
User Guide For Parallel Secondo

Jiamin Lu, Ralf Hartmut G̈uting
Databases for New Applications, Fernuniversität Hagen, Germany

June 3, 2013

1 Parallel Secondo Infrastructure

Parallel SECONDO is constructed by coupling the Hadoop framework and discrete SECONDO databases
on a set of computers connected with network, as shown in Figure 1. It can be deployed on either a
single computer or a cluster containing tens or even hundreds of computers. Its two components Hadoop
and discrete SECONDO databases coexist in the same system, and each can be used independently. In
Hadoop, nodes communicate through HDFS (Hadoop Distributed File System),whereas each single-node
SECONDO exchanges its data with the other SECONDO instances through the PSFS (Parallel SECONDO

File System), which is a distributed file system perticularly prepared for Parallel SECONDO.

Whereas Hadoop is deployed by nodes, Parallel SECONDO is deployed by Data Servers. A Data Server is
the minimum execution unit of the system, containing a compact SECONDOnamed Mini-SECONDOand
its database, together with a PSFS node. It is possible that one cluster nodecontains several Data Servers.
This is especially useful for nodes with multiple hard disks, since then the user can set a Data Server
on each disk, in order to take full advantage of the cluster resources. When processing various parallel
queries, a small amount of data is exchanged among nodes through the HDFS, in order to assign tasks to
Data Servers. At the same time, most intermediate data are exchanged among Data Servers through the
PSFS.

A particular Data Server set on the master node is called themaster Data Server; its Mini-SECONDOis the
only entrance to the system, called themaster database. The other databases that are deployed on slave
Data Servers are calledslave databases. Through various PQC (Parallel Query Converter) operators,
which are also called Hadoop operators, a parallel query submitted in themaster databaseis converted
to a Hadoop job, and then partitioned to tasks. These tasks are processedby Data Servers in parallel, as
scheduled by the Hadoop framework. Different from the slave databases, the master database contains
some global and meta data of the whole system; therefore it is also called the meta database as well.

An identical DS-Catalog (Data Server Catalog) is duplicated on every node of the cluster, describing
access entries for all Data Servers. It is composed by two files,masterandslaves, listing Data Servers by
lines with three elements:

IP_Address:PSFS_Location:SecondoPort

For each line, its first element distinguishes nodes by their IP addresses,whereas the second and the third
elements tell apart Data Servers within a same computer based on their PSFS node locations and Mini-
SECONDOports. The master file should contain only one Data Server. It is possible to use the master also
as a slave Data Server. In a node with several Data Servers, the Hadoop applications and the DS-Catalog

1

are only set in its first Data Server. The order of these Data Servers is decided by the DS-Catalog, and the
master Data Server is always the first one on the master node.

Slave Node

Master

Node

Hadoop Master Node

Master Data Server

Mini Secondo

Meta

Database

DS Catalog

Parallel

Query

Converter

Slave

Node
Hadoop Slave Node

Slave Data Server

Mini Secondo

Slave

Database

DS Catalog
Partial Secondo

Query

... ...

P

S

F

S

H
D
F
S

Slave Data

Server

Slave Data

Server
...

Figure 1: The Infrastructure of Parallel Secondo

2 Hadoop Algebra

SECONDO is composed by algebras, each containing a set of data types and relativeoperators. Two
algebras are especially required by the Parallel SECONDO, Hadoop and HadoopParallel. Besides, some
other components are also required:

1. Hadoop Archive. Hadoop archive with the version 0.20.2 is used as the underlying framework for
Parallel SECONDO. It is not included in the SECONDOrelease by default, and has to be downloaded
to the directory $SECONDOBUILD DIR/bin by the user. However, its installation is performed
automatically later along with the deployment of the Parallel SECONDO.

2. Parallel SECONDOAuxiliary Utilities. A set of bash scripts is provided to manage the system. They
are kept in the Hadoop algebra by default, in a folder namedclusterManagement. These scripts
include at least:

ps-cluster-format: It is an automatic install script for initializing the Parallel SECONDO environ-
ment of the cluster, including the Hadoop framework.

ps-cluster-uninstall: It performs the opposite function to the script above, removing the Parallel
SECONDO from the cluster, and cleaning up the environment.

2

ps-secondo-buildMini: It extracts and distributes the Mini-SECONDO based on the local SEC-
ONDO system, to all Data Servers that are listed in the DS-Catalog.

ps-startMonitors: The SECONDOmonitor is a database server process prepared to accept multiple
remote clients visiting the same SECONDO database. In Parallel SECONDO, all SECONDO

monitors have to be started up before processing any parallel queries. Considering there may
exist several Data Servers in one cluster node, this script helps the user to start up monitors on
the current node.

ps-start-AllMonitors: It starts up all Data Servers’ SECONDOmonitors in the cluster.

ps-stopMonitors: It shuts down Data Servers’ SECONDOmonitors on the current node.

ps-stop-AllMonitors: It shuts down all Data Servers’ SECONDOmonitors in the cluster.

ps-startTTY: It starts up a SECONDOtext terminal interface of one Mini-SECONDOon the current
node.

ps-startTTYCS: It opens a SECONDOClient-Server based text terminal interface, and connects to
a started SECONDOmonitors in the cluster.

ps-cluster-queryMonitorStatus: It checks the status of all SECONDOmonitors in the cluster.

3. Parallel Configuration File. All Parallel SECONDO parameters are set in a file named ParallelSec-
ondoConfigure.ini. Its example file is also kept in the Hadoop algebra, together with the above
auxiliary utilities.

4. Template Hadoop Job. Several generic Hadoop jobs are prepared for the PQC operators. Their
source files are kept in the Hadoop algebra too, and the jobs are generated when the algebra is being
compiled.

