods1 feed

filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Tr ip c present . . Pe r iod p ]

projectextend [ Id p , Per iod p ; L icence : . L i c ence c ,
Trip : . Tr ip c atperiods . Pe r iod p ]

filter [ not ( isempty ( . Trip ) ) ]
QueryRegions1JNet feed

filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Trip passes . . Reg ion r ]

projectextend [ Licence , Id r , Region r , Id p ,
Per iod p ; Trip : . Trip at . Reg ion r ]

filter [ not ( isempty ( . Trip ) ) ] { a}
QueryLicences2 feed { l }

loopjoin [ d a taSJca r L i c en c e b t r e e dataSJcar exactmatch [ . L i c en c e l ] ] {c}
QueryPeriods1 feed

filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Tr ip c present . . Pe r iod p ]

projectextend [ Id p , Per iod p ; L icence : . L i c ence c ,
Trip : . Tr ip c atperiods . Pe r iod p ]

filter [ not ( isempty ( . Trip ) ) ]
QueryRegions1JNet feed

filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Trip passes . . Reg ion r ]

projectextend [ Licence , Id r , Region r , Id p ,
Per iod p ; Trip : . Trip at . Reg ion r ]

filter [ not ( isempty ( . Trip ) ) ] { b}
symmjoin [ ( ( ( . I d r a = . . I d r b ) and

( . I d p a = . . Id p b ) ) and
( . L i c en c e a # . . L icence b ) ) and
( not ( . Tr ip a intersects . . Trip b ) ) ]

project [ I d r a , Per iod p a , L icence a , L icence b ]
sortby [ I d r a , Per iod p a , L icence a , L icence b ]

consume ;

# Query 17 : Which po in t s from QueryPoints have been v i s i t e d by a maximum
# number o f d i f f e r e n t v e h i c l e s ?

let OBAJNres017tmp1 =
QueryPointsJNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 0 0 0 0 1 ) ]

loopjoin [ dataSJcar TrajBoxNet windowintersectsS [ . NBox ]
sort rdup dataSJcar gettuples ]

project [ Id , L icence ]
sortby [ Id , L icence ]
krdup [ Id , L icence ]
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groupby [ Id ; Hi t s : group feed count ]
consume ;

let OBAJNres017 =
OBAJNres017tmp1 feed

filter [ . H i t s = (OBAJNres017tmp1 feed max [ H i t s ] ) ]
project [ Id , Hi t s ]

consume ;

# de l e t e temporary ob j e c t

d e l e t e OBAJNres017tmp1 ;

# Store Query Run Times

let QRT JNET OBA = SEC2COMMANDS feed consume ;

# Uncomment next l i n e to save runtimes on hard d i sk
#save QRT JNET OBA to ’ JNetworkOBARunTimes.DAT’ ;

# f i n s i h ed c l o s e database

c l o s e database ;

The script in the file JNetwork TBA-Queries.SEC executes the 17 queries of the trip based approach of the
BerlinMOD Benchmark using the first network implementation.

# JNetwork qu e r i e s f o r the t r i p based approach o f the BerlinMOD Benchmark .
#
# The s c r i p t assumes that the re i s a database berl inmod with a jnetwork data
# model r ep r e s en ta t i on o f the BerlinMOD Benchmark data .
#
# This database can be generated by the s c r i p t ’ BerlinMOD DataGenerator . SEC ’ .
# The network data model r ep r e s en ta t i on and acc rod ing indexes can be generated
# with the s c r i p t ’ JNetwork CreateObjects .SEC’
#
# Start S c r i p t Opening the Database#

open database berl inmod ;

# Query 1 : What are the models o f the v e h i c l e s with l i c e n s e p l a t e numbers from
# QueryLicence ?

let TBAJNres001 =
QueryLicences feed { l }

loopjoin [ dataMcar Licence btree dataMcar exactmatch [ . L i c e n c e l ] ]
project [ Licence , Model ]

consume ;

# Query 2 : How many v e h i c l e s e x i t that are passenger c a r s ?

let TBAJNres002 =
dataMcar feed

filter [ . Type = ”passenger ” ]
count ;

# Query 3 : Where have the v e h i c l e s with l i c e n s e s from QueryLicence1 been at
# each in s t an t from QueryInstant1?

let TBAJNres003 =
QueryLicences1 feed { l }

loopsel [ dataMcar Licence btree dataMcar exactmatch [ . L i c en c e l ] { l l } ]
loopjoin [ dataMJtrip Moid btree dataMJtrip exactmatch [ . Mo id l l ] ]

QueryInstant1 feed { i }
symmjoin [ . Trip present . . I n s t a n t i ]

projectextend [ I n s t an t i , L i c e n c e l l ; Pos : val ( . Trip atinstant . I n s t a n t i ) ]
sortby [ I n s t an t i , L i c e n c e l l ]

consume ;

# Query 4 : Which l i c e n s e p l a t e numbers be long to v e h i c l e s that have passed the
# po in t s from QueryPoints ?

let TBAJNres004 =
QueryPointsJNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 0 0 0 0 1 ) ]

loopjoin [ dataMJtrip TrajBoxNet windowintersectsS [ . NBox ]
sort rdup dataMJtrip gettuples ]

project [ Moid , Id ]
loopsel [ fun ( t : TUPLE )

dataMcar Moid btree dataMcar exactmatch [ attr ( t , Moid ) ]
projectextend [ L i c ence ; Id : attr ( t , Id ) ] ]
sortby [ Id asc , L i c ence asc ]
krdup [ Id , L icence ]

consume ;

# Query 5 : What i s the minimum d i s t anc e between p lace s , where a v e h i c l e with a
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# l i c e n s e from QueryLicences1 and a ve h i c l e with L i c en se s from
# QueryLicence2 have been?

let TBAJNres005tmp1 =
QueryLicences1 feed project [ L i c ence ] {LL1}

loopsel [ fun ( t : TUPLE )
dataMcar Licence btree dataMcar exactmatch [ attr ( t , Licence LL1 ) ] {CAR}
loopsel [ dataMJtrip Moid btree dataMJtrip exactmatch [ . Moid CAR ] ]

projectextend [ ; Traj : trajectory ( . Trip ) ]
aggregateB [ Traj ; fun (L1 : jline , L2 : jline ) L1 union L2 ; [ const jline value ( ”JBNet” ( ) ) ] ]
feed namedtransformstream [ Traxj ]
extend [ L i c ence : attr ( t , Licence LL1 ) ] ]

projectextend [ L i c ence ; Trax : fromnetwork ( . Traxj ) ]
consume ;

let TBAJNres005 =
QueryLicences2 feed

project [ L i c ence ] {LL2}
loopsel [ fun ( s : TUPLE )

dataMcar Licence btree dataMcar exactmatch [ attr ( s , Licence LL2 ) ] {CAR}
loopsel [ dataMJtrip Moid btree dataMJtrip exactmatch [ . Moid CAR ] ]

projectextend [ ; Traj : trajectory ( . Trip ) ]
aggregateB [ Traj ; fun (L3 : jline , L4 : jline ) L3 union L4 ; [ const jline value ( ”JBNet” ( ) ) ] ]
feed namedtransformstream [ Traxj ]
extend [ L i c ence : attr ( s , Licence LL2 ) ] ]

projectextend [ L i c ence ; Trax : fromnetwork ( . Traxj ) ] { c2}
TBAJNres005tmp1 feed {c1}
product

projectextend [ L i c ence c1 , L i c en c e c 2 ; Di stance : round ( distance ( . Trax c1 ,
. Trax c2 ) , 3 ) ]

sortby [ L i c ence c1 , L i c en c e c 2 ]
consume ;

# de l e t e temporary ob j e c t

d e l e t e TBAJNres005tmp1 ;

# Query 6 : What are the p a i r s o f l i c e n s e p l a t e numbers o f ” t rucks ” , that have
# been as c l o s e as 10m or l e s s to each other ?

let TBAJNres006tmp1 =
dataMcar feed filter [ . Type = ” truck” ]
project [ Licence , Moid ] {c}
loopjoin [ dataMJtrip Moid btree dataMJtrip exactmatch [ . Moid c ] ]

projectextend [ ; L i c ence : . L i c ence c , Ptr ip : fromnetwork ( . Trip ) ]
extend [ BBox : bbox ( . Ptr ip ) ]
projectextend [ Licence , Ptr ip ; Box : rectangle3 ( ( minD ( . BBox , 1 ) − 5 . 0 ) ,

( maxD ( . BBox , 1 ) + 5 . 0 ) ,
( minD ( . BBox , 2 ) − 5 . 0 ) ,
( maxD ( . BBox , 2 ) + 5 . 0 ) ,
minD ( . BBox , 3 ) ,
maxD ( . BBox , 3 ) ) ]

consume ;

let TBAJNres006 =
TBAJNres006tmp1 feed {c1}
TBAJNres006tmp1 feed {c2}
symmjoin [ ( ( . Box c1 intersects . . Box c2 ) and

( . L i c en c e c 1 < . . L i c en c e c 2 ) ) and
( everNearerThan ( . Ptr ip c1 , . . Ptr ip c2 , 1 0 . 0 ) ]

project [ L i c ence c1 , L i c en c e c 2 ]
sortby [ L i c en c e c 1 asc , L i c en c e c 2 asc ]
krdup [ L i c ence c1 , L i c en c e c 2 ]

consume ;

# de l e t e i n t e rmed ia te r e s u l t

d e l e t e TBAJNres006tmp1 ;

# Query 7 : What are the l i c e n s e p l a t e numbers o f the ” passenger ” c a r s that
# have reached po in t s from QueryPoints f i r s t o f a l l ” passenger ” c a r s
# during the complete ob se rva t i on per iod ?

let TBAJNres007tmp1 =
QueryPointsJNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 0 0 0 0 1 ) ]

loopsel [ fun ( t : TUPLE ) dataMJtrip TrajBoxNet windowintersectsS [ attr ( t ,NBox ) ]
sort rdup dataMJtrip gettuples
loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid ]

filter [ . Type = ” passenger ” ]
project [ L i c ence ] {X} ]

projectextend [ Licence X ; TimeAtPos : inst ( initial ( . Trip at attr ( t , Pos ) ) ) ,
Id : attr ( t , Id ) ] ]

filter [ not ( isempty ( . TimeAtPos ) ) ]
sortby [ Id asc , TimeAtPos asc ]

consume ;

let TBAJNres007 =
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TBAJNres007tmp1 feed
groupby [ Id ; FirstTime : group feed min [ TimeAtPos ] ] { b}

TBAJNres007tmp1 feed {a}
symmjoin [ ( . . Id a = . Id b ) and ( . . TimeAtPos a <= . FirstTime b ) ]

project [ Id a , L icence X a ]
sortby [ Id a asc , L i c ence X a asc ]
krdup [ Id a , L icence X a ]

consume ;

# de l e t e i n t e rmed ia te r e s u l t

d e l e t e TBAJNres007tmp1 ;

# Query 8 : What are the o v e r a l l t r ave l ed d i s t an c e s o f the v e h i c l e s with
# l i c e n s e p l a t e numbers from QueryLicences1 during the pe r i od s from
# QueryPeriods1 ?

let TBAJNres008 =
QueryLicences1 feed { l }

loopjoin [ dataMcar Licence btree dataMcar exactmatch [ . L i c en c e l ] ]
project [ Licence , Moid ]
loopsel [ fun ( t : TUPLE ) dataMJtrip Moid btree dataMJtrip exactmatch [ attr ( t , Moid ) ]

projectextend [ Trip ; L icence : attr ( t , L i c ence ) ] ]
QueryPeriods1 feed
symmjoin [ . Trip present . . Per iod ]

projectextend [ Licence , Period , Id ; Di stance : length ( . Trip atperiods . Per iod ) ]
sortby [ Id asc , L i c ence asc , D i stance desc ]
groupby [ Id , Period , L icence ; Di st : round ( group feed sum [ D i stance ] , 3 ) ]
project [ Licence , Period , Di st ]
sortby [ Licence , Period , Di st ]

consume ;

# Query 9 : What i s the l onge s t d i s t an c e that was t r ave l ed by a v e h i c l e during
# each o f the pe r i od s from QueryPeriods ?

let TBAJNres009 =
dataMJtrip feed {c}
QueryPeriods feed

filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Tr ip c present . . Pe r iod p ]

projectextend [ Moid c , Period p , Id p ; Di stance : length ( . Tr ip c atperiods . Pe r iod p ) ]
sortby [ Id p asc , Pe r iod p asc , Moid c asc , D i stance desc ]
groupby [ Id p , Period p , Moid c ; Di st : group feed sum [ D i stance ] ]
groupby [ Id p , Per iod p ; Dista : round ( group feed max [ D i st ] , 3 ) ]
filter [ . Dista > 0 . 0 ]
project [ Per iod p , Dista ]
sortby [ Per iod p , Dista ]

consume ;

# Query 10 : When and where did the v e h i c l e s with l i c e n s e p l a t e numbers from
# QueryLicences1 meet other v e h i c l e s ( d i s t an c e < 3m) and what are
# the l a t t e r l i c e n s e s ?

let TBAJNres010 =
QueryLicences1 feed project [ L i c ence ] {V1}

loopsel [ fun ( t : TUPLE )
dataMcar Licence btree dataMcar exactmatch [ attr ( t , Licence V1 ) ]
project [ Moid ]
loopjoin [ dataMJtrip Moid btree dataMJtrip exactmatch [ . Moid ] remove [ Moid ] ] {V3}

extend [ T3bbx : bbox ( . Trip V3 ) ]
extend [ PtripA : fromnetwork ( . Trip V3 ) ]
loopjoin [ fun (u : TUPLE ) dataMJtrip SpatioTemp

windowintersectsS [ rectangle3 (minD ( attr (u , T3bbx) , 1 ) − 3 . 0 ,
maxD ( attr (u , T3bbx) , 1 ) + 3 . 0 ,
minD ( attr (u , T3bbx) , 2 ) − 3 . 0 ,
maxD ( attr (u , T3bbx) , 2 ) + 3 . 0 ,
minD ( attr (u , T3bbx) , 3 ) ,
maxD ( attr (u , T3bbx ) , 3 ) ) ]

sort rdup dataMJtrip gettuples
filter [ . Moid # a t t r (u , Moid V3 ) ]
projectextend [ Moid ; PtripB : fromnetwork ( . Trip ) ]
filter [ everNearerThan(attr (u , PtripA ) , . PtripB , 3 . 0 ) ]
projectextend [ Moid ; Times : deftime ( ( distance ( attr (u , PtripA ) ,

. PtripB )
< 3 . 0 ) at TRUE ) ]

filter [ not ( isempty ( . Times ) ) ]
loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid ]

project [ L i c ence ] ] ]
projectextend [ ; QueryLicence : attr ( t , Licence V1 ) ,

OtherLicence : . Licence ,
Pos : . Trip V3 atperiods . Times ]

filter [ not ( isempty ( . Pos ) ) ] ]
sortby [ QueryLicence asc , OtherLicence asc ]
groupby [ QueryLicence ,

OtherLicence ; Al lPos : group feed
aggregateB [ Pos ; fun (M1: mjpoint , M2: mjpoint )
M1 union M2; [ const mjpoint value ( ”JBNet” ( ) ) ] ] ]

project [ QueryLicence , OtherLicence , Al lPos ]
sortby [ QueryLicence , OtherLicence , Al lPos ]

consume ;
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# Query 11 : Which v e h i c l e s passed a po int from QueryPoints1 at one o f the
# in s t an t s from QueryInstant1?

let TBAJNres011 =
QueryInstant1 feed { i }
QueryPoints1JNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 00001 ) ]{ p}

product
loopsel [ fun ( t : TUPLE )

dataMJtrip BoxNet t imespace windowintersectsS [ box3d ( attr ( t , NBox p ) ,
attr ( t , I n s t a n t i ) ) ]

sort rdup dataMJtrip gettuples
projectextend [ Moid ; Id : attr ( t , Id p ) , In s t an t : attr ( t , I n s t a n t i ) ] ] { a}

loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid a ] ]
project [ Id a , Instant a , L icence ]
sortby [ Id a asc , I n s t an t a asc , L i c ence asc ]
krdup [ Id a , Instant a , L icence ]

consume ;

# Query 12 : Which v e h i c l e s met at a po int from QueryPoints1 at an in s t an t from
# QueryInstant1?

let TBAJNres012tmp1 =
QueryPoints1JNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 00001 ) ]{ p}

QueryInstant1 feed { i }
product

projectextend [ Id p , Pos p , I n s t a n t i ; Box : box3d ( . NBox p , . I n s t a n t i ) ]
loopsel [ fun ( t : TUPLE ) dataMJtrip BoxNet t imespace windowintersectsS [ attr ( t , Box ) ]

sort rdup dataMJtrip gettuples
projectextend [ Moid ; Id : attr ( t , Id p ) , In s t an t : attr ( t , I n s t a n t i ) ] ] { a}

loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid a ] ]
projectextend [ Moid , L icence ; Id : . Id a , In s t an t : . I n s t an t a ]

consume ;

let TBAJNres012 =
TBAJNres012tmp1 feed {A}
TBAJNres012tmp1 feed {B}
symmjoin [ ( . Id A = . . Id B ) and

( . Instant A = . . Instant B ) and
( . Moid A < . . Moid B ) ]

project [ Id A , Instant A , Licence A , Licence B ]
sortby [ Id A asc , In stant A asc , Licence B asc ]

consume ;

# de l e t e i n t e rmed ia te r e s u l t

d e l e t e TBAJNres012tmp1 ;

# Query 13 : Which v e h i c l e s t r ave l ed with in one o f the r e g i on s from
# QueryRegions1 during the pe r i od s from QueryPeriods1 ?

let TBAJNres013 =
dataMJtrip feed {c}
QueryRegions1JNet feed

filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Tr ip c passes . . Reg ion r ]

projectextend [ Moid c , I d r ; Trip : . Tr ip c at . Reg ion r ]
QueryPeriods1 feed filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Trip present . . Pe r iod p ]

projectextend [ Moid c , Id r , Per iod p ; TripA : . Trip atperiods . Pe r iod p ]
filter [ not ( isempty ( . TripA ) ) ]
loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid c ] ]

project [ Licence , Id r , Per iod p ]
sortby [ L i c ence asc , I d r asc , Pe r iod p asc ]
krdup [ Licence , Id r , Per iod p ]

consume ;

# Query 14 : Which v e h i c l e s t r ave l ed with in one o f the r e g i on s from
# QueryRegions1 at one o f the i n s t an t s from QueryInstant1?

let TBAJNres014 =
QueryRegions1JNet feed

filter [ not ( isempty ( . Region ) ) ]
projectextendstream [ Id , Region ; UReg : units ( . Region ) ]
extend [ Brect : netbox ( . UReg) ] { r}

QueryInstant1 feed { i }
product
loopsel [ fun ( t : TUPLE )

dataMJtrip BoxNet t imespace windowintersectsS [ box3d (attr ( t , Br e c t r ) ,
attr ( t , I n s t an t i ) ) ]

sort rdup dataMJtrip gettuples
filter [ ( val ( . Trip atinstant ( attr ( t , I n s t a n t i ) ) ) ) inside ( attr ( t , Reg ion r ) ) ]
projectextend [ Moid ; In s t an t : attr ( t , I n s t a n t i ) , Id : attr ( t , I d r ) ] ] { a}
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loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid a ] ]
projectextend [ L i c ence ; Id : . Id a , In s t an t : . I n s t an t a ]
sortby [ Id asc , I n s t an t asc , L i c ence asc ]
krdup [ Id , Instant , L icence ]

consume ;

# Query 15 : Which v e h i c l e s passed a po int from QueryPoints1 during a per iod
# from QueryPeriods1 ?

let TBAJNres015 =
QueryPoints1JNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1 ) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 0 0 0 0 1 ) ] {p}