3 Configuring Parallel Secondo

All Parallel SECONDO related parameters are set in a file namedParallelSecondoConfig.ini. Its example
file is prepared to deploy the Parallel SECONDOon a single computer, and kept in the Hadoop algebra by
default. After setting all required parameters according to the user’s ownenvironment, this file should be
copied to the $SECONDOBUILD DIR/bin, and then read by the ps-cluster-format script.

This file follows the same format as the SecondoConfig.ini file, mainly divided into three sections: hadoop,
cluster and options. The firsthadoop section is prepared for setting up the Hadoop framework. All
parameters listed in this section keep the Hadoop configuration on all involvednodes the same. Although
it restricts the flexibility of the system, it helps new users to set up Parallel SECONDO quickly without
learning many details about Hadoop. All parameters are listed by lines, composed of three elements
including the file name, title and value. Each value is prepared for a parameterwith the specific title in a
particular file.

[fileName]:[title] = [value]

This section is further divided into four parts. The first contains all indispensable parameters prepared
for Parallel SECONDO. Non-advanced users should keep this part unchanged, or else the Parallel SEC-
ONDO may not work correctly. The second part sets IP addresses and portsfor different Hadoop dae-
mons. They are also indispensable, although the user should change theirvalues based on his own cluster,
like the master node’s IP address. Besides, daemons’ port numbers canalso be changed if the default
values have already been taken by some other programs. The third part indicates the capability of the

3

cluster, and the user should also set them based on his own cluster. For example, the optionmapred-
site.xml:mapred.tasktracker.map.tasks.maximumlimits the number of map tasks running in parallel on
one node. Usually we set this value by doubling the number of the processor cores contained in the
computer, so does the other optionmapred.tasktracker.reduce.tasks.maximum. There are also some other
parameters like thehdfs-site.xml:dfs.replication, telling how many times each HDFS block is replicated on
the cluster. If the Parallel SECONDOis deployed into a cluster composed of hundreds of elastic computers,
then it is better to set this parameter with an integer more than 1. The last part is prepared for clusters
shared by multiple users, where each user should set their daemons with different port numbers. In this
case, the port numbers listed in the second part should also be adjusted.

The cluster section lists all involved Data Servers. Each Data Server is indicated with oneline, and
assigned as the master or a slave by the title. The value part contains three elements: IP Address, Data
Server Path and Mini-SECONDO Port. The second element indicates a disk path where all Data Server
components are kept. This path is created automatically if it does not exist before, but the user should
guarantee that he/she has been granted the write access to this path. Takea cluster configuration for
example:

Master = 192.168.0.1:/Home/dataServer1:11234
Slaves += 192.168.0.1:/Home/dataServer1:11234
Slaves += 192.168.0.1:/Home/dataServer2:12234

Here a small cluster is simulated on one computer with the IP address 192.168.0.1. It contains two Data
Servers, which are kept in the /Home/dataServer1 and the /Home/dataServer2, respectively. The first Data
Server is used as the master and a slave at the same time. The master Mini-SECONDO can be accessed
through the port 11234.

The last sectionoptions is prepared for some special settings in the cluster. At present, only one option
named NS4Master (Normal Secondo For Master database) is provided here. If its value is set as true, then
the master node’s default SECONDO, i.e. where the $SECONDOBUILD DIR points to, is set to be the
master database.

4 Mini-Secondo Management

In Parallel SECONDO, one node may contain multiple SECONDO databases, and a cluster may be com-
posed by many computers. Therefore, some regular routine work like starting, stopping, and updating
SECONDO systems are better processed with some auxiliary bash scripts. These auxiliary utilities are
briefly introduced in Section 2, and their names are all started by “ps-”. Most of the scripts support the
usage explanation, which can be printed out with the “-h” argument. Here we only introduce several of
them about managing the Mini-SECONDOof the system.

common operations in Parallel SECONDOaccomplished with these scripts.

4.1 Update Mini-Secondo

The Mini-SECONDO is a compact SECONDOdistribution, only containing essential components required
to handle its database. All of them are built based on the SECONDO installed on the master node, keeping
identical over the whole cluster. In case there will be any extension made for SECONDO, like creating new
data types or operators, the user can update all Mini-Secondo in the cluster immediately.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment

4

$ ps-stop-AllMonitors
$ cd $SECONDO_BUILD_DIR/
$ make
$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-secondo-buildMini -c

The ps-secondo-buildMini provides two major arguments: c (cluster) andl (local). If the “-c” argument is
set, then the update will be distributed to every Data Server of the cluster. Incontrast, if the “-l” parameter
is set, then the new SECONDO is only distributed to all Data Servers on the current node.

All essential components that a Mini-SECONDO needs are listed in a text file named miniSeclist, which
is kept together with the script ps-secondo-buildMini, describing files andfolders by lines. It is possible
for the user to change this list according to his own requirement.

4.2 Start Up and Turn Off Mini Secondo Monitors

During parallel procedures, SECONDOdatabases are accessed through their monitors, which should be all
started up before processing any queries. Considering there are tensor even hundreds of Mini-SECONDO

systems inside a cluster, several utilities are proposed to start and stop these monitors without visiting
them one after another.

The ps-startMonitors starts up all Mini-SECONDO monitors on the current computer, while ps-start-
AllMonitors visits every node and runs the ps-startMonitors, so as to start up all monitors on the cluster.
In contrast, the ps-stopMonitors turns off all Mini-SECONDO monitors on the current computer, and all
monitors on the cluster are shut down by executing the ps-stop-AllMonitors.