QueryPeriods1 feed filter [ not ( isempty ( . Period ) ) ] { t}
product
loopsel [ fun ( t : TUPLE )

dataMJtrip BoxNet t imespace windowintersectsS [ box3d (attr ( t , NBox p ) ,
attr ( t , Pe r i od t ) ) ]

sort rdup dataMJtrip gettuples
filter [ ( . Trip atperiods (attr ( t , Pe r i od t ) ) ) passes attr ( t , Pos p ) ]
projectextend [ Moid ; Period : attr ( t , Pe r i od t ) , Id : attr ( t , Id p ) ] ] { a}

loopjoin [ dataMcar Moid btree dataMcar exactmatch [ . Moid a ] ]
projectextend [ L i c ence ; Id : . Id a , Period : . Per iod a ]
sortby [ Id asc , Per iod asc , L i c ence asc ]
krdup [ Id , Period , L icence ]
project [ Licence , Id , Period ]

consume ;

# Query 16 : L i s t the p a i r s o f l i c e n s e s f o r v e h i c l e s the f i r s t from
# QueryLicences1 , the second from QueryLicences2 , where the
# corre spond ing v e h i c l e s are both pre sent wi th in a Region from
# QueryRegions1 during a per iod from QueryPeriod1 , but do not meet
# each other the re and then .

let TBAJNres016 =
QueryLicences1 feed { l }

loopjoin [ dataMcar Licence btree dataMcar exactmatch [ . L i c e n c e l ] ] {a}
loopjoin [ dataMJtrip Moid btree dataMJtrip exactmatch [ . Moid a ] ]

QueryPeriods1 feed filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Trip present . . Pe r iod p ]

projectextend [ Id p , Per iod p ; L icence : . L i c ence a ,
Trip : . Trip atperiods . Pe r iod p ]

filter [ not ( isempty ( . Trip ) ) ]
QueryRegions1JNet feed filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Trip passes . . Reg ion r ]

projectextend [ Licence , Id p , Period p , I d r ; Trip : . Trip at . Reg ion r ]
filter [ not ( isempty ( . Trip ) ) ] { a}

QueryLicences2 feed { l }
loopjoin [ dataMcar Licence btree dataMcar exactmatch [ . L i c e n c e l ] ] { a}

loopjoin [ dataMJtrip Moid btree dataMJtrip exactmatch [ . Moid a ] ]
QueryPeriods1 feed filter [ not ( isempty ( . Period ) ) ] { p}
symmjoin [ . Trip present . . Pe r iod p ]

projectextend [ Id p , Per iod p ; L icence : . L i c ence a , Trip : . Trip atperiods . Pe r iod p ]
filter [ not ( isempty ( . Trip ) ) ]

QueryRegions1JNet feed filter [ not ( isempty ( . Region ) ) ] { r}
symmjoin [ . Trip passes . . Reg ion r ]

projectextend [ Licence , Id p , I d r ; Trip : . Trip at . Reg ion r ]
filter [ not ( isempty ( . Trip ) ) ] { b}

symmjoin [ ( . I d r a = . . I d r b ) and ( . I d p a = . . Id p b ) ]
filter [ . L i c en c e a # . Licence b ]
filter [ not ( . Tr ip a intersects . Trip b ) ]
project [ I d r a , Id p a , L icence a , L icence b ]
sortby [ I d r a asc , I d p a asc , L i c en c e a asc , L i c ence b asc ]
krdup [ I d r a , Id p a , L icence a , L icence b ]

consume ;

# Query 17 : Which po in t s from QueryPoints have been v i s i t e d by a maximum
# number o f d i f f e r e n t v e h i c l e s ?

let TBAJNres017tmp1 =
QueryPointsJNetAll feed

extend [ Prect : netbox ( . Pos ) ]
projectextend [ Id , Pos ; NBox : rectangle2 ( minD ( . Prect , 1 ) , maxD ( . Prect , 1) ,

minD ( . Prect , 2 ) − 0 .00001 ,
maxD ( . Prect , 2 ) + 0 . 0 0 0 0 1 ) ]

loopsel [ fun ( t : TUPLE ) dataMJtrip TrajBoxNet windowintersectsS [ attr ( t ,NBox ) ]
sort rdup dataMJtrip gettuples
projectextend [ Moid ; Id p : attr ( t , Id ) ] ]

sortby [ Id p asc , Moid asc ]
krdup [ Id p , Moid ]
groupby [ Id p ; Hi t s : group feed count ]

consume ;

let TBAJNres017 =
TBAJNres017tmp1 feed

filter [ . H i t s = (TBAJNres017tmp1 feed max [ H i t s ] ) ]
project [ Id p , Hi t s ]

consume ;
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# de l e t e temporary ob j e c t

d e l e t e TBAJNres017tmp1 ;

# save query runtimes

let QRT JNET TBA = SEC2COMMANDS feed consume ;

# Uncomment the next l i n e i f you want to save run time in format ion on d i sk
# save QRT JNET TBA to ’ JNetworkTBARunTimes.DAT’ ;

# Fin i sh Sc r i p t and Close Database

c l o s e database ;

5.2.3 Comparison of Query Run Times and Storage Space

Figure 5.1 shows a competition between the query run times of BerlinMOD Benchmark standard version and
both network implementations on a workstation with 2 GB main memory, with 2.4 GHz CPU and 1 TB hard
disk for different amounts of data (see Table 5.1). The single query run times are marked by different colors
query 1 is at the bottom and query 17 on the top of the stack. The queries with remarkable run times for
the bigger scalefactors are the queries 4 (fuchsia), 6 (yellow), 7 (black), 9 (grey), 10 (red), 13 (fuchsia), and 17
(orange). Table 5.2 shows the storage space needed by the different data representations for scalefactor 1.0.
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Figure 5.1: Query Run Times for Different Approaches and Scalefactors in Seconds
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Scalefactor Cars Days Scalefactor Cars Days Scalefactor Cars Days

0.005 141 1 0.2 894 12 2.0 2828 39

0.05 447 6 1.0 2000 28 3.0 3464 48

Table 5.1: Amount of Cars and Days for Different Scalefactors

Object Space Net JNet

network - 11.1 MiB 35.2 MiB

dataScar 6.9 GiB 7.7 GiB 3.5 GiB

dataMtrip 7.2 GiB 8.0 GiB 4.0 GiB

QueryPoints 16 KiB 20.0 KiB 56 KiB

QueryRegions 1.1 MiB 108 KiB 152 KiB

Data 14.1 GiB 15.7 GiB 7.5 GiB

dataScar Journey sptuni 3.4 GiB - -

dataScar Journey tmpuni 4.1 GiB - -

dataScar Journey spttmpuni 6.2 GiB - -

dataMtrip sptuni 3.4 GiB - -

dataMtrip tmpuni 4.1 GiB - -

dataMtrip spttmpuni 6.2 GiB - -

dataScar BoxNet timespace - 8.2 GiB 4.0 GiB

dataMtrip BoxNet timespace - 8.2 GiB 4.0 GiB

dataScar TrajBoxNet - 22.9 MiB 42.2 MiB

dataMtrip TrajBoxNet - 151.3 MiB 162.9 MiB

dataMtrip SpatioTemp - 36.2 MiB 36.3 MiB

Indexes 24.4 GiB 16.6 GiB 8.2 GiB

Total Storage Space 38.5 GiB 32.3 GiB 15.7 GiB

Table 5.2: Storage Space for Scalefactor 1.0

5.3 Open Street Map Data and Networks

For each network representation we have a script importing street networks provided by [7] in OSM-Format
using the operator fullosmimport of the Secondo algebra module OSMAlgebra. This import is defined in line
12 of both scripts. The operator gets the name of the file2 containing the Open Street Map data and a string
defining a common prefix for the six relations created by the import operation.

The six relations contain the information of nodes, node tags, ways, way tags, relations and relation tags
provided by the OSM-File. These relations are used by the scripts to create the corresponding network respec-
tively jnetwork objects. In both scripts the name of the new database can be defined by the user in line 6,
which must correspond to line 8 where the new created database is opened.

5.3.1 Network

NetworkFromFullOSMImport.SEC The name of the resulting network object can be defined by the user of the
script by editing the last let command in the script before the database is closed.

# The s c r i p t imports Openstreetmap data from osm−F i l e and c r e a t e s a network
# ob j e c t from th i s data source
#
# Create and open database

create database keDB;

open database keDB;

2If the file is not allocated in the secondo/bin directory the full qualified path is needed together with the file name.
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# Def ine source Th f i l e f o r import and network c r e a t i on

let SOURCEFILE = ’KL Enkenbach . osm ’ ;

# import osm data from f i l e

query fullosmimport (SOURCEFILE, ”Osm” ) ;

# The tag l aye r must not be se t in osm data i f the way i s on l aye r 0 .
# Because we dec ide based on the l aye r tag i f two ways i n t e r s e c t we extend
# the miss ing l aye r tag f o r a l l ways where no l aye r i s g iven with va lue 0 .

let WayIdsWithoutTags =
OsmWays feed

project [WayId ]
sortby [WayId ]

OsmWayTags feed
projectextend [ ; WayId : .WayIdInTag ]
sortby [WayId ]
rdup

mergediff
consume ;

let OsmWayTagsLayerExtended =
OsmWayTags feed

sortby [WayIdInTag ]
groupby [ WayIdInTag ; C: group feed

filter [ . WayTagKey = ” laye r ” ]
count ]

filter [ . C = 0 ]
projectextend [WayIdInTag ; WayTagKey : ’ l aye r ’ ,

WayTagValue : ’ 0 ’ ]
consume ;

let LayerTagForWayIdsWithoutTag =
WayIdsWithoutTags feed

projectextend [ ; WayIdInTag : .WayId ,
WayTagKey : ’ l aye r ’ ,
WayTagValue : ’ 0 ’ ]

consume ;

let OsmWayTagNew =
( ( OsmWayTags feed )

( OsmWayTagsLayerExtended feed )
concat )

( LayerTagForWayIdsWithoutTag feed )
concat

consume ;

# Connect Spat i a l In format ion f o r nodes and ways
# We d i s t i ng u i s h between d i f f e r e n t forms o f way curves , because the network
# knows only curves o f type s l i n e which may only have one s t a r t and end point ,
# and may not c r o s s themse l f . There fore not curve va lue s va lue s which do not
# f i t in t h i s system have to be s p l i t t e d in to d i s j o i n t s l i n e va lue s .

let SpatialPosOfNodes =
OsmNodes feed

projectextend [ NodeId ; NodePos : makepoint ( . Lon , . Lat ) ]
consume ;

let SpatialWayCurveSimple =
OsmWays feed
SpatialPosOfNodes feed
hashjoin [ NodeRef , NodeId , 99997 ]

project [WayId , NodeCounter , NodePos ]
sortby [WayId , NodeCounter ]
groupby [WayId ; WayCurve : group feed

projecttransformstream [ NodePos ]
collect sline [ TRUE ] ]

consume ;

let SpatialWayCurveComplex =
OsmWays feed
SpatialWayCurveSimple feed

filter [ not ( isdefined ( .WayCurve ) ) ] { s}
hashjoin [WayId , WayId s ]

project [WayId , NodeCounter , NodeRef ]
SpatialPosOfNodes feed
hashjoin [ NodeRef , NodeId , 99997 ]

project [WayId , NodeCounter , NodePos ]
sortby [WayId , NodeCounter ]
groupby [WayId ; WayCurve : group feed

projecttransformstream [ NodePos ]
collect line [ TRUE ] ,

StartPointCurve : group feed head [ 1 ] extract [ NodePos ] ]
projectextendstream [WayId , StartPointCurve ; WayC: .WayCurve longlines ]
addcounter [ PartNo , 1 ]
projectextend [WayId , PartNo , StartPointCurve ,

WayC; StartPoint : getstartpoint ( .WayC) ,
EndPoint : getendpoint ( .WayC) ]

sortby [WayId , PartNo ]
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e x t e nd l a s t [ PrevEndPoint : . . EndPoint : : [ const point value ( 0 . 0 0 . 0 ) ] ]
sortby [WayId , PartNo ]
projectextend [WayId ; WayCurve : ifthenelse ( . StartPointCurve = . StartPoint ,

.WayC,
ifthenelse ( . S tartPoint = . PrevEndPoint ,

.WayC,
set startsmaller ( .WayC,

not ( get startsmaller ( .WayC) ) ) ) ) ]
consume ;

let SpatialWayCurve =
( SpatialWayCurveSimple feed filter [ isdefined ( .WayCurve ) ] )
( SpatialWayCurveComplex feed )
concat

filter [ isdefined ( .WayCurve ) ]
consume ;

# Co l l e c t tag in format ion by i d e n t f i e r

let NestedNodeRel =
SpatialPosOfNodes feed
OsmNodeTags feed
hashjoin [ NodeId , NodeIdInTag ]

project [ NodeId , NodePos , NodeTagKey , NodeTagValue ]
sortby [ NodeId , NodePos , NodeTagKey , NodeTagValue ]
rdup
nest [ NodeId , NodePos ; NodeInfo ]

consume ;

let NestedWayRel =
SpatialWayCurve feed
OsmWayTagNew feed
hashjoin [WayId , WayIdInTag ]

project [WayId , WayCurve , WayTagKey , WayTagValue ]
filter [ not ( ( ( .WayTagKey = ”oneway” ) and

( ( .WayTagValue = ”no” ) or
( .WayTagValue = ” f a l s e ” ) or
( .WayTagValue = ”0” ) ) ) ) ]

sortby [WayId , WayCurve , WayTagKey , WayTagValue ]
rdup
nest [WayId , WayCurve ; WayInfo ]
projectextend [WayId , WayInfo ; WayC: .WayCurve ,

ChangeDirect ion : ifthenelse ( . WayInfo afeed
filter [ . WayTagKey = ”oneway” ]
filter [ ( . WayTagValue = ”−1” ) or

( .WayTagValue = ” r e v e r s e ” ) ]
count > 0 ,
TRUE , FALSE ) ]

projectextend [WayId , WayInfo ; WayCurve : ifthenelse ( . ChangeDirection ,
set startsmaller ( .WayC,

not ( get startsmaller ( .WayC) ) ) ,
.WayC) ]

consume ;

let NestedRe lat ionRel =
OsmRelations feed
OsmRelationTags feed
hashjoin [ RelId , RelIdInTag ]

project [ RelId , RefCounter , MemberRef , MemberType , MemberRole , RelTagKey , RelTagValue ]
sortby [ RelId , RefCounter , MemberRef , MemberType , MemberRole , RelTagKey , RelTagValue ]
rdup
nest [ RelId , RefCounter , MemberRef , MemberType , MemberRole ; Re f In fo ]
nest [ RelId ; Re l In fo ]

consume ;

# Bui ld roads de f i n ed by way r e l a t i o n o f osm
# s e l e c t highway data

let RoadParts =
NestedWayRel feed

filter [ . WayInfo afeed
filter [ . WayTagKey = ”highway” ]
filter [ ( . WayTagValue contains ” l i v i n g ” ) or

( . WayTagValue contains ”motorway” ) or
( . WayTagValue contains ”path” ) or
( . WayTagValue contains ”primary” ) or
( . WayTagValue contains ” r e s i d e n t i a l ” ) or
( . WayTagValue contains ” road” ) or
( . WayTagValue contains ” secondary ” ) or
( . WayTagValue contains ” s e r v i c e ” ) or
( . WayTagValue contains ” t e r t i a r y ” ) or
( . WayTagValue contains ” trunk” ) or
( . WayTagValue contains ” track ” ) or
( . WayTagValue contains ” un c l a s s i f i e d ” ) or
( . WayTagValue contains ” pede s t r i an ” ) ]

count > 0 ]
filter [ isdefined ( .WayCurve ) ]
filter [ not ( isempty ( .WayCurve ) ) ]

consume ;

# Roads may c on s i s t s o f more than one osm way . The osm ways o f very long roads
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# are connec tedof by a r e f tag which i s equa l f o r a l l ways be long ing to the same
# road .
# The roads c reated by t h i s may not c on s i s t o f s l i n e va lue s only such that we
# have to d i s t i n gu i s h between s imple and complex road curves when we generate
# the r e s u l t i n g road curves .

let RoadsByRefH1 =
RoadParts feed

filter [ not ( iscycle ( .WayCurve ) ) ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”oneway” ]
count = 0]

filter [ . WayInfo afeed
filter [ . WayTagKey = ” r e f ” ]

count > 0 ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”highway” ]
filter [ not ( .WayTagValue contains ” l i n k ” ) ]

count > 0 ]
unnest [ WayInfo ]

filter [ . WayTagKey = ” r e f ” ]
projectextendstream [WayId , WayCurve ; RefToken : tokenize ( ’ ’+.WayTagValue , ” ; / ” ) ]
projectextend [WayId , WayCurve ; Ref : trim ( toObject ( ’ ” ’+.RefToken +’” ’ , ”a” ) ) ]
sortby [ Ref , WayCurve ]

consume ;

let RoadsByRefSimpleH1 =
RoadsByRefH1 feed

sortby [ Ref , WayCurve ]
groupby [ Ref ; C: group feed count ]

consume ;

let RoadsByRefSimpleH2 =
RoadsByRefSimpleH1 feed

filter [ . C = 1 ] { r1}
RoadsByRefH1 feed { r2}
hashjoin [ Ref r1 , Re f r2 ]

projectextend [ ; Ref : . Ref r1 ,
RoadCurve : . WayCurve r2 ]

consume ;

let RoadsByRefSimpleH3 =
RoadsByRefSimpleH1 feed

filter [ . C > 1 ] { r1}
RoadsByRefH1 feed { r2}
hashjoin [ Ref r1 , Re f r2 ]

projectextend [ ; Ref : . Ref r2 ,
WayCurve : . WayCurve r2 ]

sortby [ Ref , WayCurve ]
groupby [ Ref ; RoadC : group feed projecttransformstream [WayCurve ]

collect sline [ TRUE ] ]
projectextend [ Ref ; RoadCurve : .RoadC ]

consume ;

let RoadsByRefSimple =
( RoadsByRefSimpleH2 feed )
( RoadsByRefSimpleH3 feed )
concat

sortby [ Ref , RoadCurve ]
consume ;

let RoadsByRefComplex =
RoadsByRefH1 feed

sortby [ Ref , WayCurve ]
RoadsByRefSimple feed

filter [ not ( isdefined ( . RoadCurve ) ) ] { s}
hashjoin [ Ref , Re f s ]

projectextend [ Ref , WayCurve ; StartPoint : getstartpoint ( .WayCurve ) ]
sortby [ Ref , WayCurve , StartPoint ]
groupby [ Ref ; RoadC : group feed projecttransformstream [WayCurve ]

collect line [ TRUE ] ,
StartPointCurve : group feed head [ 1 ] extract [ S tar tPoint ] ]

projectextendstream [ Ref , StartPointCurve ; RoadCur : .RoadC longlines ]
addcounter [ PartNo , 1 ]
projectextend [ Ref , PartNo , StartPointCurve ,

RoadCur ; StartPoint : getstartpoint ( . RoadCur ) ,
EndPoint : getendpoint ( . RoadCur ) ]

sortby [ Ref , PartNo ]
e x t e nd l a s t [ PrevEndPoint : . . EndPoint : : [ const point value ( 0 . 0 0 . 0 ) ] ]
sortby [ Ref , PartNo ]
projectextend [ Ref ; RoadCurve : ifthenelse ( . StartPointCurve = . StartPoint ,

. RoadCur ,
ifthenelse ( . S tartPoint = . PrevEndPoint ,

. RoadCur ,
set startsmaller ( . RoadCur ,

not ( get startsmaller ( . RoadCur ) ) ) ) ) ]
consume ;

let RoadsByRef =
( RoadsByRefSimple feed

filter [ isdefined ( . RoadCurve ) ] )
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( RoadsByRefComplex feed )
concat

filter [ isdefined ( . RoadCurve ) ]
consume ;

# Another form o f connec t ing way segments to long roads i s the name tag which
# i s equa l f o r a l l ways be long ing to the same road .
# Again we have to d i s t i ng u i s h between s imple and complex road curves gene ra t i ng
# the r e s u l t i n g road curves .

let RoadsByNameH1 =
RoadParts feed

filter [ not ( iscycle ( .WayCurve ) ) ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”oneway” ]
count = 0]

filter [ . WayInfo afeed
filter [ . WayTagKey = ”name” ]

count > 0 ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ” r e f ” ]
count = 0]

filter [ . WayInfo afeed
filter [ . WayTagKey = ”highway” ]
filter [ not ( .WayTagValue contains ” l i n k ” ) ]

count > 0 ]
unnest [ WayInfo ]

filter [ . WayTagKey = ”name” ]
projectextend [WayId , WayCurve ; Name: trim ( toObject ( ’ ” ’+.WayTagValue +’” ’ , ”a” ) ) ]
sortby [Name, WayCurve ]

consume ;

let RoadsByNameSimpleH1 =
RoadsByNameH1 feed

sortby [Name, WayCurve ]
groupby [Name; C: group feed count ]

consume ;

let RoadsByNameSimpleH2 =
RoadsByNameSimpleH1 feed

filter [ . C = 1 ] { r1}
RoadsByNameH1 feed { r2}
hashjoin [ Name r1 , Name r2 ]

projectextend [ ; Name: . Name r1 , RoadCurve : . WayCurve r2 ]
consume ;

let RoadsByNameSimpleH3 =
RoadsByNameSimpleH1 feed

filter [ . C > 1 ] { r1}
RoadsByNameH1 feed { r2}
hashjoin [ Name r1 , Name r2 ]

projectextend [ ; Name: . Name r1 , WayCurve : . WayCurve r2 ]
sortby [Name, WayCurve ]
groupby [Name; RoadC : group feed projecttransformstream [WayCurve ]

collect sline [ TRUE ] ]
projectextend [Name; RoadCurve : .RoadC ]

consume ;

let RoadsByNameSimple =
( RoadsByNameSimpleH2 feed )
( RoadsByNameSimpleH3 feed )
concat

sortby [Name, RoadCurve ]
consume ;

let RoadsByNameComplex =
RoadsByNameH1 feed
RoadsByNameSimple feed

filter [ not ( isdefined ( . RoadCurve ) ) ] { s}
hashjoin [Name, Name s ]

projectextend [Name, WayCurve ; StartPoint : getstartpoint ( .WayCurve ) ]
sortby [Name, WayCurve , StartPoint ]
groupby [Name; RoadC : group feed projecttransformstream [WayCurve ]

collect line [ TRUE ] ,
StartPointCurve : group feed head [ 1 ] extract [ S tar tPoint ] ]

projectextendstream [Name, StartPointCurve ; RoadCur : .RoadC longlines ]
addcounter [ PartNo , 1 ]
projectextend [Name, PartNo , StartPointCurve ,

RoadCur ; StartPoint : getstartpoint ( . RoadCur ) ,
EndPoint : getendpoint ( . RoadCur ) ]

sortby [Name, PartNo ]
e x t e nd l a s t [ PrevEndPoint : . . EndPoint : : [ const point value ( 0 . 0 0 . 0 ) ] ]
sortby [Name, PartNo ]
projectextend [Name; RoadCurve : ifthenelse ( . StartPointCurve = . StartPoint ,

. RoadCur ,
ifthenelse ( . S tartPoint = . PrevEndPoint ,

. RoadCur ,
set startsmaller ( . RoadCur ,

not ( get startsmaller ( . RoadCur ) ) ) ) ) ]
consume ;
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let RoadsByName =
( RoadsByNameSimple feed filter [ isdefined ( . RoadCurve ) ] )
( RoadsByNameComplex feed )
concat

filter [ isdefined ( . RoadCurve ) ]
consume ;

# road l i n k s connect b i gge r roads f o r example two highways are connected by
# se v e r a l l i n k s .

let RoadLinksH1 =
RoadParts feed

filter [ not ( iscycle ( .WayCurve ) ) ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”oneway” ]
count = 0]

filter [ . WayInfo afeed
filter [ . WayTagKey = ”highway” ]
filter [ . WayTagValue contains ” l i n k ” ]

count > 0 ]
unnest [ WayInfo ]

filter [ . WayTagKey = ”highway” ]
filter [ . WayTagValue contains ” l i n k ” ]
project [WayId , WayCurve ]
sortby [WayId , WayCurve ]

consume ;

let RoadLinksSimpleH1 =
RoadLinksH1 feed

sortby [WayId , WayCurve ]
groupby [WayId ; C: group feed count ]

consume ;

let RoadLinksSimpleH2 =
RoadLinksSimpleH1 feed

filter [ . C = 1 ] { r1}
RoadLinksH1 feed { r2}
hashjoin [ WayId r1 , WayId r2 ]

projectextend [ ; WayId : . WayId r1 , RoadCurve : . WayCurve r2 ]
consume ;

let RoadLinksSimpleH3 =
RoadLinksSimpleH1 feed

filter [ . C > 1 ] { r1}
RoadLinksH1 feed { r2}
hashjoin [ WayId r1 , WayId r2 ]

projectextend [ ; WayId : . WayId r1 , WayCurve : . WayCurve r2 ]
sortby [WayId , WayCurve ]
groupby [WayId ; RoadC : group feed projecttransformstream [WayCurve ]

collect sline [ TRUE ] ]
projectextend [WayId ; RoadCurve : .RoadC ]

consume ;

let RoadLinksSimple =
( RoadLinksSimpleH2 feed )
( RoadLinksSimpleH3 feed )
concat

sortby [WayId , RoadCurve ]
consume ;

let RoadLinksComplex =
RoadLinksH1 feed
RoadLinksSimple feed

filter [ not ( isdefined ( . RoadCurve ) ) ] { s}
hashjoin [WayId , WayId s ]

projectextend [WayId , WayCurve ; StartPoint : getstartpoint ( .WayCurve ) ]
sortby [WayId , WayCurve , StartPoint ]
groupby [WayId ; RoadC : group feed projecttransformstream [WayCurve ]

collect line [ TRUE ] ,
StartPointCurve : group feed head [ 1 ] extract [ S tar tPoint ] ]

projectextendstream [WayId , StartPointCurve ; RoadCur : .RoadC longlines ]
addcounter [ PartNo , 1 ]
projectextend [WayId , PartNo , StartPointCurve ,

RoadCur ; StartPoint : getstartpoint ( . RoadCur ) ,
EndPoint : getendpoint ( . RoadCur ) ]

sortby [WayId , PartNo ]
e x t e nd l a s t [ PrevEndPoint : . . EndPoint : : [ const point value ( 0 . 0 0 . 0 ) ] ]
sortby [WayId , PartNo ]
projectextend [WayId ; RoadCurve : ifthenelse ( . StartPointCurve = . StartPoint ,

. RoadCur ,
ifthenelse ( . S tartPoint = . PrevEndPoint ,

. RoadCur ,
set startsmaller ( . RoadCur ,

not ( get startsmaller ( . RoadCur ) ) ) ) ) ]
consume ;

let RoadLinks =
( RoadLinksSimple feed

filter [ isdefined ( . RoadCurve ) ] )
( RoadLinksComplex feed )
concat
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filter [ isdefined ( . RoadCurve ) ]
consume ;

# a l l ways not s e l e c t e d be f o r e bu i ld a l s o va l i d roads i f they are not marked
# to be oneways or roundabouts .

let RoadRestH1 =
RoadParts feed

filter [ not ( iscycle ( .WayCurve ) ) ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”oneway” ]
count = 0]

filter [ . WayInfo afeed
filter [ . WayTagKey contains ” r e f ” ]

count = 0]
filter [ . WayInfo afeed

filter [ . WayTagKey contains ”name” ]
count = 0]

filter [ . WayInfo afeed
filter [ . WayTagKey = ”highway” ]
filter [ . WayTagValue contains ” l i n k ” ]

count = 0]
unnest [ WayInfo ]

filter [ . WayTagKey = ”highway” ]
project [WayId , WayCurve ]
sortby [WayId , WayCurve ]

consume ;

let RoadRestSimpleH1 =
RoadRestH1 feed

sortby [WayId , WayCurve ]
groupby [WayId ; C: group feed count ]

consume ;

let RoadRestSimpleH2 =
RoadRestSimpleH1 feed

filter [ . C = 1 ] { r1}
RoadRestH1 feed { r2}
hashjoin [ WayId r1 , WayId r2 ]

projectextend [ ; WayId : . WayId r1 , RoadCurve : . WayCurve r2 ]
consume ;

let RoadRestSimpleH3 =
RoadRestSimpleH1 feed

filter [ . C > 1 ] { r1}
RoadRestH1 feed { r2}
hashjoin [ WayId r1 , WayId r2 ]

projectextend [ ; WayId : . WayId r1 , WayCurve : . WayCurve r2 ]
sortby [WayId , WayCurve ]
groupby [WayId ; RoadC : group feed projecttransformstream [WayCurve ]

collect sline [ TRUE ] ]
projectextend [WayId ; RoadCurve : .RoadC ]

consume ;

let RoadRestSimple =
( RoadRestSimpleH2 feed )
( RoadRestSimpleH3 feed )
concat

sortby [WayId , RoadCurve ]
consume ;

let RoadRestComplex =
RoadRestH1 feed
RoadRestSimple feed

filter [ not ( isdefined ( . RoadCurve ) ) ] { s}
hashjoin [WayId , WayId s ]

projectextend [WayId , WayCurve ; StartPoint : getstartpoint ( .WayCurve ) ]
sortby [WayId , WayCurve , StartPoint ]
groupby [WayId ; RoadC : group feed projecttransformstream [WayCurve ]

collect line [ TRUE ] ,
StartPointCurve : group feed head [ 1 ] extract [ S tar tPoint ] ]

projectextendstream [WayId , StartPointCurve ; RoadCur : .RoadC longlines ]
addcounter [ PartNo , 1 ]
projectextend [WayId , PartNo , StartPointCurve ,

RoadCur ; StartPoint : getstartpoint ( . RoadCur ) ,
EndPoint : getendpoint ( . RoadCur ) ]

sortby [WayId , PartNo ]
e x t e nd l a s t [ PrevEndPoint : . . EndPoint : : [ const point value ( 0 . 0 0 . 0 ) ] ]
sortby [WayId , PartNo ]
projectextend [WayId ; RoadCurve : ifthenelse ( . StartPointCurve = . StartPoint ,

. RoadCur ,
ifthenelse ( . S tartPoint = . PrevEndPoint ,

. RoadCur ,
set startsmaller ( . RoadCur ,

not ( get startsmaller ( . RoadCur ) ) ) ) ) ]
consume ;

let RoadRest =
( RoadRestSimple feed

filter [ isdefined ( . RoadCurve ) ] )
( RoadRestComplex feed )
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concat
filter [ isdefined ( . RoadCurve ) ]

consume ;

# one way s t r e e t s

let RoadsByOneway =
RoadParts feed

filter [ not ( iscycle ( .WayCurve ) ) ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”oneway” ]
count > 0 ]

projectextend [ ; Name: num2string ( .WayId) , Curve : .WayCurve ]
consume ;

# road c y c l e s

let RoadsByCycle =
RoadParts feed

filter [ iscycle ( .WayCurve ) ]
projectextend [ ; Name: num2string ( .WayId) , Curve : set startsmaller ( .WayCurve , TRUE ) ]

consume ;

# concat a l l forms o f roads to roads r e l a t i o n

let Roads =
( ( ( RoadsByRef feed

projectextend [ ; Name: . Ref , Curve : . RoadCurve ] )
( RoadsByName feed

projectextend [ ; Name: .Name, Curve : . RoadCurve ] )
concat )

( ( RoadLinks feed
projectextend [ ; Name: num2string ( .WayId) , Curve : . RoadCurve ] )

( RoadRest feed
projectextend [ ; Name: num2string ( .WayId) , Curve : . RoadCurve ] )

concat )
concat )

( (RoadsByCycle feed )
(RoadsByOneway feed )
concat )

concat
filter [ isdefined ( . Curve ) ]
extend [ CurvLength : size ( . Curve ) ]
sortby [ CurvLength desc ]
addcounter [ Rid , 1 ]

consume ;

# Bui ld Junct ions
# Junction are d e f i n ed to be c r o s s i n g s between way curves or death ends o f a
# road

let ExtendedRoadParts =
RoadParts feed

projectextend [WayId ; StartPoint : getstartpoint ( .WayCurve ) ,
EndPoint : getendpoint ( .WayCurve ) ]

consume ;

let CrossingPtsTmpH1 =
RoadParts feed

unnest [ WayInfo ]
filter [ . WayTagKey = ” laye r ” ]
projectextend [WayId , WayCurve ; Layer : .WayTagValue ]

consume ;

let CrossingPtsTmp =
CrossingPtsTmpH1 feed { s1}
CrossingPtsTmpH1 feed { s2}
itSpatialJoin [ WayCurve s1 , WayCurve s2 , 4 , 8 ]

filter [ ( . Layer s1 = . Layer s2 ) ]
filter [ . WayId s1 < . WayId s2 ]
filter [ . WayCurve s1 intersects . WayCurve s2 ]
projectextendstream [ WayId s1 ,

WayId s2 ; Pt : components ( crossings ( . WayCurve s1 ,
. WayCurve s2 ) ) ]

filter [ isdefined ( . Pt ) ]
projectextend [ Pt ; WayId1 : . WayId s1 , WayId2 : . WayId s2 ]

consume ;

let CrossingsAndRoadPartEndPoints =
( ( ExtendedRoadParts feed

projectextend [WayId ; Point : . S tartPoint ] )
( ExtendedRoadParts feed

projectextend [WayId ; Point : . EndPoint ] )
concat )

( ( CrossingPtsTmp feed
projectextend [ ; WayId : .WayId1 , Point : . Pt ] )

( CrossingPtsTmp feed
projectextend [ ; WayId : .WayId2 , Point : . Pt ] )

concat )
concat

sortby [WayId , Point ]
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krduph [WayId , Point ]
consume ;

let RoadEnds =
Roads feed

projectextend [ Rid ; StartPoint : getstartpoint ( . Curve ) ,
EndPoint : getendpoint ( . Curve ) ]

consume ;

let RoadEndPointsA =
( RoadEnds feed

projectextend [ Rid ; Point : . S tartPoint ] )
( RoadEnds feed

projectextend [ Rid ; Point : . EndPoint ] )
concat

sortby [ Rid , Point ]
rdup

consume ;

let AddJuncs =
RoadEndPointsA feed

project [ Point ]
sortby [ Point ]

CrossingsAndRoadPartEndPoints feed
project [ Point ]
sortby [ Point ]

mergediff
consume ;

let Junct ionIds =
( CrossingsAndRoadPartEndPoints feed project [ Point ] )
( AddJuncs feed )
concat

sortby [ Point ]
rdup
filter [ isdefined ( . Point ) ]
addcounter [ Jid , 1 ]

consume ;

# The junc t i on s have more than one road po s i t i o n i f they are not a death end
# of a road

let JunctionPosit ionsOnRoads1 =
CrossingsAndRoadPartEndPoints feed

filter [ isdefined ( . Point ) ] { p1}
Junct ionIds feed

filter [ isdefined ( . Point ) ] { j }
itSpatialJoin [ Point p1 , Point j , 4 , 8 ]

filter [ . Point p1 = . Po in t j ]
projectextend [ ; J id : . J i d j , Point : . Po int j , WayId : .WayId p1 ]

RoadParts feed {w}
hashjoin [WayId , WayId w ]

projectextend [ Jid , Point ,
WayId ; WayCurve : .WayCurve w ,

WayStartPoint : getstartpoint ( .WayCurve w) ,
WayEndPoint : getendpoint ( .WayCurve w ) ]

Roads feed { r1}
itSpatialJoin [ Point , Curve r1 , 4 , 8 ]

filter [ . Point inside . Curve r1 ]
filter [ . WayStartPoint inside . Curve r1 ]
filter [ . WayEndPoint inside . Curve r1 ]
filter [ . WayCurve inside . Curve r1 ]
projectextend [ Jid , Point ,

WayId ; Rid : . Rid r1 ,
RMeas : atpoint ( . Curve r1 , . Point ) ,
WayStartPosOnRoute : atpoint ( . Curve r1 , . WayStartPoint ) ,
WayEndPosOnRoute : atpoint ( . Curve r1 , .WayEndPoint ) ]

sortby [ Jid , Point , WayId , Rid , RMeas , WayStartPosOnRoute , WayEndPosOnRoute ]
rdup

consume ;

let JunctionPosit ionsOnRoads2 =
CrossingsAndRoadPartEndPoints feed

filter [ isdefined ( . Point ) ] { p1}
Junct ionIds feed

filter [ isdefined ( . Point ) ] { j }
itSpatialJoin [ Point p1 , Point j , 4 , 8 ]

filter [ . Point p1 = . Po in t j ]
projectextend [ ; J id : . J i d j , Point : . Po int j , WayId : .WayId p1 ]
sortby [ Jid , Point , WayId ]

JunctionPosit ionsOnRoads1 feed
project [ Jid , Point , WayId ]
sortby [ Jid , Point , WayId ]

mergediff
RoadParts feed {w}
hashjoin [WayId , WayId w ]

projectextend [ Jid , Point ,
WayId ; WayCurve : .WayCurve w ,

WayStartPoint : getstartpoint ( .WayCurve w) ,
WayEndPoint : getendpoint ( .WayCurve w ) ]

Roads feed { r1}
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itSpatialJoin [ Point , Curve r1 , 4 , 8 ]
filter [ . Point inside . Curve r1 ]
projectextend [ Jid , Point ,

WayId ; Rid : . Rid r1 ,
RMeas : atpoint ( . Curve r1 , . Point ) ,
WayStartPosOnRoute : atpoint ( . Curve r1 ,

getstartpoint ( intersection ( .WayCurve ,
. Curve r1 ) ) ) ,

WayEndPosOnRoute : atpoint ( . Curve r1 ,
getendpoint ( intersection ( .WayCurve ,

. Curve r1 ) ) ) ]
sortby [ Jid , Point , WayId , Rid , RMeas , WayStartPosOnRoute , WayEndPosOnRoute ]
rdup

consume ;

let JunctionPosit ionsOnRoads =
( JunctionPosit ionsOnRoads1 feed )
( JunctionPosit ionsOnRoads2 feed )
concat

consume ;

let JunctionsAtRoadEnds =
RoadEndPointsA feed

filter [ isdefined ( . Point ) ] { r}
Junct ionIds feed

filter [ isdefined ( . Point ) ] { j }
itSpatialJoin [ Po int r , Po int j , 4 , 8 ]

filter [ . Po in t r = . Po in t j ]
projectextend [ ; J id : . J i d j , Point : . Po int j , Rid : . Rid r ]

Roads feed { r1}
hashjoin [ Rid , Rid r1 ]

projectextend [ Jid , Point , Rid ; RMeas : atpoint ( . Curve r1 , . Point ) ]
sortby [ Jid , Point , Rid , RMeas ]
rdup

consume ;

let JunctionsAtRoadEndPairs =
JunctionsAtRoadEnds feed { j 1 }
JunctionsAtRoadEnds feed { j 2 }
hashjoin [ J i d j 1 , J i d j 2 ]

filter [ . Rid j1 <= . Rid j2 ]
filter [ . RMeas j1 # . RMeas j2 ]
projectextend [ ; J id : . J i d j 1 ,