4.3 Open Parallel Secondo Interface

In Parallel SECONDO, every Mini-SECONDO can be viewed as a normal SECONDO system and visited
independently. Normally the user only needs to visit the master database, although scripts like ps-
startTTYCS are capable to access any Mini-SECONDO in the cluster. One cluster node may contain
several Mini-SECONDO databases, which are arranged according to the DS-Catalog. The commands for
opening the Parallel SECONDOmain text interface are:

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-startMonitors
$ ps-startTTYCS -s 1

All Mini-S ECONDO monitors must be started up before running any parallel queries, hence the meta
database can only be visited through its client-server interface. Since the master Mini-SECONDOis always
the first database on the master node, we start up this specific interface bysetting the arguments with the
value 1. Besides, it is also possible to use the graphical user interface in Secondo to visit the meta database.
The user can open the Javagui interface as usual, then connect to the indicated database by setting its host
IP and port number in the menu “Server”, and “Settings”.

5 Secondo Parallel Query Expression

Here we introduce how to write parallel queries in SECONDO executable language. The SECONDO exe-
cutable language describes query plans by composing database objects and operators in certain oder. It

5

Data Server 1

Data Server N

Data Server 2

Data Server 1

Data Server m

... ...

... ...

... ...

... ...

... ...

... ...

... ...

C

R

N

Figure 2: PS-Matrix

is of course more complicated than writing SQL queries, but far more easier than programming Hadoop
programs.

5.1 PS-Matrix

In Parallel SECONDO, data is distributed over the cluster as a PS-Matrix, shown in Figure 2. A Secondo
object is divided into pieces based on two functions,d(x) andd(y). Thed(x) divides the data intoR rows;
each row should be completely kept on one Data Server. It is possible ford(x) to produce more rows than
the cluster scaleN , and keep multiple rows on one Data Server. Afterwards,d(y) further divides every
row toC columns. As a result, a PS-Matrix is composed byR×C pieces, but not all pieces in the matrix
must contain data. Normally, a PS-Matrix is prepared for distributing large-sized data over the cluster,
like relations containing millions of tuples, while the division functions are hash algorithms based on one
of its attributes.

5.2 Data Type

In Parallel SECONDO, data typeflist is especially introduced for representing the PS-Matrix. It is designed
as a wrap structure, and able to encapsulate all available SECONDO objects, shown in Table 1. After a
SECONDO object has been divided into a PS-Matrix, piece data are distributed and kept in slave Data
Servers, while only their partition scheme is kept in the meta database as anflist object.

SPATIAL point , line → FLIST flist(point), flist(line)
RELATION rel(tuple(T)) → FLIST flist(rel(tuple(T)))
INDEX rtree(T) → FLIST flist(rtree(T))

Table 1: Some Exampleflist Data Types

There are two kinds of methods keeping distributed data on slave data servers. The first keeps the partial
data in slave Mini-SECONDO databases, saved as normal SECONDO objects. The second exports data to
the PSFS nodes as disk files. Hereby, there are two kinds offlist objects in Parallel SECONDO.

1. Distributed Local Objects (DLO): A DLO divides a large-sized SECONDO object to aN × 1 PS-

6

Matrix, each row is saved in a slave Mini-SECONDO database as SECONDO objects, called sub-
objects. All sub-objects belonging to a sameflist have the same name in different slave databases.
Theoretically, DLO flist can wrap all available SECONDOdata types.

2. Distributed Local Files (DLF): Data are divided into aR×C PS-Matrix, and each piece is exported
as a disk file in PSFS, called sub-file. Sub-files can be exchanged among Data Servers during
parallel procedures. At present, only relations can be exported and kept as sub-files, hence DLF flist
is prepared for relations only.

Although it is possible to wrap any SECONDOdata type with anflist object, there are some data too small
to be distributed in this way. For example, a rectangle query window is used byevery slave data server
during a parallel query, but it is not advisable to divide it into smaller pieceswhich are then distributed
over the cluster, since the rectangle itself is very small. In this case, this rectangle can be simply dupli-
cated to every Data Server during the runtime. Apparently, not all SECONDO objects can be duplicated,
since data are delivered as nested-lists, which require a relatively expensive transforming overhead. E.g, a
relation containing one million tuples should not be delivered to every slave along with the query. There-
fore, a new data kind calledDELIVERABLE is introduced for Parallel SECONDO, and only data types
associated with this kind can be used in parallel queries, and duplicated to slaves during the runtime. All
DELIVERABLE data types are listed in Table 2.

5.3 Operators

Along with the creation of theflist data type, several operators are introduced to process distributed
objects and parallel queries. Briefly, these operators are divided into four kinds: flow, assistant, Hadoop
and PSFS. The PSFS operators are invisible to users, exchanging data between SECONDO instances and
PSFS, therefore they are not specially introduced here.

5.3.1 Flow Operators

Flow operators connect sequential queries with parallel queries. At present, two operators namedspread
andcollect are defined for this kind, and they can only process DLFflist objects. Sub-objects in one DLO
flist are kept in slave databases and cannot be transferred over the nodes, hence they are not supported by
the flow operators.

spread

stream(tuple(T)) x [fileName: string]
x [filePath: text] x [dupTimes: int]
x AI x [scaleN: int] x [KPAI: bool]
x [AJ] x [scaleM: int] x [KPAJ: bool]

→ flist(stream(tuple(T')))

spread partitions a SECONDOrelation into a PS-Matrix, distributing pieces into the cluster, and returning
a DLFflist . The relation is first divided to rows in the PS-Matrix according to the indispensable partition
attributeAI. If another partition attributeAJ is indicated, each rowcan be further partitioned into columns.

Each piece of the PS-Matrix is exported as a sub-file. Both the fileName and the filePath arguments are
optional. If they are not indicated, sub-files are then kept in the default PSFS nodes, and their names are set
by rules. The user is allowed to set the file name and path by himself, although it may create homonymic
sub-files with different queries.

7

Type Algebra NumOfFlobs PersistencyMode

1 bool StandardAlgebra 0 Memoryblock-fix-core
2 cellgrid2d TemporalAlgebra 0 Memoryblock-fix-core
3 cluster TopRelAlgebra 0 Memoryblock-fix-core
4 duration DateTimeAlgebra 0 Serialize-fix-core
5 edge GraphAlgebra 0 Memoryblock-fix-core
6 geoid SpatialAlgebra 0 Memoryblock-fix-core
7 gpoint NetworkAlgebra 0 Memoryblock-fix-core
8 ibool TemporalAlgebra 0 Memoryblock-fix-core
9 iint TemporalAlgebra 0 Memoryblock-fix-core
10 instant DateTimeAlgebra 0 Serialize-fix-core
11 int StandardAlgebra 0 Serialize-fix-core
12 ipoint TemporalAlgebra 0 Memoryblock-fix-core
13 ireal TemporalAlgebra 0 Memoryblock-fix-core
14 istring TemporalExtAlgebra 0 Memoryblock-fix-core
15 point SpatialAlgebra 0 Memoryblock-fix-core
16 real StandardAlgebra 0 Serialize-fix-core
17 rect RectangleAlgebra 0 Memoryblock-fix-core
18 rect3 RectangleAlgebra 0 Memoryblock-fix-core
19 rect4 RectangleAlgebra 0 Memoryblock-fix-core
20 rect8 RectangleAlgebra 0 Memoryblock-fix-core
21 string StandardAlgebra 0 Serialize-variable-extension
22 ubool TemporalAlgebra 0 Memoryblock-fix-core
23 uint TemporalAlgebra 0 Memoryblock-fix-core
24 upoint TemporalAlgebra 0 Memoryblock-fix-core
25 ureal TemporalAlgebra 0 Memoryblock-fix-core
26 ustring TemporalExtAlgebra 0 Memoryblock-fix-core
27 vertex GraphAlgebra 0 Memoryblock-fix-core
28 filepath BinaryFileAlgebra 1 Memoryblock-fix-core
29 text FTextAlgebra 1 Memoryblock-fix-core

Table 2: DELIVERABLE data types

8

A sub-file consists of the type and data files. The type file describes the schema of the exported relation,
being produced during the type mapping period and duplicated to every node inside the cluster. Data files
contain tuples’ binary blocks, and all data files kept in one Data Server share the same type file. The
sub-files are readable with theffeed operator.

Here the PS-Matrix has a scale ofscaleN × scaleM . They also both are optional arguments. The default
scaleN value is the cluster size, and the defaultscaleM value is 1. Normally, the partition attributeAI is
removed after the query, except the argumentkeepAIis set as true. Same for the other partition attribute
AJ. TheAJ must be different fromAI.

Data files are named as fileNamerow column, row∈ [1, scaleN], and column∈ [1, scaleM]. For the
purpose of fault-tolerance, each partition file is duplicated ondupT imes continuous slave nodes, and the
default value ofdupTimesis 1. All duplicated files are kept in PSFS nodes.

collect

flist(stream(T)) x [row: int] x [column: int] → stream(tuple(T))

Thecollect operator performs the opposite function to thespread. It accepts a DLF kindflist object,
collects required sub-files over the cluster, and returns a tuple stream from sub-files. Both the row and
column arguments are optional arguments, and their default values are 0, which means the complete row
and column. If there is only one parameter given, then it is viewed as a row number. Only non-negative
integer numbers are accepted as parameters.

By default, this operator reads all sub-files denoted in the given DLF flist.If the optional parameters are
set, then it returns part of the PS-Matrix. For example:

• collect[1] and collect[1,0] read all sub-files in the first row.

• collect[0,2] reads all sub-files in the second column.

• collect[1,2] reads one piece sub-file in the PS-Matrix, located at the firstrow and the second column.

• collect[0,0] and collect[] read all sub-files inside the PS-Matrix.

If the required sub-files are located in a remote node, then they are copiedto the current node before being
read.

5.3.2 Assistant Operators

All assistant operators cannot be used alone, but have to work with the following hadoop operators.

para

flist(T) → T

Theflist is designed to wrap all available SECONDO data types, and work with various SECONDOoper-
ators. However, it is impossible to let all operators recognize and process this new data type. Regarding
this issue, we implement thepara operator to unwrapflist objects and return their embedded data types,
in order to pass the type checking of existing operators.

Note that there is no value mapping function provided for this operator, since it is only prepared for letting
flist objects pass through different operators’ type mapping functions. It isdesigned this way as there
is no generic data able to express SECONDO objects with various types. Therefore, thepara operator

9

can only work with the hadoop operators that will be introduced later. It is set inside hadoop operators’
interFunc arguments, which are not evaluated directly in the master database.

TPARA

flist(T) → T

This is a type operator, extracting the internal type from the inputflist object, and delivering it to the
internal function argument as its input parameter. It works similar as the abovepara operator, but it can
only be used implicitly.

TPARA2

ANY x flist(T) → T

This is also a type operator , working similar likeTPARA, but it gets the embedded type from the second
flist input instead of the first one.