R1id : . Rid j1 ,
R1Meas : . RMeas j1 ,
R2id : . Rid j2 ,
R2Meas : . RMeas j2 ,
NewCC: 65535 ]

sortby [ Jid , R1id , R1Meas , R2id , R2Meas , NewCC]
krduph [ Jid , R1id , R1Meas , R2id , R2Meas , NewCC]

consume ;

let JunctionRoadPairs =
JunctionPosit ionsOnRoads feed { j 1}
JunctionPosit ionsOnRoads feed { j 2}
hashjoin [ J i d j 1 , J i d j 2 ]

filter [ . Rid j1 <= . Rid j2 ]
projectextend [ ; J id : . J i d j 1 ,

Point : . Po int j1 ,
R1id : . Rid j1 ,
R1Meas : . RMeas j1 ,
R2id : . Rid j2 ,
R2Meas : . RMeas j2 ,
CC: 65535 ,
WayId1 : . WayId j1 ,
Way1StartPosOnRoute : . WayStartPosOnRoute j1 ,
Way1EndPosOnRoute : .WayEndPosOnRoute j1 ,
WayId2 : . WayId j2 ,
Way2StartPosOnRoute : . WayStartPosOnRoute j2 ,
Way2EndPosOnRoute : .WayEndPosOnRoute j2 ]

sortby [ Jid , R1id , R1Meas , R2id , R2Meas , CC, Way1StartPosOnRoute ,
Way1EndPosOnRoute , Way2StartPosOnRoute , Way2EndPosOnRoute ,
WayId1 , WayId2 ]

krduph [ Jid , R1id , R1Meas , R2id , R2Meas , CC, Way1StartPosOnRoute ,
Way1EndPosOnRoute , Way2StartPosOnRoute , Way2EndPosOnRoute ]

consume ;

# Compute c o r r e c t Connect iv i ty Codes f o r a l l j un c t i on s
#
# Se l e c t Road End Points

let RoadEndPoints =
JunctionRoadPairs feed

sortby [ Jid , R1id , R1Meas , R2id , R2Meas ]
groupby [ J id ; C: group feed count ]
filter [ . C = 1 ] { s}

JunctionRoadPairs feed
hashjoin [ J id s , J id ]

filter [ . R1id = . R2id ]
filter [ . WayId1 = .WayId2 ]
projectextend [ Jid , R1id , R1Meas , R2id ,
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R2Meas ; NewCC: ifthenelse ( . R1Meas = 0 , 16 , 2 ) ]
consume ;

# Se l e c t One Way Curves

let OneWayCurveIds =
NestedWayRel feed

filter [ . WayInfo afeed
filter [ . WayTagKey = ”oneway” ]
filter [ not ( ( . WayTagValue = ”no” ) or

( .WayTagValue = ” f a l s e ” ) or
( .WayTagValue = ”0” ) ) ]

count > 0 ]
project [WayId ]

consume ;

# motorways are a l s o oneways

let MotorWayCurveIds =
NestedWayRel feed

filter [ . WayInfo afeed
filter [ . WayTagKey = ”highway” ]
filter [ . WayTagValue = ”motorway” ]

count > 0 ]
project [WayId ]

consume ;

# roundabout are a l s o oneways

let RoundaboutWayCurveIds =
NestedWayRel feed

filter [ . WayInfo afeed
filter [ . WayTagKey = ” junc t i on” ]
filter [ . WayTagValue = ”roundabout” ]

count > 0 ]
project [WayId ]

consume ;

let OneWayIds =
( ( OneWayCurveIds feed )

( RoundaboutWayCurveIds feed )
concat )

( MotorWayCurveIds feed )
concat

sortby [WayId ]
rdup

consume ;

# se t c onne c t i v i t y code f o r j unc t i on s o f roundabouts

let Junct ionsOfCyc les =
JunctionRoadPairs feed

filter [ . R1id = . R2id ]
filter [ . WayId1 = .WayId2 ]

RoundaboutWayCurveIds feed
hashjoin [WayId1 , WayId ]

projectextend [ Jid , R1id , R1Meas , R2id , R2Meas ; NewCC: 1285 ]
consume ;

# se t c onne c t i v i t y codes f o r oneway junc t i on s

let JunctionsOfOnewaysSameRID1 =
JunctionRoadPairs feed

filter [ . R1id = . R2id ]
filter [ . WayId1 # .WayId2 ]

OneWayIds feed
hashjoin [WayId1 , WayId ]
projectextend [ Jid , R1id , R1Meas , R2id ,

R2Meas ; NewCC: ifthenelse ( . Way1StartPosOnRoute < .Way1EndPosOnRoute ,
ifthenelse ( . R1Meas = .Way1EndPosOnRoute ,

.CC binand 21845 ,
ifthenelse ( . R1Meas = .Way1StartPosOnRoute ,

.CC binand 3855 ,

.CC binand 1285)) ,
ifthenelse ( . R1Meas = .Way1EndPosOnRoute ,

.CC binand 43690 ,
ifthenelse ( . R1Meas = .Way1StartPosOnRoute ,

.CC binand 61680 ,

.CC binand 4 1 1 2 0 ) ) ) ]
consume ;

let JunctionsOfOnewaysSameRID2 =
JunctionRoadPairs feed

filter [ . R1id = . R2id ]
filter [ . WayId1 # .WayId2 ]

OneWayIds feed
hashjoin [WayId2 , WayId ]

projectextend [ Jid , R1id , R1Meas , R2id ,
R2Meas ; NewCC: ifthenelse ( . Way2StartPosOnRoute < .Way2EndPosOnRoute ,

ifthenelse ( . R2Meas = .Way2EndPosOnRoute ,
.CC binand 21845 ,



CHAPTER 5. SCRIPTS USING NETWORK IMPLEMENTATIONS 76

ifthenelse ( . R2Meas = .Way2StartPosOnRoute ,
.CC binand 3855 ,
.CC binand 1285)) ,

ifthenelse ( . R2Meas = .Way2EndPosOnRoute ,
.CC binand 43690 ,
ifthenelse ( . R2Meas = .Way2StartPosOnRoute ,

.CC binand 61680 ,

.CC binand 4 1 1 2 0 ) ) ) ]
consume ;

let JunctionsWithOneWayOnRouteA =
JunctionRoadPairs feed

filter [ . R1id < . R2id ]
filter [ . WayId1 # .WayId2 ]

OneWayIds feed
hashjoin [WayId1 , WayId ]

projectextend [ Jid , R1id , R1Meas , R2id ,
R2Meas ; NewCC: ifthenelse ( . Way1StartPosOnRoute <= .Way1EndPosOnRoute ,

ifthenelse ( . R1Meas = .Way1EndPosOnRoute ,
.CC binand 56797 ,
ifthenelse ( . R1Meas = .Way1StartPosOnRoute ,

.CC binand 65295 ,

.CC binand 56589)) ,
ifthenelse ( . R1Meas = .Way1EndPosOnRoute ,

.CC binand 61166 ,
ifthenelse ( . R1Meas = .Way1StartPosOnRoute ,

.CC binand 65520 ,

.CC binand 6 1 1 5 2 ) ) ) ]
consume ;

let JunctionsWithOneWayOnRouteB =
JunctionRoadPairs feed

filter [ . R1id < . R2id ]
filter [ . WayId1 # .WayId2 ]

OneWayIds feed
hashjoin [WayId2 , WayId ]

projectextend [ Jid , R1id , R1Meas , R2id ,
R2Meas ; NewCC: ifthenelse ( . Way2StartPosOnRoute <= .Way2EndPosOnRoute ,

ifthenelse ( . R2Meas = .Way2EndPosOnRoute ,
.CC binand 30583 ,
ifthenelse ( . R2Meas = .Way2StartPosOnRoute ,

.CC binand 4095 ,

.CC binand 1911)) ,
ifthenelse ( . R2Meas = .Way2EndPosOnRoute ,

.CC binand 48095 ,
ifthenelse ( . R2Meas = .Way2StartPosOnRoute ,

.CC binand 61695 ,

.CC binand 4 5 2 4 3 ) ) ) ]
consume ;

# Bui ld Re lat ion o f Re s t r i c t i o n s f o r way connect ions

let ViaNodesRel =
NestedRe lat ionRe l feed

filter [ . Re l In fo afeed
filter [ . Re f In fo afeed

filter [ . RelTagKey contains ” r e s t r i c t i o n ” ]
count > 0 ]

count > 0 ]
unnest [ Re l In fo ]

filter [ . MemberRole = ” via ” ]
filter [ . MemberType = ”node” ]

SpatialPosOfNodes feed
hashjoin [ MemberRef , NodeId ]

projectextend [ RelId , NodeId , NodePos ; RelTagVal : . Re f In fo afeed extract [ RelTagValue ] ]
consume ;

let FromWaysRel =
NestedRe lat ionRe l feed

filter [ . Re l In fo afeed
filter [ . Re f In fo afeed

filter [ . RelTagKey contains ” r e s t r i c t i o n ” ]
count > 0 ]

count > 0 ]
unnest [ Re l In fo ]

filter [ . MemberRole = ”from” ]
SpatialWayCurve feed
hashjoin [ MemberRef , WayId ]

project [ RelId , WayId , WayCurve ]
consume ;

let ToWaysRel =
NestedRe lat ionRe l feed

filter [ . Re l In fo afeed
filter [ . Re f In fo afeed

filter [ . RelTagKey contains ” r e s t r i c t i o n ” ]
count > 0 ]

count > 0 ]
unnest [ Re l In fo ]

filter [ . MemberRole = ” to ” ]
SpatialWayCurve feed
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hashjoin [ MemberRef , WayId ]
project [ RelId , WayId , WayCurve ]

consume ;

let NodeRestr i c t ions =
ViaNodesRel feed {v}
FromWaysRel feed { f }
hashjoin [ RelId v , Re l I d f ]

project [ RelId v , NodeId v , NodePos v , RelTagVal v , WayId f ]
ToWaysRel feed { t}
hashjoin [ RelId v , Re l Id t ]

project [ NodeId v , NodePos v , RelTagVal v , WayId f , WayId t ]
sortby [ NodeId v , NodePos v , WayId f , WayId t , RelTagVal v ]
rdup

consume ;

# Compute c onne c t i v i t y codes f o r known r e s t r i c t i o n s on s i n g l e j unc t i on s

let Restr ictedJunctionsAA1 =
JunctionRoadPairs feed
NodeRestr i c t ions feed
itSpatialJoin [ Point , NodePos v , 4 , 8 ]

filter [ . Point = . NodePos v ]
filter [ . WayId1 = . WayId f ]
filter [ . WayId2 = .WayId t ]
filter [ . R1id = . R2id ]
projectextend [ Jid , R1id , R1Meas , R2id ,

R2Meas ;NewCC: ifthenelse ( .WayId1 = .WayId2 ,
ifthenelse ( . Way1StartPosOnRoute < .Way1EndPosOnRoute ,

ifthenelse ( . Way1StartPosOnRoute = . R1Meas ,
.CC binand 65519 ,
.CC binand 65533) ,

ifthenelse ( . Way1StartPosOnRoute = . R1Meas ,
.CC binand 65533 ,
.CC binand 65519)) ,

ifthenelse ( . Way1StartPosOnRoute < .Way1EndPosOnRoute ,
ifthenelse ( . Way1StartPosOnRoute = .R1Meas ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65503 ,
.CC binand 65327) ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65534 ,
.CC binand 65521)) ,

ifthenelse ( . Way1StartPosOnRoute = .R1Meas ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65534 ,

.CC binand 65521) ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65503 ,

.CC binand 6 5 3 2 7 ) ) ) ) ]
sortby [ Jid , R1id , R1Meas , R2id , R2Meas , NewCC]

consume ;

let Restr ictedJunctionsAA2 =
JunctionRoadPairs feed
NodeRestr i c t ions feed
itSpatialJoin [ Point , NodePos v , 4 , 8 ]

filter [ . Point = . NodePos v ]
filter [ . WayId2 = . WayId f ]
filter [ . WayId1 = .WayId t ]
filter [ . R1id = . R2id ]
projectextend [ Jid , R1id , R1Meas , R2id ,

R2Meas ;NewCC: ifthenelse ( .WayId1 = .WayId2 ,
ifthenelse ( . Way2StartPosOnRoute < .Way2EndPosOnRoute ,

ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,
.CC binand 65519 ,
.CC binand 65533) ,

ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,
.CC binand 65533 ,
.CC binand 65519)) ,

ifthenelse ( . Way2StartPosOnRoute < .Way2EndPosOnRoute ,
ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65503 ,
.CC binand 65327) ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65534 ,
.CC binand 65521)) ,

ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65534 ,

.CC binand 65521) ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65503 ,

.CC binand 6 5 3 2 7 ) ) ) ) ]
sortby [ Jid , R1id , R1Meas , R2id , R2Meas , NewCC]

consume ;

let Restr ictedJunctionsAB =
JunctionRoadPairs feed
NodeRestr i c t ions feed
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itSpatialJoin [ Point , NodePos v , 4 , 8 ]
filter [ . Point = . NodePos v ]
filter [ . WayId1 = . WayId f ]
filter [ . WayId2 = .WayId t ]
filter [ . R1id < . R2id ]
projectextend [ Jid , R1id , R1Meas , R2id ,

R2Meas ; NewCC: ifthenelse ( .WayId1 = .WayId2 ,
0 ,
ifthenelse ( . Way1StartPosOnRoute < .Way1EndPosOnRoute ,

ifthenelse ( . Way2StartPosOnRoute < .Way1EndPosOnRoute ,
ifthenelse ( . Way1StartPosOnRoute = .R1Meas ,

ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65471 ,

.CC binand 65359) ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65407 ,

.CC binand 65423)) ,
ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65531 ,
.CC binand 65524) ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65527 ,
.CC binand 65528 ) ) ) ,

ifthenelse ( . Way1StartPosOnRoute = .R1Meas ,
ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65407 ,
.CC binand 65423) ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65471 ,
.CC binand 65359)) ,

ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65527 ,

.CC binand 65528) ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65531 ,

.CC binand 65524 ) ) ) ) ,
ifthenelse ( . Way2StartPosOnRoute < .Way1EndPosOnRoute ,

ifthenelse ( . Way1StartPosOnRoute = .R1Meas ,
ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65531 ,
.CC binand 655524) ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65527 ,
.CC binand 65528)) ,

ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65471 ,

.CC binand 65359) ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65407 ,

.CC binand 65423 ) ) ) ,
ifthenelse ( . Way1StartPosOnRoute = .R1Meas ,

ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65527 ,

.CC binand 65528) ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65531 ,

.CC binand 65524)) ,
ifthenelse ( . Way2StartPosOnRoute = . R2Meas ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65407 ,
.CC binand 65423) ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65471 ,
.CC binand 6 5 3 5 9 ) ) ) ) ) ) ]

sortby [ Jid , R1id , R1Meas , R2id , R2Meas , NewCC]
consume ;

let Restr ictedJunctionsBA =
JunctionRoadPairs feed
NodeRestr i c t ions feed
itSpatialJoin [ Point , NodePos v , 4 , 8 ]
filter [ . Point = . NodePos v ]
filter [ . WayId2 = . WayId f ]
filter [ . WayId1 = . WayId t ]
filter [ . R1id < . R2id ]
projectextend [ Jid , R1id , R1Meas , R2id ,

R2Meas ; NewCC: ifthenelse ( .WayId1 = .WayId2 ,
0 ,
ifthenelse ( . Way1StartPosOnRoute < .Way1EndPosOnRoute ,

ifthenelse ( . Way2StartPosOnRoute < .Way1EndPosOnRoute ,
ifthenelse ( . Way1StartPosOnRoute = .R1Meas ,

ifthenelse ( . Way2StartPosOnRoute = .R2Meas ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 61439 ,
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.CC binand 8191) ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65279 ,

.CC binand 61951)) ,
ifthenelse ( . Way2StartPosOnRoute = .R2Meas ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 57343 ,
.CC binand 12287) ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65023 ,
.CC binand 62207 ) ) ) ,

ifthenelse ( . Way1StartPosOnRoute = .R1Meas ,
ifthenelse ( . Way2StartPosOnRoute = .R2Meas ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65279 ,
.CC binand 61951) ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 61439 ,
.CC binand 8191)) ,

ifthenelse ( . Way2StartPosOnRoute = .R2Meas ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65023 ,

.CC binand 62207) ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 57343 ,

.CC binand 12287 ) ) ) ) ,
ifthenelse ( . Way2StartPosOnRoute < .Way1EndPosOnRoute ,

ifthenelse ( . Way1StartPosOnRoute = .R1Meas ,
ifthenelse ( . Way2StartPosOnRoute = .R2Meas ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 57343 ,
.CC binand 12287) ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65023 ,
.CC binand 62207)) ,

ifthenelse ( . Way2StartPosOnRoute = .R2Meas ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 61439 ,

.CC binand 8191) ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65279 ,

.CC binand 61951 ) ) ) ,
ifthenelse ( . Way1StartPosOnRoute = .R1Meas ,

ifthenelse ( . Way2StartPosOnRoute = .R2Meas ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 65023 ,

.CC binand 62207) ,
ifthenelse ( . RelTagVal v contains ”no” ,

.CC binand 57343 ,

.CC binand 12287)) ,
ifthenelse ( . Way2StartPosOnRoute = .R2Meas ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 65279 ,
.CC binand 61951) ,

ifthenelse ( . RelTagVal v contains ”no” ,
.CC binand 61439 ,
.CC binand 8 1 9 1 ) ) ) ) ) ) ]

sortby [ Jid , R1id , R1Meas , R2id , R2Meas , NewCC]
consume ;

# compute r e s u l t i n g c onne c t i v i t y code r e s p e c t i ng a l l r e s t r i c t i o n s computed be f o r e
# fo r each junc t i on . This means a junc t i on may be a oneway and a l s o have
# add i t i o n a l r e s t r i c t i o n s , such that the c onne c t i v i t y va lue s must be combined .

let Junct ions =
( ( ( ( JunctionsWithOneWayOnRouteA feed )

( JunctionsWithOneWayOnRouteB feed )
concat )

( ( Restr ictedJunctionsAA1 feed )
( Restr ictedJunctionsAA2 feed )
concat )

concat )
( ( ( Restr ictedJunctionsAB feed )

( Restr ictedJunctionsBA feed )
concat )

( ( JunctionsOfOnewaysSameRID1 feed )
( JunctionsOfOnewaysSameRID2 feed )
concat )

concat )
concat )

( ( ( RoadEndPoints feed )
( JunctionsAtRoadEndPairs feed )
concat )

( ( JunctionRoadPairs feed projectextend [ Jid , R1id , R1Meas , R2id , R2Meas ; NewCC: .CC] )
( Junct ionsOfCyc les feed )
concat )

concat )
concat

project [ Jid , R1id , R1Meas , R2id , R2Meas , NewCC]
sortby [ Jid , R1id , R1Meas , R2id , R2Meas ]
groupby [ Jid , R1id , R1Meas , R2id , R2Meas ; CC: group feed
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projecttransformstream [NewCC]
binands ]

consume ;

# Bui ld network with a l l p o s s i b l e r e s t r i c t i o n s

let KENetwork =
thenetwork (1 ,

0 .0001 ,
Roads feed

projectextend [ Rid , CurvLength ,
Curve ; Dual : FALSE ,
S tar tS : get startsmaller ( . Curve ) ]

consume ,
Junct ions feed

project [ R1id , R1Meas , R2id , R2Meas , CC]
consume ) ;

# Sc r i p t f i n i s h ed c l o s e database

c l o s e database ;

5.3.2 JNetwork

JNetworkFromFullOSMImport.SEC The name of the resulting jnetwork object can be defined in the query with
operation createjnet before the database is closed by changing the first parameter.