5.3.3 Hadoop Operators

hadoopMap

flist(T) x [subName: string] x [subPath: text]
x [kind: DLO | DLF] x [mapTaskNum: int]
x [executed: bool]
x (interFunc: map (T → T1))

→ flist(T1)

hadoopMap creates anflist object of either DLO or DLF kind, after processing itsinterFuncby slaves
in parallel, during the map step of the template Hadoop job. Both subName and subPath are optional
arguments, the default flist kind is DLO, and the mapTaskNum default valueis the current cluster size.
The interFunc is expressed as a function argument, and not evaluated in the master node, but delivered
and processed in slaves. Take the creation of a distributed B-Tree as anexample. The original sequential
query is:

let dataSCcar_Licence_btree = dataSCcar createbtree[Lic ence];

This query creates a B-Tree index for a relation called dataSCcar, based on its Licence attribute. The
parallel queries are:

let dataSCcarList = dataScar feed
projectextend[Licence, Type, Model; Journey: .Trip]
spread[;Licence, 10, TRUE;] hadoopMap[; . consume];

let carLicence_btreeList = dataSCcarList
hadoopMap["dataSCcar_Licence_btree"; . createbtree[Licence]];

Here both the dataSCcarList and the carLicencebtreeList areflist objects. The first query distributes the
tuple relation to slaves and returns a DLO flist. It first uses thespread operator to distribute data as sub-
files, and returns a DLFflist object. All SECONDO indexes must be built based on stored relations, where
each tuple has a unique tupleID that is indispensable for index structures.Therefore, the returned DLF flist
is sent to thehadoopMap operator, letting each slave Data Server import the local sub-files to its Mini-
SECONDOdatabase, saved as a sub-object. At last, the second query reads the created dataSCcarList, and
uses ahadoopMap to let slaves create their own index by executing the interFunc.

10

Limited by the current SECONDOquery processor, thehadoopMap only describes the Map stage in the
created Hadoop job. At the same time, the followinghadoopReduce andhadoopReduce2 operators
describe only the Reduce stage in the job. In order to construct jobs including both Map and Reduce stages,
i.e. both stages invoke Mini-SECONDOon slaves to process the interFunc queries, an additional boolean
parameter namedexecutedis provided in thehadoopMap operator. By default, this parameter is set to
be true, then the operator creates a Hadoop job with only its Map stage containing the InterFunc query.
Particularly, whenhadoopMap concatenates withhadoopReduce or hadoopReduce2, and sets
the executedparameter to be false, then it returns an unexecutedflist object, with the InterFunc being
not processed. Such an unexecutedflist is delivered to the next reduce operator, in which a Hadoop job
is created with Map tasks containing the InterFunc argument in thehadoopMap and the Reduce tasks
processing the InterFunc described in the reduce operator. An exampleof this feature will be explained
later.

hadoopReduce

flist(T) x partAttribute
x [subName: string] x [subPath: text]
x [kind: DLO | DLF] x [reduceTaskNum: int]
x (interFunc: map (T → T1))

→ flist(T1)

hadoopReduce also takes one flist as the input, delivering and processing its interFunc byslaves in
parallel. However, the interFunc is processed in the reduce step instead of the map step of its template
Hadoop job. In the map step, the input has to be redistributed based on the partitionAttribute, hence the
inputflist object must wrap a stream of tuples.

Compared with thehadoopMap operator, this operator needs two additional arguments, partAttribute
and reduceTaskNum. Data are first re-distributed into reduceTaskNumcolumns based on the partAttribute
in the map step. Then each reduce task collects one column data from the re-distributed PS-Matrix, using
it as the input for the interFunc.

Take the third BerlinMOD query as an example, which can be processed withthe following parallel query:

let OBACRres003 =
QueryLicences_Top10_List
hadoopMap[DLF, false

; . feed loopjoin[para(dataSCcar_Licence_btree_List)
para(dataSCcar_List) exactmatch[.Licence] {LL}

projectextendstream[Licence_LL; UTrip: units(.Journey _LL)]
extend[Box: scalerect(bbox(.UTrip), CAR_WORLD_X_SCALE ,

CAR_WORLD_Y_SCALE, CAR_WORLD_T_SCALE)]
extendstream[Cell: cellnumber(.Box, CAR_WORLD_GRID)]]]

hadoopReduce[Cell, "Q3_Result", DLF, REDUCE_SCALE
; . para(QueryInstants_Top10_Dup_List) feed {II} product

projectextend[; Licence: .Licence_LL, Instant: .Instant _II,
Pos: val(.UTrip atinstant .Instant_II)]

filter[isdefined(.Pos)]]
collect[]
sort rdup consume;

As shown in this example, thehadoopMap operation first selects trajectories by pruning the distributed
B-Tree created before. Result trajectories are decomposed into units, which are then distributed into a
global cell-grid, by adding a new attribute named Cell. Afterwards, reducetasks fetch different interme-
diate results as their input based on the Cell attribute, and the interFunc is processed by slaves in parallel

11

during the reduce step.

Note that in the above examples, interFunc arguments in bothhadoopMap andhadoopReduce op-
erations include severalflist objects. For each operation, the firstflist is set as the input, delivered to
the interFunc by the implicit type operatorTPARA. However, all the remainingflist objects have to
be quoted by thepara operator, since operators likeexactmatch andproduct cannot accept anyflist
input.

The executedparameter in thehadoopMap is set to be false here, therefore only one Hadoop job
is created in thehadoopReduce operation, which contains not only the Reduce stage described in
hadoopReduce, but also the Map stage described inhadoopMap.

hadoopReduce2

flist(T1) x flist(T2)
x partAttribute1 x partAttribute2
x [subName: string] x [subPath: text]
x [kind: DLO | DLF] x [reduceTaskNum: int]
x [isHDJ : bool]
x (interFunc: map (T1 x T2 → T3))

→ flist(T3)

This operator is similar as the abovehadoopReduce, except it accepts two flists as the arguments for
the interFunc. Both inputs are redistributed based their partition attributes respectively, and make queries
more flexible.

In general, intermediate data produced by Mini-SECONDO databases are shuffled in Parallel SECONDO

through PSFS. At the same time, for the purpose of research, Parallel SECONDO also can shuffle inter-
mediate data only by HDFS. This is named HDJ (Hadoop Distribute Join), since the data are distributed
by the Hadoop system. This feature is only supported in thehadoopReduce2 operator, by setting its
optional parameter isHDJ to be true, which is false by default. More details about HDJ can be found in
our technical report about Parallel SECONDO, ”Simple and Efficient Coupling of Hadoop With a Database
Engine”.

6 A Tour in Parallel Secondo

In this section, a small example is prepared to demonstrate how to use Parallel SECONDO to process
queries like building and searching a distributed index, or making a distributedhash-join query.

restore database opt from opt;
open database opt;
let Con_PLZ = 16928;
let PartFile = plz feed spread[;PLZ,6,TRUE;]
let PartRel = PartFile hadoopMap[;. consume];
close database;

In the above queries, the relation plz in database opt is distributed over the cluster. It is first distributed
by spread into a6 × 1 PS-Matrix, with the DLFflist PartFile as the result. Then the PartFile is sent to
hadoopMap, and its sub-files are loaded into slave databases, and the DLOflist PartRel is returned.
Assume this cluster contains two slave Data Servers, then the PartRel has a2 × 1 PS-Matrix, while each
sub-object contains half of the relation.

open database opt;

12

let SubBTree = PartRel hadoopMap[; . createbtree[PLZ]];
let ParaResult = SubBTree

hadoopMap[DLF; . para(PartRel) exactmatch[Con_PLZ]] col lect[] consume;
close database;

Here thehadoopMap is first used to create a distributed B-Tree over the cluster, returning the DLO flist

SubBTree. Afterwards, anotherhadoopMap is used to prune the distributed B-Trees in every slave. The
selected result is still distributed on slaves, and returned as a DLFflist . Here the ConPLZ is delivered
automatically to every slave Data Server, although it is created only in the masterdatabase, because its type
int is associated with the DELIVERABLE kind. At last, thecollect operator accumulates all distributed
sub-files created by the formerhadoopMap operation.

open database opt;
query PartRel hadoopMap[DLF

; . feed para(PartFile) {n} hashjoin[PLZ, PLZ_n]] collect[] count;

Wrong query , shou ld be f o r b i d d e n
query PartRel hadoopMap[DLF

; . feed para(PartRel) feed {n} hashjoin[PLZ, PLZ_n]] collect[] count;

query PartFile hadoopReduce[Ort , DLF, 5
; . para(PartFile) {n} hashjoin[PLZ, PLZ_n]] collect[] count;

query PartRel PartFile hadoopReduce2[Ort, Ort, DLF, 5
; . feed .. {n} hashjoin[Ort, Ort_n]] collect[] count;

close database;

Above, we list four parallel queries for processing a same distributed self-hash-join operation, with
hadoopMap, hadoopReduce andhadoopReduce2 operators respectively. The first query fin-
ishes the operation in the map step only. It takes PartRel as the input flist, hence each map task reads one
sub-object from its own Mini-database, and gets the other side from the PartFile quoted with thepara
operator. If a DLF flist is used in the interFunc of a hadoop operator, then all its sub-files will be collected
to that task. Note the second query that uses PartRel in its interFunc cannot get the correct result, as each
map task can only get its own sub-object.

The third query is ahadoopReduce operation, the input PartFile is repartitioned into 5 columns based
on its Ort attribute in its map step. Averagely each reduce task finishes the interFunc with 20% data from
the left side, and the whole data set from the right side.

The last query finishes with thehadoopReduce2 operator, it reads SubRel and SubObj at the same
time. Each map task reads the left side from its database, and reads the rightside from the PSFS. Both
side relations are repartitioned by their Ort attribute into 5 pieces. In its reduce step, each task gets 20%
data from both sides.

13

A Setting Up Parallel Secondo On A Single Node

Nowadays, it is common that one computer has a powerful computing and storage capability, with several
processors or cores, and several large hard disks. Therefore,it is possible to simulate a virtual cluster
on one computer only, and set the Parallel SECONDO up on it. At present, Parallel SECONDO provides
at least both Ubuntu and Mac OS X platforms. The deployment of Parallel SECONDO on one computer
includes several steps.

Prerequisites

Few utilities must be prepared before installing Parallel SECONDO. They are all ordinary linux commands
working on many Linux platforms and MacOSX.

• JavaTM 1.6.x or above. The openjdk-6 is automatically prepared along with the installation of
SECONDO.

• SSH connection. Both Data Servers and the underlying Hadoop platformrely on secure shell as the
basic communication level. For example on Ubuntu, the SSH server is not installed by default, and
can be installed with the command:

$ sudo apt-get install ssh

• screenis also requested by Parallel SECONDOscripts. In Ubuntu, it can be installed like:

$ sudo apt-get install screen

• Particularly in Hadoop, a passphraseless SSH connection is required.The user can check and set it
up through the following commands. First, carry out the “ssh” command to seewether a passphrase
is required.