# The s c r i p t imports Openstreetmap data from osm−F i l e and c r e a t e s a jnetwork
# ob j e c t from th i s data source
#
# Create and open database

create database te stdb ;

open database te stdb ;

# Def ine source f i l e with complete path f o r import and jnetwork c r e a t i on

let SOURCEFILE = ’/home/ jandt/Downloads /OSM−Dateien/MapMatchTest . osm ’ ;

# import osm data form f i l e i n to s i s x r e l a t i o n s d e s c r i b ed in OSMAlgebra
# fo r operator fu l l osmimport

query fullosmimport (SOURCEFILE, ”Osm” ) ;

# Extend tag in format ion with d e f au l t va lue s f o r needed but not yet s e t tags
#
# Set Oneway−Tag f o r motorways and roundabouts because tag motorway and tag
# roundabout imply oneway d e f i n i t o n in osm

let AddMissingOnewayHighway =
OsmWayTags feed
sortby [WayIdInTag ]
groupby [ WayIdInTag ; Motorway : group feed

filter [ . WayTagKey = ”highway” ]
filter [ . WayTagValue = ”motorway” ]

count ,
Oneway : group feed

filter [ . WayTagKey = ”oneway” ]
count ]

filter [ . Motorway > 0 ]
filter [ . Oneway = 0 ]
projectextend [WayIdInTag ; WayTagKey : ’ oneway ’ , WayTagValue : ’ yes ’ ]

consume ;

let AddMissingOnewayRoundabout =
OsmWayTags feed
sortby [WayIdInTag ]
groupby [ WayIdInTag ; Roundabout : group feed

filter [ . WayTagKey = ” junc t i on ” ]
filter [ . WayTagValue = ”roundabout” ]

count ,
Oneway : group feed

filter [ . WayTagKey = ”oneway” ]
count ]

filter [ . Roundabout > 0 ]
filter [ . Oneway = 0 ]
projectextend [WayIdInTag ; WayTagKey : ’ oneway ’ , WayTagValue : ’ yes ’ ]

consume ;

let OsmWayTagNew2 =
(( AddMissingOnewayRoundabout feed )
(AddMissingOnewayHighway feed )
concat )

(OsmWayTags feed )
concat

consume ;
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# add laye r t ag where i t i s miss ing because we need i t f o r c r o s s i n g computation

let WayIdsWithoutTags =
OsmWays feed
project [WayId ]
sortby [WayId ]
OsmWayTags feed
projectextend [ ; WayId : .WayIdInTag ]
sortby [WayId ]
rdup
mergediff

consume ;

let OsmWayTagsLayerExtended =
OsmWayTags feed
sortby [ WayIdInTag ]
groupby [ WayIdInTag ; C: group feed

filter [ . WayTagKey = ” laye r ” ]
count ]

filter [ .C = 0 ]
projectextend [ WayIdInTag ; WayTagKey : ’ l aye r ’ ,

WayTagValue : ’ 0 ’ ]
consume ;

let LayerTagForWayIdsWithoutTag =
WayIdsWithoutTags feed
projectextend [ ; WayIdInTag : .WayId ,

WayTagKey : ’ l aye r ’ ,
WayTagValue : ’ 0 ’ ]

consume ;

let OsmWayTagNew1 =
((OsmWayTagNew2 feed )
(OsmWayTagsLayerExtended feed )
concat )
( LayerTagForWayIdsWithoutTag feed )
concat

consume ;

# vmax speed i s needed f o r jnetwork c r e a t i on to support f a s t e s t path computation
# l a t e r on

let OsmWayTagsVMaxExtended =
OsmWayTags feed
sortby [ WayIdInTag ]
groupby [ WayIdInTag ; C: group feed

filter [ . WayTagKey = ”maxspeed” ]
count ]

filter [ .C = 0 ]
projectextend [ WayIdInTag ; WayTagKey : ’maxspeed ’ ,

WayTagValue : ’ 0 . 0 ’ ]
consume ;

let VMaxForWayIdsWithoutTag =
WayIdsWithoutTags feed
projectextend [ ; WayIdInTag : .WayId ,

WayTagKey : ’maxspeed ’ ,
WayTagValue : ’ 0 . 0 ’ ]

consume ;

let OsmWayTagNew =
((OsmWayTagNew1 feed )
(OsmWayTagsVMaxExtended feed )
concat )
(VMaxForWayIdsWithoutTag feed )
concat

consume ;

# Connect Spat i a l In format ion from nodes and ways
# We have to d i s t i n gu i s h between s imple and complex curves because the
# de f i n ed way curves may have more than two endpoints or c r o s s themse l f , what
# i s not a l lowed f o r jnetwork s l i n e va lue s .

let SpatialPosOfNodes =
OsmNodes feed
projectextend [ NodeId ; NodePos : makepoint ( . Lon , . Lat ) ]

consume ;

let SpatialWayCurveSimple =
OsmWays feed
SpatialPosOfNodes feed
hashjoin [ NodeRef , NodeId ]
filter [ . NodeRef = . NodeId ]
project [WayId , NodeCounter , NodePos ]
sortby [WayId , NodeCounter ]
groupby [WayId ; WayCurve : group feed projecttransformstream [ NodePos ] collect sline [ TRUE ] ]

consume ;

let SpatialWayCurveComplex =
OsmWays feed
SpatialWayCurveSimple feed
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filter [ not ( isdefined ( .WayCurve ) ) ] { s}
hashjoin [WayId , WayId s ]
filter [ . WayId = .WayId s ]
project [WayId , NodeCounter , NodeRef ]
SpatialPosOfNodes feed
hashjoin [ NodeRef , NodeId ]
filter [ . NodeRef = . NodeId ]
project [WayId , NodeCounter , NodePos ]
sortby [WayId , NodeCounter ]
groupby [WayId ; WayCurve : group feed projecttransformstream [ NodePos ] collect line [ TRUE ] ,

StartPointCurve : group feed head [ 1 ] extract [ NodePos ] ]
projectextendstream [WayId , StartPointCurve ; WayC: .WayCurve longlines ]
addcounter [ PartNo , 1 ]
projectextend [WayId , PartNo , StartPointCurve ,

WayC; StartPoint : getstartpoint ( .WayC) ,
EndPoint : getendpoint ( .WayC) ]

sortby [WayId , PartNo ]
e x t e nd l a s t [ PrevEndPoint : . . EndPoint : : [ const point value ( 0 . 0 0 . 0 ) ] ]
sortby [WayId , PartNo ]
projectextend [WayId ; WayCurve : ifthenelse ( . StartPointCurve = . StartPoint , .WayC,

ifthenelse ( . S tartPoint = . PrevEndPoint , .WayC,
set startsmaller ( .WayC, not ( get startsmaller ( .WayC) ) ) ) ) ]

consume ;

let SpatialWayCurve =
( SpatialWayCurveSimple feed filter [ isdefined ( .WayCurve ) ] )
( SpatialWayCurveComplex feed )
concat
filter [ isdefined ( .WayCurve ) ]

consume ;

# Co l l e c t tag in format ion by i d e n t f i e r

let NestedNodeRel =
SpatialPosOfNodes feed
OsmNodeTags feed
hashjoin [ NodeId , NodeIdInTag ]
filter [ . NodeId = . NodeIdInTag ]
project [ NodeId , NodePos , NodeTagKey , NodeTagValue ]
sortby [ NodeId , NodePos , NodeTagKey , NodeTagValue ]
rdup
nest [ NodeId , NodePos ; NodeInfo ]

consume ;

let NestedWayRel =
SpatialWayCurve feed
OsmWayTagNew feed
hashjoin [WayId , WayIdInTag ]
filter [ . WayId = .WayIdInTag ]
project [WayId , WayCurve , WayTagKey , WayTagValue ]
filter [ not ( ( ( .WayTagKey = ”oneway” ) and ( ( .WayTagValue = ”no” ) or

( .WayTagValue = ” f a l s e ” ) or
( .WayTagValue = ”0” ) ) ) ) ]

sortby [WayId , WayCurve , WayTagKey , WayTagValue ]
rdup
nest [WayId , WayCurve ; WayInfo ]
projectextend [WayId , WayInfo ; WayC: .WayCurve ,

ChangeDirect ion : ifthenelse ( . WayInfo afeed filter [ . WayTagKey = ”oneway” ]
filter [ ( . WayTagValue = ”−1” ) or

( .WayTagValue = ” r e v e r s e ” ) ]
count > 0 ,

TRUE , FALSE ) ]
projectextend [WayId , WayInfo ; WayCurve : ifthenelse ( . ChangeDirect ion ,

set startsmaller ( .WayC, not ( get startsmaller ( .WayC) ) ) ,
.WayC) ]

consume ;

let NestedRe lat ionRel =
OsmRelations feed
OsmRelationTags feed
hashjoin [ RelId , RelIdInTag ]
filter [ . RelId = . RelIdInTag ]
project [ RelId , RefCounter , MemberRef , MemberType , MemberRole , RelTagKey , RelTagValue ]
sortby [ RelId , RefCounter , MemberRef , MemberType , MemberRole , RelTagKey , RelTagValue ]
rdup
nest [ RelId , RefCounter , MemberRef , MemberType , MemberRole ; Re f In fo ]
nest [ RelId ; Re l In fo ]

consume ;

# Se l e c t i n t e r e s t i n g WayCurves f o r s t r e e t network

let RoadParts =
NestedWayRel feed
filter [ . WayInfo afeed

filter [ . WayTagKey = ”highway” ]
filter [ ( . WayTagValue contains ” l i v i n g ” ) or

( .WayTagValue contains ”motorway” ) or
( .WayTagValue contains ”path” ) or
( .WayTagValue contains ”primary” ) or
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( .WayTagValue contains ” r e s i d e n t i a l ” ) or
( .WayTagValue contains ” road ” ) or
( .WayTagValue contains ” secondary ” ) or
( .WayTagValue contains ” s e r v i c e ” ) or
( .WayTagValue contains ” t e r t i a r y ” ) or
( .WayTagValue contains ” trunk” ) or
( .WayTagValue contains ” track ” ) or
( .WayTagValue contains ” un c l a s s i f i e d ” ) or
( .WayTagValue contains ” pede s t r i an ” ) ]

count > 0 ]
filter [ isdefined ( .WayCurve ) ]
filter [ not ( isempty ( .WayCurve ) ) ]

consume ;

# Bui ld Junct ions

let ExtendedRoadParts =
RoadParts feed
unnest [ WayInfo ]
filter [ . WayTagKey = ” laye r ” ]
projectextend [WayId ; StartPoint : getstartpoint ( .WayCurve) ,

EndPoint : getendpoint ( .WayCurve ) ]
consume ;

let WayEndPoints =
( ExtendedRoadParts feed projectextend [WayId ; Point : . S tartPoint ] )
( ExtendedRoadParts feed projectextend [WayId ; Point : . EndPoint ] )
concat

consume ;

let CrossingPtsTmpH1 =
RoadParts feed
unnest [ WayInfo ]
filter [ . WayTagKey = ” laye r ” ]
projectextend [WayId , WayCurve ; Layer : .WayTagValue ]

consume ;

let CrossingPtsTmp =
CrossingPtsTmpH1 feed { s1}
CrossingPtsTmpH1 feed { s2}
itSpatialJoin [ WayCurve s1 , WayCurve s2 , 4 , 8 ]
filter [ ( . Layer s1 = . Layer s2 ) ]
filter [ . WayId s1 < . WayId s2 ]
filter [ . WayCurve s1 intersects . WayCurve s2 ]
projectextendstream [ WayId s1 ,

WayId s2 ; Pt : components ( crossings ( . WayCurve s1 , . WayCurve s2 ) ) ]
filter [ isdefined ( . Pt ) ]
projectextend [ Pt ; WayId1 : . WayId s1 ,
WayId2 : . WayId s2 ]

consume ;

let Cross ingPts =
(CrossingPtsTmp feed projectextend [ ; WayId : .WayId1 , Point : . Pt ] )
( CrossingPtsTmp feed projectextend [ ; WayId : .WayId2 , Point : . Pt ] )
concat
sortby [WayId , Point ]
rdup

consume ;

let CrossingsAndRoadPartEndPoints =
(WayEndPoints feed )
( Cross ingPts feed )
concat
sortby [WayId , Point ]
krduph [WayId , Point ]

consume ;

let DeadEndCrossings =
CrossingsAndRoadPartEndPoints feed
sortby [WayId , Point ]
rdup
Cross ingPts feed
sortby [WayId , Point ]
rdup
mergediff
projectextend [ ; Pt : . Point , WayId1 : .WayId , WayId2 : .WayId ]

consume ;

let Al lCro s s i ng s =
(CrossingPtsTmp feed )
( DeadEndCrossings feed )
concat
sortby [ Pt , WayId1 , WayId2 ]
rdup

consume ;

let Junct ionIds =
Al lCro s s i ng s feed project [ Pt ]
sortby [ Pt ]
rdup



CHAPTER 5. SCRIPTS USING NETWORK IMPLEMENTATIONS 84

filter [ isdefined ( . Pt ) ]
addcounter [ Jid , 1 ]
projectextend [ J id ; Point : . Pt ]

consume ;

# Sp l i t osm ways in to network s e c t i o n s at j unc t i on po in t s

let RoadPartSectionsTmp1 =
RoadParts feed
Junct ionIds feed
itSpatialJoin [WayCurve , Point , 4 , 8 ]
filter [ . Point inside .WayCurve ]
project [WayId , WayCurve , Point ]
sortby [WayId , WayCurve , Point ]
groupby [WayId , WayCurve ; S p l i t p o i n t s : group feed projecttransformstream [ Point ] collect points [ TRUE ] ]
projectextendstream [WayId ; SectCurve : splitslineatpoints ( .WayCurve , . S p l i t p o i n t s ) ]
extend [ S tar tPoint : getstartpoint ( . SectCurve ) ,

EndPoint : getendpoint ( . SectCurve ) ,
Lenth : size ( . SectCurve ) ]

RoadParts feed { r1}
hashjoin [WayId , WayId r1 ]
filter [ . WayId = .WayId r1 ]
projectextend [WayId , SectCurve , StartPoint , EndPoint ,

Lenth ; WayCurve : . WayCurve r1 ,
Oneway : ifthenelse ( . WayInfo r1 afeed

filter [ . WayTagKey r1 = ”oneway” ]
count > 0 , TRUE , FALSE ) ,

RoadType : . WayInfo r1 afeed filter [ . WayTagKey r1 = ”highway” ] extract [ WayTagValue r1 ] ,
Speed : s t r 2 r e a l ( . WayInfo r1 afeed filter [ . WayTagKey r1 = ”maxspeed” ] extract [ WayTagValue r1 ] ) ]

extend [VMax: ifthenelse ( . Speed > 0 . 0 , . Speed ,
ifthenelse ( . RoadType contains ” l i v i n g ” , 10 . 0 ,
ifthenelse ( . RoadType contains ”motorway” , 200 . 0 ,
ifthenelse ( . RoadType contains ”path” , 5 . 0 ,
ifthenelse ( . RoadType contains ”primary” , 100 . 0 ,
ifthenelse ( . RoadType contains ” r e s i d e n t i a l ” , 30 . 0 ,
ifthenelse ( . RoadType contains ” road” , 50 . 0 ,
ifthenelse ( . RoadType contains ” secondary ” , 70 . 0 ,
ifthenelse ( . RoadType contains ” s e r v i c e ” , 30 . 0 ,
ifthenelse ( . RoadType contains ” t e r t i a r y ” , 50 . 0 ,
ifthenelse ( . RoadType contains ” trunk” , 130 . 0 ,
ifthenelse ( . RoadType contains ” track ” , 10 . 0 ,
ifthenelse ( . RoadType contains ” u n c l a s s i f i e d ” , 50 . 0 ,
ifthenelse ( . RoadType contains ” pede s t r i an ” , 5 . 0 , 3 0 . 0 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ,

S ide : ifthenelse ( . Oneway , [ const jdirection value (Up ) ] , [ const jdirection value (Both ) ] ) ]
Junct ionIds feed { j 1 }
itSpatialJoin [ S tar tPoint , Po int j1 , 4 , 8 ]
filter [ . S tar tPoint = . Po in t j 1 ]
projectextend [WayId , SectCurve , StartPoint , EndPoint , Lenth , Side , VMax,

WayCurve ; S ta r tJ i d : . J i d j 1 ]
Junct ionIds feed { j 2 }
itSpatialJoin [ EndPoint , Po int j2 , 4 , 8 ]
filter [ . EndPoint = . Po in t j 2 ]
projectextend [WayId , SectCurve , StartPoint , EndPoint , WayCurve , Lenth , Side ,

VMax, S ta r tJ i d ; EndJid : . J i d j 2 ]
addcounter [ Sid , 1 ]

consume ;

# junc t i on s

let JunctionsAndWayCrossings =
Al lCro s s i ng s feed filter [ isdefined ( . Pt ) ]
Junct ionIds feed
itSpatialJoin [ Pt , Point , 4 , 8 ]
filter [ . Pt = . Point ]
project [WayId1 , WayId2 , Point , Jid ]
RoadPartSectionsTmp1 feed { r1}
hashjoin [WayId1 , WayId r1 ]
filter [ . WayId1 = . WayId r1 ]
filter [ ( . J id = . S t a r tJ i d r1 ) or ( . J id = . EndJid r1 ) ]
projectextend [WayId1 , WayId2 , Point , Jid ; Sid1 : . S id r1 ,

S1SectCurve : . SectCurve r1 ,
S1StartPoint : . S tartPoint r1 ,
S1EndPoint : . EndPoint r1 ,
S1StartJ id : . S ta r tJ i d r1 ,
S1EndJid : . EndJid r1 ,
S1Lenth : . Lenth r1 ,
S1Side : . S ide r1 ,
S1JuncAtStart : ifthenelse ( . S ta r t J i d r 1 = . Jid , TRUE , FALSE ) ]

RoadPartSectionsTmp1 feed { r2}
hashjoin [WayId2 , WayId r2 ]
filter [ . WayId2 = . WayId r2 ]
filter [ ( . J id = . S t a r tJ i d r2 ) or ( . J id = . EndJid r2 ) ]
projectextend [WayId1 , WayId2 , Point , Jid , Sid1 , S1SectCurve ,

S1StartPoint , S1EndPoint , S1StartJ id , S1EndJid , S1Lenth ,
S1JuncAtStart , S1Side ; Sid2 : . S id r2 ,
S2SectCurve : . SectCurve r2 ,
S2StartPoint : . S tartPoint r2 ,
S2EndPoint : . EndPoint r2 ,
S2StartJ id : . S ta r tJ i d r2 ,
S2EndJid : . EndJid r2 ,
S2Lenth : . Lenth r2 ,
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S2Side : . S ide r2 ,
S2JuncAtStart : ifthenelse ( . S ta r t J i d r 2 = . Jid , TRUE , FALSE ) ]

consume ;

# bu i ld roads
#
# by r e f

let RoadsByRefH1 =
RoadParts feed
filter [ not ( iscycle ( .WayCurve ) ) ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”oneway” ]
count = 0]

filter [ . WayInfo afeed
filter [ . WayTagKey = ” r e f ” ]
count > 0 ]

filter [ . WayInfo afeed
filter [ . WayTagKey = ”highway” ]
filter [ not ( . WayTagValue contains ” l i n k ” ) ]
count > 0 ]

unnest [ WayInfo ]
filter [ . WayTagKey = ” r e f ” ]
projectextendstream [WayId , WayCurve ; RefToken : tokenize ( ’ ’+.WayTagValue , ” ; / ” ) ]
projectextend [WayId , WayCurve ; Ref : trim ( toObject ( ’ ” ’+.RefToken +’” ’ , ”a” ) ) ]
sortby [ Ref , WayCurve ]

consume ;

let RoadsByRefSimpleH1 =
RoadsByRefH1 feed
sortby [ Ref , WayCurve ]
groupby [ Ref ; C: group feed count ]

consume ;

let RoadsByRefSimpleH2 =
RoadsByRefSimpleH1 feed
filter [ .C = 1 ] { r1}
RoadsByRefH1 feed { r2}
hashjoin [ Ref r1 , Re f r2 ]
filter [ . Re f r1 = . Re f r2 ]
projectextend [ ; Ref : . Ref r1 ,

RoadCurve : . WayCurve r2 ]
consume ;

let RoadsByRefSimpleH3 =
RoadsByRefSimpleH1 feed
filter [ .C > 1 ] { r1}
RoadsByRefH1 feed { r2}
hashjoin [ Ref r1 , Re f r2 ]
filter [ . Re f r1 = . Re f r2 ]
projectextend [ ; Ref : . Ref r2 ,