$ ssh <IP>

Here the “IP” is the IP address of the current computer, and usually canbe found out through the
“ifconfig” command. If a password is asked for this connection, then an authentication key-pair
should be created with the commands:

$ cd $HOME
$ ssh-keygen -t dsa -P '' -f ˜/.ssh/id_dsa
$ cat ˜/.ssh/id_dsa.pub >> ˜/.ssh/authorized_keys

Afterward, try to ssh to the local computer again, this time it may asks to add its current IP address
to the knownhosts list, like:

$ ssh <IP>
The authenticity of host '... (...)' can't be established.
RSA key fingerprint is
Are you sure you want to continue connecting (yes/no)?

This step happens only once when the ssh connection is built at the first time.The user can simply
confirm the authentication by typing “yes”. If the user prefers to avoid thisstep, the following three
lines can be added into the file $HOME/.ssh/config.

Host *
StrictHostKeyChecking no
UserKnownHostsfile /dev/null

14

Installation Steps

A set of auxiliary tools, which practically are bash scripts, are provided tohelp the user to install and
use Parallel SECONDOeasily. These tools are kept in the Hadoop algebra of SECONDO3.3.2, in a folder
named clusterManagement. The installation of Parallel SECONDO on a single computer includes the
following steps:

1. Install SECONDO. The installation guide of SECONDO for different platforms can be found on our
website, and the user can install it as usual.1 Afterward, the user can verify the correctness of the
installation and compile SECONDO.

$ env | grep 'ˆSECONDO'
SECONDO_CONFIG=.... /secondo/bin/SecondoConfig.ini
SECONDO_BUILD_DIR=... /secondo
SECONDO_JAVA=.... /java
SECONDO_PLATFORM=...

$ cd $SECONDO_BUILD_DIR
$ make

Particularly, in Ubuntu, the following line in the profile file $HOME/.bashrc

source $HOME/.secondorc $HOME/secondo

should not be set at the end of the file. Instead, it should be set above the line:

[-z "$PS1"] && return

2. Download Hadoop. Go to the official website of Hadoop, and downloadthe Hadoop distribution
with the version of 0.20.2. The downloaded package should be put into the $SECONDOBUILD DIR/bin
directory without changing the name.

$ cd $SECONDO_BUILD_DIR/bin
$ wget http://archive.apache.org/dist/hadoop/core/

hadoop-0.20.2/hadoop-0.20.2.tar.gz

3. A profile file named ParallelSecondoConfig.ini is prepared for setting allparameters in Parallel
SECONDO. Its example file is kept in the clusterManagement folder of the Hadoop Algebra, which
is basically made for a single computer with Ubuntu. However, few parametersstill need to be set,
according to the user’s computer.

• TheCluster2 parameter indicates the DSs in Parallel SECONDO. In a single computer, it can
be set like:

Master = <IP>:<DS_Path>:<Port>
Slaves += <IP>:<DS_Path>:<Port>

The “IP” is the IP address of the current computer. The “DSPath” indicates the partition for
a Data Server, for example /tmp. Note that the user must have the read and write access to the
DS Path. The “Port” is also a port number prepared for a DS daemon, like 11234. Different
DS can be set on the same computer, but their DSPaths and Ports must be different.

1The version must be 3.3.2 or higher.
2This parameter must be set before continue.

15

• Sethadoop-env.sh:JAVAHOME to the location where the JAVA SDK is installed,

• The user might already have installed SECONDObefore, and created some private data in the
database. If so, theNS4Masterparameter can be set true, in order to let Parallel SECONDO

visit the existing databases.

NS4Master = true

Note here if there is no SECONDOdatabases created before, and theNS4Masterparameter is
set to be true, then the below installation will fail.

• At last, the transaction feature is normally turned off in Parallel SECONDO, in order to im-
prove the efficiency of exchanging data among DSs. For this purpose, the following RTFlag
parameter in the SECONDOconfiguration file should be uncommented.

RTFlags += SMI:NoTransactions

The file is named SecondoConfig.ini, being kept in the $SECONDOBUILD DIR/bin.

After setting all required parameters, copy the adjusted profile file to $SECONDO BUILD DIR/bin,
and start the installation with the auxiliary tool ps-cluster-format.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ cp ParallelSecondoConfig.ini $SECONDO_BUILD_DIR/bin
$ ps-cluster-format

During this installation, all Data Servers will be created and the Hadoop is installed. Besides, the
Namenode in Hadoop is formatted at last.

4. Close the shell and start a new one. Verify the correctness of the initialization with the following
command:

$ cd $HOME
$ env | grep 'ˆPARALLEL_SECONDO'
PARALLEL_SECONDO_MASTER=.../conf/master
PARALLEL_SECONDO_CONF=.../conf
PARALLEL_SECONDO_BUILD_DIR=.../secondo
PARALLEL_SECONDO_MINIDB_NAME=msec-databases
PARALLEL_SECONDO_MINI_NAME=msec
PARALLEL_SECONDO_PSFSNAME=PSFS
PARALLEL_SECONDO_DBCONFIG=.../SecondoConfig.ini....
PARALLEL_SECONDO_SLAVES=.../conf/slaves
PARALLEL_SECONDO_MAINDS=.../dataServer1/...
PARALLEL_SECONDO=.../dataServer1
PARALLEL_SECONDO_DATASERVER_NAME=...

5. The third step initializes the DS in the computer, but the Mini-SECONDOsystem is not distributed
into those Data Servers yet. This is because the Hadoop algebra cannot be compiled before setting
up the environment of Parallel SECONDO. Now both Hadoop and HadoopParallel algebras should
be activated, and SECONDO should be recompiled. The new algebras are activated by adding the
following lines to the algebra list file $SECONDOBUILD DIR/makefile.algebras.

ALGEBRA_DIRS += Hadoop
ALGEBRAS += HadoopAlgebra

ALGEBRA_DIRS += HadoopParallel
ALGEBRAS += HadoopParallelAlgebra

16

After re-compiling the SECONDO system, the user can distribute Mini-SECONDO to all local DSs
with the auxiliary tool ps-secondo-buildMini.