WayCurve : . WayCurve r2 ,
SegStart : getstartpoint ( . WayCurve r2 ) ]

sortby [ Ref , SegStart , WayCurve ]
groupby [ Ref ; RoadC : group feed projecttransformstream [WayCurve ] collect sline [ TRUE ] ,

StartPointCurve : group feed head [ 1 ] extract [ SegStart ] ]
extend [ StartRoadC : getstartpoint ( . RoadC ) ]
projectextend [ Ref ; RoadCurve : ifthenelse ( . StartPointCurve = . StartRoadC ,

.RoadC ,
set startsmaller ( . RoadC ,

not ( get startsmaller ( . RoadC ) ) ) ) ]
consume ;

let RoadsByRefSimple =
(RoadsByRefSimpleH2 feed )
(RoadsByRefSimpleH3 feed )
concat
sortby [ Ref , RoadCurve ]

consume ;

let RoadsByRefComplex =
RoadsByRefH1 feed
sortby [ Ref , WayCurve ]
RoadsByRefSimple feed

filter [ not ( isdefined ( . RoadCurve ) ) ] { s}
hashjoin [ Ref , Re f s ]
filter [ . Ref = . Re f s ]
projectextend [ Ref , WayCurve ; StartPoint : getstartpoint ( .WayCurve ) ]
sortby [ Ref , WayCurve , StartPoint ]
groupby [ Ref ; RoadC : group feed projecttransformstream [WayCurve ] collect line [ TRUE ] ,

StartPointCurve : group feed head [ 1 ] extract [ S tar tPoint ] ]
projectextendstream [ Ref , StartPointCurve ; RoadCur : .RoadC longlines ]
addcounter [ PartNo , 1 ]
projectextend [ Ref , PartNo , StartPointCurve ,

RoadCur ; StartPoint : getstartpoint ( . RoadCur ) ,
EndPoint : getendpoint ( . RoadCur ) ]

sortby [ Ref , PartNo ]
e x t e nd l a s t [ PrevEndPoint : . . EndPoint : : [ const point value ( 0 . 0 0 . 0 ) ] ]
sortby [ Ref , PartNo ]
projectextend [ Ref ; RoadCurve : ifthenelse ( . StartPointCurve = . StartPoint , . RoadCur ,

ifthenelse ( . S tartPoint = . PrevEndPoint , . RoadCur ,
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set startsmaller ( . RoadCur ,
not ( get startsmaller ( . RoadCur ) ) ) ) ) ]

consume ;

let RoadsByRef =
(RoadsByRefSimple feed filter [ isdefined ( . RoadCurve ) ] )
(RoadsByRefComplex feed )
concat
filter [ isdefined ( . RoadCurve ) ]

consume ;

# by name

let RoadsByNameH1 =
RoadParts feed
filter [ not ( iscycle ( .WayCurve ) ) ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”oneway” ]
count = 0]

filter [ . WayInfo afeed
filter [ . WayTagKey = ”name” ]
count > 0 ]

filter [ . WayInfo afeed
filter [ . WayTagKey = ”highway” ]
filter [ not ( . WayTagValue contains ” l i n k ” ) ]
count > 0 ]

unnest [ WayInfo ]
filter [ . WayTagKey = ”name” ]
projectextend [WayId , WayCurve ; Name: trim ( toObject ( ’ ” ’+.WayTagValue +’” ’ , ”a” ) ) ]
sortby [Name, WayCurve ]

consume ;

let RoadsByNameSimpleH1 =
RoadsByNameH1 feed
sortby [Name, WayCurve ]
groupby [Name; C: group feed count ]

consume ;

let RoadsByNameSimpleH2 =
RoadsByNameSimpleH1 feed
filter [ .C = 1 ] { r1}
RoadsByNameH1 feed { r2}
hashjoin [ Name r1 , Name r2 ]
filter [ . Name r1 = . Name r2 ]
projectextend [ ; Name: . Name r1 ,

RoadCurve : . WayCurve r2 ]
consume ;

let RoadsByNameSimpleH3 =
RoadsByNameSimpleH1 feed
filter [ .C > 1 ] { r1}
RoadsByNameH1 feed { r2}
hashjoin [ Name r1 , Name r2 ]
filter [ . Name r2 = . Name r2 ]
projectextend [ ; Name: . Name r1 ,

WayCurve : . WayCurve r2 ,
SegStartPoint : getstartpoint ( . WayCurve r2 ) ]

sortby [Name, SegStartPoint , WayCurve ]
groupby [Name; RoadC : group feed projecttransformstream [WayCurve ] collect sline [ TRUE ] ,

StartRoadPoint : group feed head [ 1 ] extract [ SegStartPoint ] ]
extend [ StartRoadC : getstartpoint ( . RoadC ) ]
projectextend [Name; RoadCurve : ifthenelse ( . StartRoadPoint = . StartRoadC ,

. RoadC ,
set startsmaller ( . RoadC ,

not ( get startsmaller ( . RoadC ) ) ) ) ]
consume ;

let RoadsByNameSimple =
(RoadsByNameSimpleH2 feed )
(RoadsByNameSimpleH3 feed )
concat
sortby [Name, RoadCurve ]

consume ;

let RoadsByNameComplex =
RoadsByNameH1 feed
RoadsByNameSimple feed

filter [ not ( isdefined ( . RoadCurve ) ) ] { s}
hashjoin [Name, Name s ]
filter [ . Name = . Name s ]
projectextend [Name, WayCurve ; StartPoint : getstartpoint ( .WayCurve ) ]
sortby [Name, WayCurve , StartPoint ]
groupby [Name; RoadC : group feed projecttransformstream [WayCurve ] collect line [ TRUE ] ,

StartPointCurve : group feed head [ 1 ] extract [ S tar tPoint ] ]
projectextendstream [Name, StartPointCurve ; RoadCur : . RoadC longlines ]
addcounter [ PartNo , 1 ]
projectextend [Name, PartNo , StartPointCurve ,

RoadCur ; StartPoint : getstartpoint ( . RoadCur ) ,
EndPoint : getendpoint ( . RoadCur ) ]

sortby [Name, PartNo ]
e x t e nd l a s t [ PrevEndPoint : . . EndPoint : : [ const point value ( 0 . 0 0 . 0 ) ] ]
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sortby [Name, PartNo ]
projectextend [Name; RoadCurve : ifthenelse ( . StartPointCurve = . StartPoint , . RoadCur ,

ifthenelse ( . S tartPoint = . PrevEndPoint , . RoadCur ,
set startsmaller ( . RoadCur ,

not ( get startsmaller ( . RoadCur ) ) ) ) ) ]
consume ;

let RoadsByName =
(RoadsByNameSimple feed filter [ isdefined ( . RoadCurve ) ] )
(RoadsByNameComplex feed )
concat
filter [ isdefined ( . RoadCurve ) ]

consume ;

# road l i n k s

let RoadLinksH1 =
RoadParts feed
filter [ not ( iscycle ( .WayCurve ) ) ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”oneway” ]
count = 0]

filter [ . WayInfo afeed
filter [ . WayTagKey = ”highway” ]
filter [ . WayTagValue contains ” l i n k ” ]
count > 0 ]

unnest [ WayInfo ]
filter [ . WayTagKey = ”highway” ]
filter [ . WayTagValue contains ” l i nk ” ]
project [WayId , WayCurve ]
sortby [WayId , WayCurve ]

consume ;

let RoadLinksSimpleH1 =
RoadLinksH1 feed
sortby [WayId , WayCurve ]
groupby [WayId ; C: group feed count ]

consume ;

let RoadLinksSimpleH2 =
RoadLinksSimpleH1 feed
filter [ .C = 1 ] { r1}
RoadLinksH1 feed { r2}
hashjoin [ WayId r1 , WayId r2 ]
filter [ . WayId r1 = .WayId r2 ]
projectextend [ ; WayId : . WayId r1 ,

RoadCurve : . WayCurve r2 ]
consume ;

let RoadLinksSimpleH3 =
RoadLinksSimpleH1 feed
filter [ .C > 1 ] { r1}
RoadLinksH1 feed { r2}
hashjoin [ WayId r1 , WayId r2 ]
filter [ . WayId r1 = .WayId r2 ]
projectextend [ ; WayId : . WayId r1 ,

WayCurve : .WayCurve r2 ,
SegStart : getstartpoint ( . WayCurve r2 ) ]

sortby [WayId , SegStart , WayCurve ]
groupby [WayId ; RoadC : group feed projecttransformstream [WayCurve ] collect sline [ TRUE ] ,

StartRoad : group feed head [ 1 ] extract [ SegStart ] ]
extend [ StartRoadC : getstartpoint ( . RoadC ) ]
projectextend [WayId ; RoadCurve : ifthenelse ( . StartRoad = . StartRoadC ,

.RoadC ,
set startsmaller ( . RoadC , not (

get startsmaller ( . RoadC ) ) ) ) ]
consume ;

let RoadLinksSimple =
(RoadLinksSimpleH2 feed )
( RoadLinksSimpleH3 feed )
concat
sortby [WayId , RoadCurve ]

consume ;

let RoadLinksComplex =
RoadLinksH1 feed
RoadLinksSimple feed

filter [ not ( isdefined ( . RoadCurve ) ) ] { s}
hashjoin [WayId , WayId s ]
filter [ . WayId = .WayId s ]
projectextend [WayId , WayCurve ; StartPoint : getstartpoint ( .WayCurve ) ]
sortby [WayId , WayCurve , StartPoint ]
groupby [WayId ; RoadC : group feed projecttransformstream [WayCurve ] collect line [ TRUE ] ,

StartPointCurve : group feed head [ 1 ] extract [ S tar tPoint ] ]
projectextendstream [WayId , StartPointCurve ; RoadCur : .RoadC longlines ]
addcounter [ PartNo , 1 ]
projectextend [WayId , PartNo , StartPointCurve ,

RoadCur ; StartPoint : getstartpoint ( . RoadCur ) ,
EndPoint : getendpoint ( . RoadCur ) ]

sortby [WayId , PartNo ]
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e x t e nd l a s t [ PrevEndPoint : . . EndPoint : : [ const point value ( 0 . 0 0 . 0 ) ] ]
sortby [WayId , PartNo ]
projectextend [WayId ; RoadCurve : ifthenelse ( . StartPointCurve = . StartPoint , . RoadCur ,

ifthenelse ( . S tartPoint = . PrevEndPoint , . RoadCur ,
set startsmaller ( . RoadCur ,

not ( get startsmaller ( . RoadCur ) ) ) ) ) ]
consume ;

let RoadLinks =
(RoadLinksSimple feed filter [ isdefined ( . RoadCurve ) ] )
( RoadLinksComplex feed )
concat
filter [ isdefined ( . RoadCurve ) ]

consume ;

# r e s t except oneways and cy c l e s

let RoadRestH1 =
RoadParts feed
filter [ not ( iscycle ( .WayCurve ) ) ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”oneway” ]
count = 0]

filter [ . WayInfo afeed
filter [ . WayTagKey = ”highway” ]
filter [ . WayTagValue contains ” l i n k ” ]
count = 0]

unnest [ WayInfo ]
filter [ . WayTagKey = ”highway” ]
project [WayId , WayCurve ]
sortby [WayId , WayCurve ]

consume ;

let RoadRestSimpleH1 =
RoadRestH1 feed
sortby [WayId , WayCurve ]
groupby [WayId ; C: group feed count ]

consume ;

let RoadRestSimpleH2 =
RoadRestSimpleH1 feed
filter [ .C = 1 ] { r1}
RoadRestH1 feed { r2}
hashjoin [ WayId r1 , WayId r2 ]
filter [ . WayId r1 = .WayId r2 ]
projectextend [ ; WayId : . WayId r1 ,

RoadCurve : . WayCurve r2 ]
consume ;

let RoadRestSimpleH3 =
RoadRestSimpleH1 feed
filter [ .C > 1 ] { r1}
RoadRestH1 feed { r2}
hashjoin [ WayId r1 , WayId r2 ]
filter [ . WayId r1 = .WayId r2 ]
projectextend [ ; WayId : . WayId r1 ,

WayCurve : . WayCurve r2 ,
SegStart : getstartpoint ( . WayCurve r2 ) ]

sortby [WayId , SegStart , WayCurve ]
groupby [WayId ; RoadC : group feed projecttransformstream [WayCurve ] collect sline [ TRUE ] ,

StartRoad : group feed head [ 1 ] extract [ SegStart ] ]
extend [ StartRoadC : getstartpoint ( . RoadC ) ]
projectextend [WayId ; RoadCurve : ifthenelse ( . StartRoad = . StartRoadC ,

.RoadC ,
set startsmaller ( . RoadC ,

not ( get startsmaller ( . RoadC ) ) ) ) ]
consume ;

let RoadRestSimple =
(RoadRestSimpleH2 feed )
(RoadRestSimpleH3 feed )
concat
sortby [WayId , RoadCurve ]

consume ;

let RoadRestComplex =
RoadRestH1 feed
RoadRestSimple feed

filter [ not ( isdefined ( . RoadCurve ) ) ] { s}
hashjoin [WayId , WayId s ]
filter [ . WayId = .WayId s ]
projectextend [WayId , WayCurve ; StartPoint : getstartpoint ( .WayCurve ) ]
sortby [WayId , WayCurve , StartPoint ]
groupby [WayId ; RoadC : group feed projecttransformstream [WayCurve ] collect line [ TRUE ] ,

StartPointCurve : group feed head [ 1 ] extract [ S tar tPoint ] ]
projectextendstream [WayId , StartPointCurve ; RoadCur : .RoadC longlines ]
addcounter [ PartNo , 1 ]
projectextend [WayId , PartNo , StartPointCurve ,

RoadCur ; StartPoint : getstartpoint ( . RoadCur ) ,
EndPoint : getendpoint ( . RoadCur ) ]

sortby [WayId , PartNo ]
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e x t e nd l a s t [ PrevEndPoint : . . EndPoint : : [ const point value ( 0 . 0 0 . 0 ) ] ]
sortby [WayId , PartNo ]
projectextend [WayId ; RoadCurve : ifthenelse ( . StartPointCurve = . StartPoint , . RoadCur ,

ifthenelse ( . S tartPoint = . PrevEndPoint , . RoadCur ,
set startsmaller ( . RoadCur ,

not ( get startsmaller ( . RoadCur ) ) ) ) ) ]
consume ;

let RoadRest =
(RoadRestSimple feed filter [ isdefined ( . RoadCurve ) ] )
(RoadRestComplex feed )
concat
filter [ isdefined ( . RoadCurve ) ]

consume ;

# bu i ld oneway rou t e s

let RoadsByOneway =
RoadParts feed
filter [ not ( iscycle ( .WayCurve ) ) ]
filter [ . WayInfo afeed

filter [ . WayTagKey = ”oneway” ]
count > 0 ]

projectextend [ ; Name: num2string ( .WayId) , Curve : .WayCurve ]
consume ;

# bu i ld roundabouts

let RoadsByCycle =
RoadParts feed
filter [ iscycle ( .WayCurve ) ]
projectextend [ ; Name: num2string ( .WayId) ,

Curve : set startsmaller ( .WayCurve , TRUE ) ]
consume ;

# bu i ld roads by r e l a t i o n i f r e l a t i o n i s a r e l a t i o n o f way id s
# r e l a t i o n s o f r e l a t i o n s can not be used f o r connec t ing roads yet

let RoadsByRelationH1 =
NestedRe lat ionRe l feed
filter [ . Re l In fo afeed

filter [ . Re f In fo afeed
filter [ . RelTagKey = ” route ” ]
filter [ . RelTagValue = ” road” ]
count > 0 ]

count > 0 ]
unnest [ Re l In fo ]
project [ RelId , RefCounter , MemberRef , MemberType , MemberRole , Re f In fo ]

consume ;

let RoadsByRelationWaysH1 =
RoadsByRelationH1 feed
filter [ . MemberType = ”way” ]
NestedWayRel feed
hashjoin [ MemberRef , WayId ]
filter [ . MemberRef = .WayId ]
project [ RelId , MemberRole , RefCounter , WayCurve ]

consume ;

let RoadsByRelationWaysSimple =
RoadsByRelationWaysH1 feed
sortby [ RelId , MemberRole , RefCounter , WayCurve ]
groupby [ RelId , MemberRole ; RoadCurve : group feed projecttransformstream [WayCurve ] collect sline [ TRUE ] ]

consume ;

let RoadsByRelationWaysComplex =
RoadsByRelationWaysH1 feed
RoadsByRelationWaysSimple feed

filter [ not ( isdefined ( . RoadCurve ) ) ] { t}
hashjoin [ RelId , Re l Id t ]
filter [ . RelId = . Re l Id t ]
sortby [ RelId , MemberRole , RefCounter , WayCurve ]
groupby [ RelId , MemberRole ; RoadC : group feed projecttransformstream [WayCurve ] collect line [ TRUE ] ]
projectextendstream [ RelId , MemberRole ; RoadCurve : .RoadC longlines ]

consume ;

let RoadsByRelationWaysH2 =
(RoadsByRelationWaysSimple feed )
(RoadsByRelationWaysComplex feed )
concat
NestedRe lat ionRe l feed {h}
hashjoin [ RelId , Re l Id h ]
filter [ . RelId = . Re l Id h ]
projectextend [ RelId , RoadCurve ; Re l In fo : . Re l In f o h ]
unnest [ Re l In fo ]
unnest [ Re f In fo h ]
projectextend [ RelId , RoadCurve ; RelTagKey : . RelTagKey h ,

RelTagValue : . RelTagValue h ]
filter [ ( . RelTagKey = ” r e f ” ) or ( . RelTagKey = ”name” ) ]

consume ;
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let RoadsByRelationWaysH3 =
RoadsByRelationWaysH2 feed
filter [ . RelTagKey = ” r e f ” ]
projectextend [ RelId , RoadCurve ; Name: . RelTagValue ]

consume ;

let RoadsByRelationWaysH4 =
RoadsByRelationWaysH2 feed
RoadsByRelationWaysH3 feed
projectextend [ RelId , RoadCurve ; RelTagKey : ’A’ , RelTagValue : ’A’ ]

mergediff
filter [ . RelTagKey = ”name” ]
projectextend [ RelId , RoadCurve ; Name: . RelTagValue ]

consume ;

let RoadsByRelationWays =
(RoadsByRelationWaysH3 feed )
(RoadsByRelationWaysH4 feed )
concat

consume ;

# bu i ld roads r e l a t i o n from part r e l a t i o n s bu i ld be f o r e

let Roads =
( ( (RoadsByRef feed

projectextend [ ; Name: . Ref , Curve : . RoadCurve ] )
(RoadsByName feed

projectextend [ ; Name: .Name, Curve : . RoadCurve ] )
concat )

( (RoadLinks feed
projectextend [ ; Name: num2string ( .WayId) , Curve : . RoadCurve ] )

(RoadRest feed
projectextend [ ; Name: num2string ( .WayId) , Curve : . RoadCurve ] )

concat )
concat )

( ( (RoadsByCycle feed )
(RoadsByOneway feed )
concat )

( RoadsByRelationWays feed
projectextend [ ; Name: tostring ( .Name) , Curve : . RoadCurve ] )

concat )
concat
filter [ isdefined ( . Curve ) ]
extend [ CurvLength : size ( . Curve ) ]
sortby [ CurvLength desc , Name, Curve ]
rdup
addcounter [ Rid , 1 ]

consume ;

# Connect roads , j un c t i on s and s e c t i o n s

let ConnectRoadsAndJunctions =
JunctionsAndWayCrossings feed

project [ Jid , Point , S1SectCurve , S1Side , S2Side ]
Roads feed

project [ Rid , Curve ]
itSpatialJoin [ Point , Curve , 4 , 8 ]
filter [ . Point inside . Curve ]
projectextend [ Jid , Rid ; PosOnRoad : atpoint ( . Curve , . Point ) ,

S ide : ifthenelse ( . S1SectCurve inside . Curve , . S1Side ,
. S2Side ) ]

consume ;

let RoadsJunct ionsLi st s =
ConnectRoadsAndJunctions feed
project [ Rid , PosOnRoad , Jid ]
sortby [ Rid , PosOnRoad , Jid ]
groupby [ Rid ; JuncLi st : group feed projecttransformstream [ J id ] createlist ]

consume ;

let JunctionsPosit ionsOnRoads =
ConnectRoadsAndJunctions feed
projectextend [ J id ; RouteLoc : createrloc ( . Rid , . PosOnRoad , . S ide ) ]
sortby [ Jid , RouteLoc ]
groupby [ J id ; Loca t i onL i s t : group feed projecttransformstream [ RouteLoc ] createlist ]

consume ;

let ConnectSectionsAndRoads =
RoadPartSectionsTmp1 feed

project [ Sid , SectCurve , StartPoint , EndPoint , S ide ]
Roads feed

project [ Rid , Curve ]
itSpatialJoin [ SectCurve , Curve , 4 , 8 ]
filter [ . S tar tPoint inside . Curve ]
filter [ . EndPoint inside . Curve ]
filter [ . SectCurve inside . Curve ]
projectextend [ Rid , Sid , Side ; StartPos : atpoint ( . Curve , . S tartPoint ) ,

EndPos : atpoint ( . Curve , . EndPoint ) ]
projectextend [ Rid , Sid ; RoutePart : createrint ( . Rid , . StartPos , . EndPos , . S ide ) ]

consume ;
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let SectionsAtRoads =
ConnectSectionsAndRoads feed
sortby [ Rid , RoutePart , S id ]
groupby [ Rid ; L i s t S id s : group feed projecttransformstream [ S id ] createlist ]

consume ;

let Se c t i onRou te In t e rva l s =
ConnectSectionsAndRoads feed

project [ Sid , RoutePart ]
sortby [ Sid , RoutePart ]
groupby [ S id ; I n t e r v a l L i s t : group feed projecttransformstream [ RoutePart ] createlist ]

consume ;

let JunctionsAndWayCrossings2 =
JunctionsAndWayCrossings feed
JunctionsPosit ionsOnRoads feed { j 1 }
hashjoin [ Jid , J i d j 1 ]
filter [ . J id = . J i d j 1 ]
projectextend [ Jid , Point , WayId1 , WayId2 , Sid1 , S1SectCurve ,

S1StartPoint , S1EndPoint , S1StartJ id , S1EndJid , S1Lenth ,
S1JuncAtStart , S1Side , Sid2 , S2SectCurve , S2StartPoint , S2EndPoint , S2StartJ id ,
S2EndJid , S2Lenth , S2JuncAtStart , S2Side ; RoutePos i t ions : . L o c a t i o nL i s t j 1 ]

consume ;

let JunctionsInAndOutComingSectionsH1 =
JunctionsAndWayCrossings2 feed
projectextend [ Jid , Sid1 ,

Sid2 ; S1InSect : ifthenelse ( . S1Side = [ const jdirection value (Both ) ] , TRUE ,
ifthenelse ( ( . S1Side = [ const jdirection value (Up) ] ) and

not ( . S1JuncAtStart ) , TRUE ,
ifthenelse ( ( . S1Side = [ const jdirection value (Down ) ] ) and

. S1JuncAtStart , TRUE , FALSE ) ) ) ,
S1OutSect : ifthenelse ( . S1Side = [ const jdirection value (Both ) ] , TRUE ,

ifthenelse ( ( . S1Side = [ const jdirection value (Up) ] ) and
. S1JuncAtStart , TRUE ,

ifthenelse ( ( . S1Side = [ const jdirection value (Down ) ] ) and
not ( . S1JuncAtStart ) , TRUE , FALSE ) ) ) ,

S2InSect : ifthenelse ( . S2Side = [ const jdirection value (Both ) ] , TRUE ,
ifthenelse ( ( . S2Side = [ const jdirection value (Up) ] ) and

not ( . S2JuncAtStart ) , TRUE ,
ifthenelse ( ( . S2Side = [ const jdirection value (Down ) ] ) and

. S2JuncAtStart , TRUE , FALSE ) ) ) ,
S2OutSect : ifthenelse ( . S2Side = [ const jdirection value (Both ) ] , TRUE ,

ifthenelse ( ( . S2Side = [ const jdirection value (Up) ] ) and
. S2JuncAtStart , TRUE ,

ifthenelse ( ( . S2Side = [ const jdirection value (Down ) ] ) and
not ( . S2JuncAtStart ) , TRUE , FALSE ) ) ) ]

consume ;

let JunctionsInComingSectionsH1 =
JunctionsInAndOutComingSectionsH1 feed
filter [ . S1InSect ]
projectextend [ J id ; S id : . S id1 ]

consume ;

let JunctionsInComingSectionsH2 =
JunctionsInAndOutComingSectionsH1 feed
filter [ . S2InSect ]
projectextend [ J id ; S id : . S id2 ]

consume ;

let JunctionsInComingSectionsH3 =
JunctionsInAndOutComingSectionsH1 feed
filter [ not ( . S1InSect or . S2InSect ) ]
projectextend [ J id ; S id : [ const int value undef ] ]

consume ;

let JunctionsInComingSect ions =
( ( JunctionsInComingSectionsH1 feed )
( JunctionsInComingSectionsH2 feed )
concat )

( JunctionsInComingSect ionsH3 feed )
concat
sortby [ Jid , S id ]
groupby [ J id ; L i s t I nS e c t i o n s : group feed projecttransformstream [ S id ] createlist ]

consume ;

let JunctionsOutgoingSect ionsH1 =
JunctionsInAndOutComingSectionsH1 feed
filter [ . S1OutSect ]
projectextend [ J id ; S id : . S id1 ]

consume ;

let JunctionsOutgoingSect ionsH2 =
JunctionsInAndOutComingSectionsH1 feed
filter [ . S2OutSect ]
projectextend [ J id ; S id : . S id2 ]

consume ;
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let JunctionsOutgoingSect ionsH3 =
JunctionsInAndOutComingSectionsH1 feed
filter [ not ( . S1OutSect or . S2OutSect ) ]
projectextend [ J id ; S id : [ const int value undef ] ]

consume ;

let Junct ionsOutgo ingSec t ions =
( ( JunctionsOutgoingSect ionsH1 feed )
( JunctionsOutgoingSect ionsH2 feed )
concat )

( JunctionsOutgoingSect ionsH3 feed )
concat
sortby [ Jid , S id ]
groupby [ J id ; L i stOutSec t ions : group feed projecttransformstream [ S id ] createlist ]

consume ;

let JunctionsInAndOutComingSections =
JunctionsInComingSect ions feed { i }
Junct ionsOutgo ingSec t ions feed {o}
hashjoin [ J i d i , J i d o ]
filter [ . J i d i = . J i d o ]
projectextend [ ; J id : . J i d i ,

L i s t I nS e c t i o n s : . L i s t I nS e c t i o n s i ,
L i stOutSec t ions : . L i s tOutSe c t i ons o ]

consume ;

# Create I n p u t f i l e s f o r Routes and Junct ions f o r JNetwork

let InRoutes =
Roads feed { r1}
RoadsJunct ionsLi st s feed { j 1}
hashjoin [ Rid r1 , Rid j1 ]
filter [ . Rid r1 = . Rid j1 ]
projectextend [ ; Rid : . Rid r1 ,

Lenth : . CurvLength r1 ,
JuncLi st : . JuncL i s t j 1 ]

Sect ionsAtRoads feed { s1}
hashjoin [ Rid , Rid s1 ]
filter [ . Rid = . Rid s1 ]
projectextend [ Rid , JuncList , Lenth ; S e c tL i s t : . L i s t S i d s s 1 ]
project [ Rid , JuncList , Sec tLi st , Lenth ]
sortby [ Rid ]
rdup

consume ;

let InJunct ions =
JunctionsAndWayCrossings2 feed
project [ Jid , Point , RoutePos i t ions ]
JunctionsInAndOutComingSections feed { s1}
hashjoin [ Jid , J i d s1 ]
filter [ . J id = . J id s1 ]
projectextend [ Jid , Point , RoutePos i t ions ; InSe c t s : . L i s t I n S e c t i o n s s 1 ,

OutSects : . L i s tOutSe c t i on s s1 ]
sortby [ J id ]
rdup

consume ;

# Compute Adjacency l i s t s f o r s e c t i o n s

let AdjacentSectionsUpHa =
RoadPartSectionsTmp1 feed
InJunct ions feed
hashjoin [ EndJid , Jid ]
filter [ . EndJid = . Jid ]
filter [ . S ide # [ const j d i r e c t i o n va lue (Down ) ] ]
project [ Sid , OutSects ]
sortby [ Sid , OutSects ]
groupby [ S id ; AdjSectUp : group feed projecttransformstream [ OutSects ] createlist ]

consume ;

let AddAdjacentSectionsUpMissing =
RoadPartSectionsTmp1 feed project [ S id ]

sortby [ S id ]
AdjacentSectionsUpHa feed project [ S id ]

sortby [ S id ]
mergediff
project [ S id ] { s1}
RoadPartSectionsTmp1 feed { s2}
hashjoin [ S id s1 , S i d s2 ]
filter [ . S i d s1 = . S id s2 ]
projectextend [ ; S id : . S id s1 ,

AdjSectUp : [ const l i s t i n t value ( unde f ined ) ] ]
consume ;

let AdjacentSectionsUpH1 =
( AdjacentSectionsUpHa feed )
( AddAdjacentSectionsUpMissing feed )
concat

consume ;
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let AdjacentSectionsDownHa =
RoadPartSectionsTmp1 feed
InJunct ions feed
hashjoin [ S tar tJ id , Jid ]
filter [ . S t a r tJ i d = . Jid ]
filter [ . S ide # [ const j d i r e c t i o n va lue (Up ) ] ]
project [ Sid , OutSects ]
sortby [ Sid , OutSects ]
groupby [ S id ; AdjSectDown : group feed projecttransformstream [ OutSects ] createlist ]

consume ;

let AddAdjacentSectionsDownMissing =
RoadPartSectionsTmp1 feed project [ S id ]

sortby [ S id ]
AdjacentSectionsDownHa feed project [ S id ]

sortby [ S id ]
mergediff
project [ S id ] { s1}
RoadPartSectionsTmp1 feed { s2}
hashjoin [ S id s1 , S i d s2 ]
filter [ . S i d s1 = . S id s2 ]
projectextend [ ; S id : . S id s1 ,

AdjSectDown : [ const l i s t i n t value ( unde f ined ) ] ]
consume ;

let AdjacentSectionsDownH1 =
(AdjacentSectionsDownHa feed )
( AddAdjacentSectionsDownMissing feed )
concat
sortby [ S id ]

consume ;

let ReverseAdjacentSect ionsUpHa =
RoadPartSectionsTmp1 feed
InJunct ions feed
hashjoin [ S tar tJ id , Jid ]
filter [ . S t a r tJ i d = . Jid ]
filter [ . S ide # [ const j d i r e c t i o n va lue (Down ) ] ]
project [ Sid , InSe c t s ]
sortby [ Sid , InSe c t s ]
groupby [ S id ; RevAdjSectUp : group feed projecttransformstream [ I nS e c t s ] createlist ]

consume ;

let AddReverseAdjacentSect ionsUpMissing =
RoadPartSectionsTmp1 feed project [ S id ]

sortby [ S id ]
ReverseAdjacentSectionsUpHa feed project [ S id ]

sortby [ S id ]
mergediff
project [ S id ] { s1}
RoadPartSectionsTmp1 feed { s2}
hashjoin [ S id s1 , S i d s2 ]
filter [ . S i d s1 = . S id s2 ]
projectextend [ ; S id : . S id s1 ,

RevAdjSectUp : [ const l i s t i n t value ( unde f ined ) ] ]
consume ;

let ReverseAdjacentSect ionsUpH1 =
( ReverseAdjacentSect ionsUpHa feed )
( AddReverseAdjacentSectionsUpMissing feed )
concat
sortby [ S id ]

consume ;

let ReverseAdjacentSectionsDownHa =
RoadPartSectionsTmp1 feed
InJunct ions feed
hashjoin [ EndJid , Jid ]
filter [ . EndJid = . Jid ]
filter [ . S ide # [ const j d i r e c t i o n va lue (Up ) ] ]
project [ Sid , InSe c t s ]
sortby [ Sid , InSe c t s ]
groupby [ S id ; RevAdjSectDown : group feed projecttransformstream [ I nS e c t s ] createlist ]

consume ;

let AddReverseAdjacentSectionsDownMissing =
RoadPartSectionsTmp1 feed project [ S id ]

sortby [ S id ]
ReverseAdjacentSectionsDownHa feed project [ S id ]

sortby [ S id ]
mergediff
project [ S id ] { s1}
RoadPartSectionsTmp1 feed { s2}
hashjoin [ S id s1 , S i d s2 ]
filter [ . S i d s1 = . S id s2 ]
projectextend [ ; S id : . S id s1 ,

RevAdjSectDown : [ const l i s t i n t value ( unde f ined ) ] ]
consume ;

let ReverseAdjacentSectionsDownH1 =
( ReverseAdjacentSectionsDownHa feed )
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( AddReverseAdjacentSectionsDownMissing feed )
concat
sortby [ S id ]

consume ;

# Re s t r i c t i o n s f o r s e c t i o n connec t ions by nodes

let ViaNodesRel =
NestedRe lat ionRe l feed
filter [ . Re l In fo afeed

filter [ . Re f In fo afeed
filter [ . RelTagKey contains ” r e s t r i c t i o n ” ]
count > 0 ]

count > 0 ]
unnest [ Re l In fo ]
filter [ . MemberRole = ” via ” ]
filter [ . MemberType = ”node” ]
SpatialPosOfNodes feed
hashjoin [ MemberRef , NodeId ]
filter [ . MemberRef = . NodeId ]
projectextend [ RelId , NodeId ,

NodePos ; RelTagVal : . Re f In fo afeed extract [ RelTagValue ] ]
consume ;

let FromWaysRel =
NestedRe lat ionRe l feed
filter [ . Re l In fo afeed

filter [ . Re f In fo afeed
filter [ . RelTagKey contains ” r e s t r i c t i o n ” ]
count > 0 ]

count > 0 ]
unnest [ Re l In fo ]
filter [ . MemberRole = ”from” ]
SpatialWayCurve feed
hashjoin [ MemberRef , WayId ]
filter [ . MemberRef = .WayId ]
project [ RelId , WayId , WayCurve ]

consume ;

let ToWaysRel =
NestedRe lat ionRe l feed
filter [ . Re l In fo afeed

filter [ . Re f In fo afeed
filter [ . RelTagKey contains ” r e s t r i c t i o n ” ]
count > 0 ]

count > 0 ]
unnest [ Re l In fo ]
filter [ . MemberRole = ” to ” ]
SpatialWayCurve feed
hashjoin [ MemberRef , WayId ]
filter [ . MemberRef = .WayId ]
project [ RelId , WayId , WayCurve ]

consume ;

let NodeRestr i c t ions =
ViaNodesRel feed {v}
FromWaysRel feed { f }
hashjoin [ RelId v , Re l I d f ]
filter [ . Re l Id v = . Re l I d f ]
project [ RelId v , NodeId v , NodePos v , RelTagVal v , WayId f ]
ToWaysRel feed { t}
hashjoin [ RelId v , Re l Id t ]
filter [ . Re l Id v = . Re l Id t ]
project [ NodeId v , NodePos v , RelTagVal v , WayId f , WayId t ]
sortby [ NodeId v , NodePos v , WayId f , WayId t , RelTagVal v ]
rdup

consume ;

let ConnectRestr i c t ionsWithJunct ions =
JunctionsAndWayCrossings feed
NodeRestr i c t ions feed
itSpatialJoin [ Point , NodePos v , 4 , 8 ]
filter [ . Point = . NodePos v ]
filter [ ( ( . WayId f = .WayId1 ) and ( . WayId t = .WayId2 ) ) or

( ( . WayId f = .WayId2 ) and ( . WayId t = .WayId1 ) ) ]
projectextend [ RelTagVal v ; S i d f : ifthenelse ( . WayId f = .WayId1 , . Sid1 , . S id2 ) ,

S i d t : ifthenelse ( . WayId t = .WayId1 , . Sid1 , . S id2 ) ]
consume ;

# remove not connected s e c t i o n s from adjacency l i s t s

let NoRe s t r i c t i ons =
ConnectRestr i c t ionsWithJunct ions feed
filter [ . RelTagVal v contains ”no” ]

consume ;

let AdjacentSectionsUpH2 =
AdjacentSectionsUpH1 feed
NoRe s t r i c t i on s feed
hashjoin [ Sid , S i d f ]
filter [ . S id = . S i d f ]
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projectextend [ S id ; AdjSectU : . AdjSectUp − . S i d t ]
consume ;

let AdjacentSectionsUpH3 =
AdjacentSectionsUpH1 feed project [ S id ]

sortby [ S id ]
AdjacentSectionsUpH2 feed project [ S id ]

sortby [ S id ]
mergediff
AdjacentSectionsUpH1 feed { s1}
hashjoin [ Sid , S i d s1 ]
filter [ . S id = . S id s1 ]
projectextend [ ; S id : . S id s1 ,

AdjSectU : . AdjSectUp s1 ]
consume ;

let AdjacentSectionsUpH4 =
( AdjacentSectionsUpH2 feed )
( AdjacentSectionsUpH3 feed )
concat
projectextend [ S id ; AdjSectUp : . AdjSectU ]

consume ;

let AdjacentSectionsDownH2 =
AdjacentSectionsDownH1 feed
NoRe s t r i c t i on s feed
hashjoin [ Sid , S i d f ]
filter [ . S id = . S i d f ]
projectextend [ S id ; AdjSectD : . AdjSectDown − . S i d t ]

consume ;

let AdjacentSectionsDownH3 =
AdjacentSectionsDownH1 feed project [ S id ]

sortby [ S id ]
AdjacentSectionsDownH2 feed project [ S id ]

sortby [ S id ]
mergediff
AdjacentSectionsDownH1 feed { s1}
hashjoin [ Sid , S i d s1 ]
filter [ . S id = . S id s1 ]
projectextend [ ; S id : . S id s1 ,

AdjSectD : . AdjSectDown s1 ]
consume ;

let AdjacentSectionsDownH4 =
(AdjacentSectionsDownH2 feed )
( AdjacentSectionsDownH3 feed )
concat
projectextend [ S id ; AdjSectDown : . AdjSectD ]

consume ;

let ReverseAdjacentSect ionsUpH2 =
ReverseAdjacentSectionsUpH1 feed
NoRe s t r i c t i on s feed
hashjoin [ Sid , S i d t ]
filter [ . S id = . S id t ]
projectextend [ S id ; RevAdjSectU : . RevAdjSectUp − . S i d f ]

consume ;

let ReverseAdjacentSect ionsUpH3 =
ReverseAdjacentSectionsUpH1 feed project [ S id ]

sortby [ S id ]
ReverseAdjacentSectionsUpH2 feed project [ S id ]

sortby [ S id ]
mergediff
ReverseAdjacentSectionsUpH1 feed { s1}
hashjoin [ Sid , S i d s1 ]
filter [ . S id = . S id s1 ]
projectextend [ ; S id : . S id s1 ,

RevAdjSectU : . RevAdjSectUp s1 ]
consume ;

let ReverseAdjacentSect ionsUpH4 =
( ReverseAdjacentSect ionsUpH2 feed )
( ReverseAdjacentSect ionsUpH3 feed )
concat
projectextend [ S id ; RevAdjSectUp : . RevAdjSectU ]

consume ;

let ReverseAdjacentSectionsDownH2 =
ReverseAdjacentSectionsDownH1 feed
NoRe s t r i c t i on s feed
hashjoin [ Sid , S i d t ]
filter [ . S id = . S id t ]
projectextend [ S id ; RevAdjSectD : . RevAdjSectDown − . S i d f ]

consume ;

let ReverseAdjacentSectionsDownH3 =
ReverseAdjacentSectionsDownH1 feed project [ S id ]

sortby [ S id ]
ReverseAdjacentSectionsDownH2 feed project [ S id ]
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sortby [ S id ]
mergediff
ReverseAdjacentSectionsDownH1 feed { s1}
hashjoin [ Sid , S i d s1 ]
filter [ . S id = . S id s1 ]
projectextend [ ; S id : . S id s1 ,