$ cd $SECONDO_BUILD_DIR
$ make
$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-secondo-buildMini -lo

So far, Parallel SECONDOhas been installed. If the user wants to completely remove it from the computer
or the cluster, an easy-to-use tool ps-cluster-uninstall is also provided.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-cluster-uninstall

B Setting Up Parallel Secondo In A Cluster

Installing Parallel SECONDOon a cluster is almost the same as the installation on a single computer. The
auxiliary tools help the user to set up and use the system easily, with only the configure file need to be
adjusted.

Prerequisites

Before the installation, there are some basic environment that the cluster should prepare. First, all com-
puters in the cluster should have a same operating system, or at least all of them should be Linux or Mac
OSX. Second, a same account needs to be created on all machines. This can be easily done with services
like NIS. Thereafter, the SSH and screen services should be prepared on all computers, and the comput-
ers can visit each other through SSH without using the passphrase. Third, one or several disk partitions
should be prepared on every machine, and the account prepared before should have read and write access
on them. At last, all required libraries of SECONDO and the .secondorc file should be installed on every
computer. Likewise, if the operating system is Ubuntu, then the line

source $HOME/.secondorc $HOME/secondo

should be set at the top of the profile file $HOME/.bashrc, before

[-z "$PS1"] && return

Installation Steps

One computer of the cluster must be indicated as the master node, and the complete installation is done
on this machine only, with the following steps:

1. Enter the master node, download the latest SECONDOdistribution, which must be newer than 3.3.2.
Then extract the SECONDOarchive to the master’s $SECONDOBUILD DIR, and compile it. Af-
terward, download the required Hadoop archive to $SECONDOBUILD DIR/bin.

$ tar -xzf secondo-v33 * .tar.gz
$ cd $SECONDO_BUILD_DIR
$ make

17

$ cd $SECONDO_BUILD_DIR/bin
$ wget http://archive.apache.org/dist/hadoop/core/

hadoop-0.20.2/hadoop-0.20.2.tar.gz

2. Prepare the ParallelSecondoConfig.ini file, according to the environment of the cluster. For example,
theclustercan be set as:

Master = 192.168.1.1:/disk1/dataServer1:11234
Slaves += 192.168.1.1:/disk1/dataServer1:11234
Slaves += 192.168.1.2:/disk1/dataServer1:11234
Slaves += 192.168.1.1:/disk2/dataServer2:14321
Slaves += 192.168.1.2:/disk2/dataServer2:14321

Here a cluster with two computers and four DSs are described. The two computers are set with the
IP address of 192.168.1.1 and 192.168.1.2, respectively. Since everycomputer has two disks, each
is set with two DSs. The computer 192.168.1.1 is set to be the master node of the cluster, and its
first DS with the port of 11234 is set to be the master and the slave DS at the same time. Besides,
the NS4Master can also be set as true, if the user want to visit the existing SECONDO database on
the master node.

Particularly, the following five parameters in the parallel configure file should be changed, by re-
placing the localhost with the master node’s IP address.

core-site.xml:fs.default.name = hdfs://192.168.1.1:49 000
hdfs-site.xml:dfs.http.address = 192.168.1.1:50070
hdfs-site.xml:dfs.secondary.http.address = 192.168.1. 1:50090
mapred-site.xml:mapred.job.tracker = 192.168.1.1:4900 1
mapred-site.xml:mapred.job.tracker.http.address = 192 .168.1.1:50030

Additionally, the transaction feature should also be disabled by uncommenting the line in the file
$SECONDOBUILD DIR/bin/SecondoConfig.ini on the master node.

RTFlags += SMI:NoTransactions

At last, run the ps-cluster-format script.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ cp ParallelSecondoConfig.ini $SECONDO_BUILD_DIR/bin
$ ps-cluster-format

3. Activate the Hadoop and HadoopParallel algebras into the file makefile.algebras, recompile SEC-
ONDO, and distribute Mini-SECONDO to all DSs at last.

$ cd $SECONDO_BUILD_DIR
$ make
$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-secondo-buildMini -co

The parameterc in the ps-secondo-buildMini indicates the whole cluster.

Till now, Parallel SECONDO is completely installed. Accordingly, the user can also easily remove the
system with the ps-cluster-uninstall script. The user can start all SECONDO monitors with the script
ps-start-AllMonitors, and close them with ps-stop-AllMonitors. The text interface of the whole Parallel
SECONDOis still opened by connecting to the master DS. All these steps should, and onlyneed to be done
on the master node.

18

$ start-all.sh
$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-start-AllMonitors
$ ps-cluster-queryMonitorStatus
$ ps-startTTYCS -s 1

Sometimes, it is quite difficult for the user to build up a physical cluster. Regarding this issue, a Amazon
AMI of Parallel SECONDO is provided. With this image, the user can quickly set up a virtual cluster on
the Amazon Web Services (AWS), and the Parallel SECONDO is already built inside it, hence he/she can
test the system directly.

19

	Parallel Secondo Infrastructure
	Hadoop Algebra
	Configuring Parallel Secondo
	Mini-Secondo Management
	Update Mini-Secondo
	Start Up and Turn Off Mini Secondo Monitors
	Open Parallel Secondo Interface

	Secondo Parallel Query Expression
	PS-Matrix
	Data Type
	Operators
	Flow Operators
	Assistant Operators
	Hadoop Operators

	A Tour in Parallel Secondo
	Setting Up Parallel Secondo On A Single Node
	Setting Up Parallel Secondo In A Cluster