RevAdjSectD : . RevAdjSectDown s1 ]
consume ;

let ReverseAdjacentSectionsDownH4 =
( ReverseAdjacentSectionsDownH2 feed )
( ReverseAdjacentSectionsDownH3 feed )
concat
projectextend [ S id ; RevAdjSectDown : . RevAdjSectD ]

consume ;

# l e ave only e x i s t i n g connec t ions in adjacency l i s t s

let On lyRe s t r i c t i on s =
ConnectRestr i c t ionsWithJunct ions feed
filter [ . RelTagVal v contains ” only ” ]

consume ;

let AdjacentSectionsUpH5 =
AdjacentSectionsUpH4 feed
On lyRe s t r i c t i on s feed
hashjoin [ Sid , S i d f ]
filter [ . S id = . S i d f ]
projectextend [ S id ; AdjSectU : r e s t r i c t ( . AdjSectUp , . S i d t ) ]

consume ;

let AdjacentSectionsUpH6 =
AdjacentSectionsUpH4 feed project [ S id ]

sortby [ S id ]
AdjacentSectionsUpH5 feed project [ S id ]

sortby [ S id ]
mergediff
AdjacentSectionsUpH4 feed { s1}
hashjoin [ Sid , S i d s1 ]
filter [ . S id = . S id s1 ]
projectextend [ ; S id : . S id s1 ,

AdjSectU : . AdjSectUp s1 ]
consume ;

let AdjacentSect ionsUp =
( AdjacentSectionsUpH5 feed )
( AdjacentSectionsUpH6 feed )
concat
projectextend [ S id ; AdjSectUp : . AdjSectU ]

consume ;

let AdjacentSectionsDownH5 =
AdjacentSectionsDownH4 feed
On lyRe s t r i c t i on s feed
hashjoin [ Sid , S i d f ]
filter [ . S id = . S i d f ]
projectextend [ S id ; AdjSectD : r e s t r i c t ( . AdjSectDown , . S i d t ) ]

consume ;

let AdjacentSectionsDownH6 =
AdjacentSectionsDownH4 feed project [ S id ]

sortby [ S id ]
AdjacentSectionsDownH5 feed project [ S id ]

sortby [ S id ]
mergediff
AdjacentSectionsDownH4 feed { s1}
hashjoin [ Sid , S i d s1 ]
filter [ . S id = . S id s1 ]
projectextend [ ; S id : . S id s1 ,

AdjSectD : . AdjSectDown s1 ]
consume ;

let AdjacentSectionsDown =
(AdjacentSectionsDownH5 feed )
( AdjacentSectionsDownH6 feed )
concat
projectextend [ S id ; AdjSectDown : . AdjSectD ]

consume ;

let NotLongerAdjacentSect ions =
( AdjacentSectionsUpH5 feed projectextend [ S id ; AdjSect : . AdjSectU ] )
( AdjacentSectionsDownH5 feed projectextend [ S id ; AdjSect : . AdjSectD ] )
concat
On lyRe s t r i c t i on s feed
hashjoin [ Sid , S i d f ]
filter [ . S id = . S i d f ]
projectextend [ S id ; NotLongerAdj : . AdjSect − . S i d t ]
projectextendstream [ S id ; AdjSect : createstream ( . NotLongerAdj ) ]
sortby [ AdjSect , S id ]
rdup
groupby [ AdjSect ; S ids : group feed projecttransformstream [ S id ] createlist ]
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consume ;

let ReverseAdjacentSect ionsUpH5 =
ReverseAdjacentSect ionsUpH4 feed
NotLongerAdjacentSect ions feed { s1}
hashjoin [ Sid , AdjSec t s1 ]
filter [ . S id = . AdjSec t s1 ]
projectextend [ S id ; RevAdjSectU : . RevAdjSectUp − . S i d s s 1 ]

consume ;

let ReverseAdjacentSect ionsUpH6 =
ReverseAdjacentSectionsUpH4 feed project [ S id ]

sortby [ S id ]
ReverseAdjacentSectionsUpH5 feed project [ S id ]

sortby [ S id ]
mergediff
ReverseAdjacentSectionsUpH4 feed { s1}
hashjoin [ Sid , S i d s1 ]
filter [ . S id = . S id s1 ]
projectextend [ ; S id : . S id s1 ,

RevAdjSectU : . RevAdjSectUp s1 ]
consume ;

let ReverseAdjacentSect ionsUp =
( ReverseAdjacentSect ionsUpH5 feed )
( ReverseAdjacentSect ionsUpH6 feed )
concat
projectextend [ S id ; RevAdjSectUp : . RevAdjSectU ]

consume ;

let ReverseAdjacentSectionsDownH5 =
ReverseAdjacentSectionsDownH4 feed
NotLongerAdjacentSect ions feed { s1}
hashjoin [ Sid , AdjSec t s1 ]
filter [ . S id = . AdjSec t s1 ]
projectextend [ S id ; RevAdjSectD : . RevAdjSectDown − . S i d s s 1 ]

consume ;

let ReverseAdjacentSectionsDownH6 =
ReverseAdjacentSectionsDownH4 feed project [ S id ]

sortby [ S id ]
ReverseAdjacentSectionsDownH5 feed project [ S id ]

sortby [ S id ]
mergediff
ReverseAdjacentSectionsDownH4 feed { s1}
hashjoin [ Sid , S i d s1 ]
filter [ . S id = . S id s1 ]
projectextend [ ; S id : . S id s1 ,

RevAdjSectD : . RevAdjSectDown s1 ]
consume ;

let ReverseAdjacentSectionsDown =
( ReverseAdjacentSectionsDownH5 feed )
( ReverseAdjacentSectionsDownH6 feed )
concat
projectextend [ S id ; RevAdjSectDown : . RevAdjSectD ]

consume ;

let Al lAd j ac en tS e c t i onL i s t s =
AdjacentSect ionsUp feed {u}
AdjacentSectionsDown feed {d}
hashjoin [ S id u , S id d ]
filter [ . S id u = . S id d ]
projectextend [ ; S id : . S id u ,

AdjacentSectUp : . AdjSectUp u ,
AdjacentSectDown : . AdjSectDown d ] {a}

ReverseAdjacentSect ionsUp feed { ru}
ReverseAdjacentSect ionsDown feed { rd}
hashjoin [ S id ru , S i d rd ]
filter [ . S i d ru = . S id rd ]
projectextend [ ; S id : . S id ru ,

ReverseAdjacentSectUp : . RevAdjSectUp ru ,
ReverseAdjacentSectDown : . RevAdjSectDown rd ] { r}

hashjoin [ S id a , S i d r ]
filter [ . S id a = . S id r ]
projectextend [ ; S id : . S id a ,

AdjSectUp : . AdjacentSectUp a ,
AdjSectDown : . AdjacentSectDown a ,
RevAdjSectUp : . ReverseAdjacentSectUp r ,
RevAdjSectDown : . ReverseAdjacentSectDown r ]

sortby [ S id ]
consume ;

# Se c t i on s r e l a t i o n f o r j n e t c r e a t i on

let InSe c t i on s =
RoadPartSectionsTmp1 feed
project [ Sid , SectCurve , StartJ id , EndJid , Side , VMax, Lenth ]
S e c t i onRou te In t e rva l s feed { r1}
hashjoin [ Sid , S i d r1 ]
filter [ . S id = . S id r1 ]
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projectextend [ Sid , SectCurve , StartJ id , EndJid , Side , VMax,
Lenth ; RouteInter : . I n t e r v a l L i s t r 1 ]

A l lAd j ac en tS e c t i onL i s t s feed { l }
hashjoin [ Sid , S i d l ]
filter [ . S id = . S i d l ]
projectextend [ Sid , SectCurve , StartJ id , EndJid , Side , VMax, Lenth ,

RouteInter ; AdjSectUp : . AdjSectUp l ,
AdjSectDown : . AdjSectDown l ,
RevAdjSectUp : . RevAdjSectUp l ,
RevAdjSectDown : . RevAdjSectDown l ]

sortby [ S id ]
rdup

consume ;

# bu i ld network

query createjnet ( ”MHTTestJNetwork” , 0 .000001 , InJunct ions , InSec t ions , InRoutes ) ;

# s c r i p t f i n i s h ed c l o s e database

c l o s e database ;

qu i t ;

5.4 Match GPS-Tracks to Networks Generated from Open Street

Map Data

The MapMatchingAlgebra algebra module provides operators creating single moving network positions from
data collected by GPS-devices related to networks imported from open street map as described in Section 5.3
using Multiple Hypothesis Technique [15].

The operator mapmatchmht was implemented by one of our students as part of his final thesis [13]. It
enables us to create mgpoint from GPS data files. The operator mapmatchmht supports the following signa-
tures:
network × mpoint [× real] → mgpoint

network × ftext [× real] → mgpoint

network × stream(inputtuple) [× real] → mgpoint

The optional real parameter can be used to overwrite the tolerance value stored in the network object for
the current map matching operation. The ftext identifies the file with the GPS-data. The inputtuple in the
third signature consists of a tuple with the attributes: Lat : real, Lon: real, Time: instant, Fix : int, Sat : int,
Hdop: real, Vdop: real, Pdop: real, Course: real, Speed : real. Each inputtuple describes a line of the data set
of an GPS track.

Assumed we have a network object created by the script NetworkFromFullOSMImport.SEC and an GPS-
Track stored in the file gps.data we can create an mgpoint from this data sources in the same database the
network object is allocated by using the Secondo command:

let testMGP1 = mapmatchmht ( netobj , ’gps . data ’ ) ;

Analogous we can convert an existing mpoint to his network representation:

let testMGP2 = mapmatchmht ( netobj , mpointdata ) ;

Or use a stream of tuples with GPS data created by the operator gpximport as data source by typing:

let testMGP3 = mapmatchmht ( netobj , gpximport ( ’ gpx . data ’ ) ) ;

In all cases we could use a real value as third parameter to overwrite the tolerance factor given in the network
object, for example:

let testMGP1Tol = mapmatchmht ( netobj , ’gps . data ’ , 0 . 0 0 0 1 ) ;

The operator jmapmatchmht works almost analogous to mapmatchmht for the second network imple-
mentation. The supported signatures are:
jnet × mpoint → mjpoint

jnet × ftext → mjpoint

jnet × stream(inputtuple)→ mjpoint

Assumed we have a jnet object created by the script NetworkFromFullOSMImport.SEC and a GPS-Track
stored in the file gps.data we can create an mjpoint from this data sources in the same database the jnetwork
object is allocated by using the Secondo command:

let testMJP1 = jmapmatchmht ( jne tob j , ’ gps . data ’ ) ;

Analogous we can convert an existing mpointdata object of data type mpoint to his jnetwork representation:
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let testMJP2 = jmapmatchmht ( jne tob j , mpointdata ) ;

Or use a stream of tuples with GPS data created by the operator gpximport as data source by typing:

let testMJP3 = jmapmatchmht ( jne tob j , gpximport ( ’ gpx . data ’ ) ) ;



Chapter 6

Traffic Estimation

6.1 Introduction

In the context of the first network implementation it was planned to support traffic estimation for historic moving
information in the network data model1. Therefore, we implemented in the TemporalNetAlgebra an additional
data type (see Section 6.2) and some operations (see Section 6.3.1) collecting and transforming the information
of the individual movement into an intermediate data format which can be used for traffic estimation. Further
we implemented a additional Secondo algebra module TrafficAlgebra providing operations for traffic and
traffic flow analysis on the data types of the TemporalNetAlgebra (see Section 6.3.2).

In the last section of this chapter we present some examples showing the usage of the presented operations.

6.2 Data Type for Traffic Information Estimation

The data type mgpsecunit (see Table 6.2) was introduced to support traffic estimation and indexing of mgpoint

values. The data type mgpsecunit reduces the complex information given in a mgpoint value to the values which
are useful for traffic estimation.

secId int identifier of a network section

partNo int part number on this section2.

direct int moving direction of the source mgpoint value within this section part

avgSpeed real average speed of the source mgpoint value within this section (part)

time periods time interval the the source mgpoint value moved within this section (part)

Table 6.1: Attributes of Traffic Data Type

6.3 Operations for Traffic Estimation

The first set of operators presented in Section 6.3.1 transforms the historical movement information of a set
of mgpoint into a stream of mgpsecunit values (see Section 6.3.1). This stream respectively the information
provided by this stream can be used by a set of operators for the analysis of the traffic flow or estimation of
section (parts) affected by heavy traffic, like described in Section 6.3.2

6.3.1 Compress Data for Traffic Estimation

The operations of Table 6.2 transform the input values into streams of corresponding mgpsecunits values. The
algorithm is almost the same for all three operations. The information of the units of the incoming mgpoint

1In fact the missing side value within the implementation of the data type route interval prevents us from the complete
implementation of this idea. Without side values within route intervals we are not able to estimate if the heavy traffic is on the
up or the down side of the Highway.

2For traffic estimation it is useful to divide long sections into smaller parts. For example a section belonging to a motorway may
have a total length of 16 km, but there is only a traffic jam of 2 km inside this section. To solve this problem we have the possibility
to split the network sections longer than a given length value into parts of this user defined maximum length. The splitting starts
at the smaller point of the section and the first part has the number 1. The length of the last part might be shorter than the given
maximum length value.
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values are extracted and merged to a set of mgpsecunita for each mgpoint value. Merging means that as long as
the mgpoint moves on the same section (part) in the same direction the information provided by the different
units is used to write a single mgpsecunit value with defining the section part passed by the mgpoint and the
average speed of the mgpoint at this section (part). At last the result is returned as stream of mgpsecunits.
The time complexity is O(m) for each incoming mgpoint. For a set of x mgpoint values we get a total time
complexity of O(

∑x

i=0 mx).

Operator Signature

mgpsecunits rel(tuple((a1 x1)(a2 x2)...(a2 x2))) ×ai× network × real → stream(mgpsecunit)

mgpsecunits2 mgpoint × real → stream(mgpsecunit)

mgpsecunits3 stream(mgpoint) × real → stream(mgpsecunit)

Table 6.2: Operators Merging Moving Information for Traffic Estimation

6.3.2 Traffic Estimation

The operation mgpsu2tuple converts a stream of mgpsecunit values into a stream of tuples with the attributes
of the data type mgpsecunit3. The time complexity is given by the number of stream elements. The trans-
formation into a relation enables the user to resort the tuples by attribute values using the standard sortby

operation of Secondo. The sorted stream of tuples can be used as input for the traffic estimation operations
in Table 6.3.

Operator Signature

trafficflow rel(tuple(mgpsecunit)) → rel(tuple(int, int, int, mint))

trafficflow2 stream(mgpsecunit) → rel(tuple(int, int, int, mint))

traffic stream(mgpsecunit) → rel(tuple(int, int, int, mreal, mint))

traffic2 stream(mgpoint) → rel(tuple(int, int, int, mreal, mint))

heavytraffic rel(tuple(int, int, int, mreal, mint)) × real × int → rel(tuple(int, int, int, mreal, mint))

Table 6.3: Traffic Estimating Operators

The operators trafficflow and trafficflow2 compute the number of cars in the defined section part and
direction as mint value, whereas the operators traffic and traffic2 additionally return the average speed of the
cars as mreal value.

The operator heavytraffic shrinks the traffic relation produced by traffic and traffic2 to the times and
places where the average speed is slower than the query parameter real or the number of cars is higher than the
query parameter int.

6.4 Examples for Traffic Estimation

We can manipulate the data generation script of the BerlinMOD Benchmark to generate data for traffic esti-
mation. Different from the BerlinMOD Benchmark approach we need many cars on a single day. Therefore, we
manipulate the parameters for SCALEFCARS and SCALEFDAYS in lines 143 and 144 of the script. The num-
ber of generated cars will be 2000∗SCALEFCARS and the number of observation days 28∗SCALEFDAY S.

The generated data can be translated into network representation by:

#open database

open database berl inmod ;

# Build a network from s t r e e t data .

let B ROUTES =
s t r e e t s feed
projectextendstream [ ; geoData : . geoData polylines [ TRUE ] ]
addcounter [ id , 1 ]
projectextend [ id ; l e ng t : size ( . geoData ) ,

geometry : fromline ( . geoData ) ,
dual : TRUE ,
s t a r tSma l l e r : TRUE ]

3mgpsu2tuple: stream(mgpsecunit) → stream(tuple(sid int, part int, direction int, speed real, starttime instant, endtime
instant, leftclosed bool, rightclose bool))
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consume ;

let B JUNCTIONS =
B ROUTES feed { r1}
B ROUTES feed { r2}
symmjoin [ ( . i d r 1 < . . i d r 2 ) and ( . geometry r1 intersects . . geometry r2 ) ]
projectextendstream [ i d r 1 , geometry r1 , i d r2 ,

geometry r2 ; CROSSING POINT: components ( crossings ( . geometry r1 ,
. geometry r2 ) ) ]

projectextend [ ; r 1 i d : . i d r 1 ,
r1meas : atpoint ( . geometry r1 , .CROSSING POINT, TRUE ) ,
r 2 i d : . i d r 2 ,
r2meas : atpoint ( . geometry r2 , .CROSSING POINT, TRUE ) ,
cc : 65535 ]

consume ;

let BNETWORK = thenetwork (1 , 1 . 0 , B ROUTES, B JUNCTIONS ) ;

# Trans late Moving Objects in Network Repre sentat ion

let dataSNcar =
dataScar feed
projectextend [ Licence , Model , Type ; Trip : mpoint2mgpoint(BNETWORK, . Trip ) ]

consume ;

On this database we can perform traffic estimating queries like:

let q1 =
dataSNcar mgp2mgpsecunits [ Trip ,BNETWORK, 1 0 0 0 . 0 ]

trafficflow2 ;

let q2 =
dataSNcar mgp2mgpsecunits [ Trip ,BNETWORK, 1 0 0 0 . 0 ]
transformstream
project [ Elem ]
sortby [ Elem asc ]

trafficflow ;

let q3 =
dataSNcar mgp2mgpsecunits [ Trip ,BNETWORK, 1 0 0 0 . 0 ]
namedtransformstream [MGPSec ]
project [MGPSec]
sortby [MGPSec asc ]

trafficflow ;

let q4 =
dataSNcar feed
projecttransformstream [ Trip ]
mgp2mgpsecunits3 [ 1 0 0 0 . 0 ]

trafficflow2 ;

let q5 =
dataSNcar feed
projecttransformstream [ Trip ]
mgp2mgpsecunits3 [ 1 0 0 0 . 0 ]
transformstream project [ Elem ]
sortby [ Elem asc ]

trafficflow ;

let q6 =
dataSNcar feed
projecttransformstream [ Trip ]
mgp2mgpsecunits3 [ 1 0 0 0 . 0 ]
namedtransformstream [MGPSec ]
project [MGPSec]
sortby [MGPSec asc ]

trafficflow ;

let q7 =
dataSNcar mgp2mgpsecunits [ Trip ,BNETWORK, 1 0 0 0 . 0 ]

traffic ;

let q8 =
dataSNcar feed
projecttransformstream [ Trip ]
mgp2mgpsecunits3 [ 1 0 0 0 . 0 ]

traffic ;

let q9 =
dataSNcar feed
projecttransformstream [ Trip ]

t r a f f i c 2 [ 1 0 0 0 . 0 ] ;

let ht1 = q9 heavytraffic [ 8 . 7 7 7 , 2 ] ;

let ht2 = q9 heavytraffic [ 2 . 3 3 3 , 2 ] ;
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